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Abstract. We consider isotropic Markov models on (phylogenetic) trees whose
models of evolution are symmetric, that is invariant with respect to a transi-

tive group of permutations of letters whose evolution we consider. Transitivity

of the action of the group of symmetries implies strong bounds on the space of
parameters of such a model. A special consideration is given to groups of sym-

metries containing large abelian subgroups. We prove that only hyperbinary

models have abelian groups of symmetries. Using GAP, a computer algebra
program, we calculate a complete classification of symmetric isotropic models

on d letters, where d ≤ 9.

0. Introduction

The present paper is inspired by questions arising in algebraic statistics. We
consider geometric models of Markov processes on phylogenetic trees or, since the
biological context may be a bit too restrictive or even misleading, geometric models
of hidden Markov processes on trees.

In a nutshell, the nature of the Markov process on a tree depends on three
elements. Firstly, one fixes a finite set A, elements of which are called letters and
stand for features whose evolution we want to trace. Secondly, a graph, a tree T .
The vertices of T have assigned random variables whose states space is A. One may
think about vertices as associated to states of the process, each vertex may assume
values in the set of letters. And thirdly, a model of evolution which describes the
way the states with values in A possibly evolve along the edges of the graph. This
boils down to defining conditional probability relating random variables associated
to ends of each edge of T so that the model of evolution is a space parameterizing
possible values of the conditional probability. The output of the process can be
described by a geometric model of such a triple which provides information about a
possible distribution of the letters over the leaves of the tree T . More precisely, the
geometric model is the locus of probability distributions arising from the given tree
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T , with different parameter choices given by the model of evolution, in the space
of all possible distributions on the leaves of T .

A reader who finds this short paragraph above confusing rather than explana-
tory is requested to look into one of the standard references in the field, [SS03] or
[PS05, Part I], for both proper explanation and biological context. In the present
paper we concentrate on algebraic and geometrical aspects of Markov processes on
trees, for which proper definitions are stated in Section 1.

We discuss the situation when such a process is isotropic. By this we mean
that the tree is not directed (unrooted) and has a uniform distribution at the root,
and the matrices describing conditional probability are symmetric. We avoid using
the word “symmetric” in this context and use “isotropic” instead, since the other
feature of our interest are symmetries in the set A. That is, we postulate that the
set of letters A admits symmetries described by a group of permutations of A and
the model of evolution is in agreement with such symmetries.

The trick of using symmetries to reduce complexity of a problem is standard in
physics and other natural sciences. In fact, in the study of phylogenetic trees related
to evolution of four biologically meaningful letters A,C,G, T there are standard
models with symmetries. The symmetries are implied by biological or biochemical
constraints.

In the early 90’s Evans and Speed, [ES93], as well as Székely, Steel and Erdös,
[SSE93], studied (non-isotropic) models of evolution whose symmetries are abelian
groups. The geometric models of these, so called group-based models, admit a
particularly nice description based on the Fourier calculus for finite abelian groups.
These geometric models were later described by Sturmfels and Sullivant as toric
varieties, which made a firm connection of this subject with algebraic geometry,
[SS04]. Recently, equivariant models, defined in a very general set-up, have been
considered by Draisma and Kuttler, [DK07].

Our starting point and objectives are somewhat different from these of the
above mentioned works. We assume that the models are isotropic and their groups
of symmetries act transitively on the set of letters A. We do not assume that the
group of symmetries is abelian (in fact, it is hardly ever abelian, as we show).

Our interest is in pure algebraic geometry rather than in its applications in
biology or algebraic statistics. In our earlier paper [BW07] we studied isotropic
binary models and proved that geometric models of two trivalent trees with the same
number of leaves can be deformed one to the other. Next, Sturmfels and Xu [SX08]
proved that, in fact, these geometric models are specializations of somehow more
general objects (spectra of Cox-Nagata rings), related to pointed rational curves.
This opens a question of finding other structures defined on trees (e.g. geometric
models of isotropic Markov processes) which enjoy a similar property.

The paper is organized as follows. In Section 1 we define the notion of an
isotropic Markov process on a phylogenetic tree (T ,W, Ŵ ) and its geometric model
X(T ) = X(T ,W, Ŵ ). Here W is a linear space with A as basis and Ŵ ⊂ S2W
stands for the model of evolution. This section is, essentially, an unpublished part
of paper [BW06]. In Section 2 we discuss symmetries of A. That is, we consider
a finite group G of permutations of A and associated model ŴG which is fixed
by symmetries from G. If G acts transitively on A then ŴG is called a symmetric
model of evolution onA. We introduce a notion of saturated groups whose conjugacy
classes are in bijection with (conjugacy classes of) symmetric models. We note that
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geometric models of a tree for conjugate groups are isomorphic. Next, in Section 3
we examine the case when G is hyperbinary, that is when G = Bn := Zn2 , A = Bn,
so that |A| = 2n and A can be identified with G with the regular action on itself.
This is the only isotropic group-based model, see 3.8 and 3.10. Then we present
the results of calculations for low dimensional cases. That is, using [GAP] the
second author computed pairs (G, ŴG) of saturated groups of permutations and
their symmetric models of evolution for |A| ≤ 9. They are presented together with
respective inclusions (or nesting of models, or Felsenstein’s hierarchy), c.f. [PS05,
Sect. 4.5.1]. In the last section of the paper we discuss the situation when the group
of symmetries of an isotropic model contains an abelian subgroup acting transitively
on A. This is the situation when our set-up is close to that of group-based model.

We thank the referee of this paper for remarks which helped us to put our work
in the proper context and to improve the exposition. We also thank the editors of
the present volume for organizing an excellent anniversary conference and preparing
this publication.

1. Isotropic processes.

Notation 1.1. A tree T is a simply connected graph (1-dimensional CW com-
plex) with a set of edges E = E(T ) and vertices V = V(T ) and the (unordered)
boundary map ∂ : E → V∧2, where V∧2 denotes the set of unordered pairs of distinct
elements in V. We write ∂(e) = {∂1(e), ∂2(e)}, or equivalently e = 〈∂1(e), ∂2(e)〉,
and say v is a vertex of e, or e contains v if v ∈ {∂1(e), ∂2(e)}, we simply write v ∈ e.
The valency of a vertex v is the number of edges which contain v (the valency is
positive since T is connected and we assume it has at least one edge). A vertex v
is called a leaf if its valency is 1, otherwise it is called an inner vertex or a node. If
the valency of each inner node is m then the tree will be called m-valent. The set
of leaves and nodes will be denoted L and N , respectively, V = L ∪ N . An edge
which contains a leaf is called a petiole, an edge which is not a petiole is called an
inner edge (or branch).

Example 1.2. A star is a tree with exactly one inner node. A caterpillar is a
3-valent tree such that there are exactly two inner nodes to which there are attached
two petioles, any other inner node has exactly one petiole attached.
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Set-Up 1.3. Let W be a (complex) vector space of dimension d, which we
will call a model space of states on the tree T , with a distinguished basis A =
{α1, α2, . . . αd}, the elements of which will be called letters. We set α = α1+· · ·+αd.

By α∗i we denote elements of the dual basis of the dual space W ∗ = Hom(W,C).
The pairing of W ∗ and W will be understood as the action of functionals on vectors,
or the other way around, so that αi(α∗j ) = α∗j (αi) is 1 or 0 depending on whether
i = j or i 6= j. Alternatively, we can fix an inner product on W for which αi’s make
an orthonormal basis, then the product allows to identify W with W ∗ and αi with
α∗i .
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We fix a linear map σ : W → C, such that σ(αi) = 1 for every i, that is
σ =

∑
α∗i . Therefore, σ is equivalent to α in terms of the above inner product.

The map σ will be called normalization.
Let Ŵ be a subspace of the second tensor product W ⊗W . We will call the

pair (W, Ŵ ) (or just the space Ŵ if W is fixed) a model of evolution on d letters.
An element A =

∑
i,j aij(αi ⊗ αj) of Ŵ can be represented as a matrix A = (aij)

(by abuse we use the same letter A to denote both), where aij are obtained by
evaluating A on elements of the dual basis, that is aij = A(α∗i , α

∗
j ). Equivalently,

the identification W ' W ∗ yields W ⊗ W ' W ⊗ W ∗ = End(W ) and A can
be interpreted as an endomorphism of W . Throughout the present paper we will
assume that Ŵ is contained in the symmetric product S2(W ) and we will call such
Ŵ an isotropic model of evolution.

In addition, we will assume that Ŵ (σ, · ) ⊂ C · α or, equivalently, that for
every matrix A =

∑
i,j aij(αi ⊗ αj) in Ŵ the sum of elements in each row (and,

since the matrix is symmetric, also in each column) is the same. This means that,
up to a multiplicative constant, elements of Ŵ are doubly stochastic matrices.

We note that in case of transitive group action, see 2.1, which is the main case
considered in the present paper, this assumption turns out to be redundant, see
2.8.

Given a tree T and a vector space W , and a subspace Ŵ ⊂ W ⊗ W we
associate to any vertex v of V(T ) a copy of W denoted by Wv and for any edge
e ∈ E(T ) we associate a copy of Ŵ understood as the subspace in the tensor product
Ŵ e ⊂ W∂1(e) ⊗W∂2(e). Note that although the pair {∂1(e), ∂2(e)} is unordered,
this definition makes sense since Ŵ consists of symmetric tensors. Elements of Ŵ e

will be written as (symmetric) matrices (aeαi,αj
) = (aei,j).

In the present paper we adopt the following definition.

Definition 1.4. The triple (T ,W, Ŵ ) described above is called an isotropic
model (or a Markov process) on a phylogenetic tree.

Frequently however, by abuse of language, we will call the triple (T ,W, Ŵ ) just
a phylogenetic tree. Since the whole structure (T ,W, Ŵ ) is the object of our interest
(not the leaf-labelled tree T alone, as a combinatorial structure), this abbreviation
should cause no confusion.

Discussion 1.5. The motivation for the set-up comes from statistics with com-
promises coming from the usage of linear algebra rather than explicit statistical
language.

Roughly speaking, from the point of view of statistics, a Markov process on
phylogenetic tree is a collection of random variables ξv with values in a set of
letters associated to nodes of T , together with collection of rules for inheritance,
that is of conditional (or transition) probability, labeled by edges of T .

In the set-up above the space W is spanned on letters from the set A, the model
space of states for variables ξv. The statistically meaningful domain in W is the
probabilistic simplex described by the following conditions in terms of coordinates
(basis dual to A): im(α∗i ) = 0, for all i (i.e. we consider the real part of the complex
vector space W ), and α∗i ≥ 0, for i = 1, . . . , d, and with normalization σ = 1. Given
v ∈ V the dual basis of Wv describes probability distribution of the random variable
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ξv. That is, P (ξv = αi) ∼ α∗i (wv), where wv is a vector of Wv (we can call wv the
state of T at vertex v). Here ∼ stands for proportionality and this is the form σ
which provides a somewhat more accurate definition P (ξv = αi) = α∗i (wv)/σ(wv)
which makes sense within the real non-negative orthant of W .

The model of evolution, that is the space Ŵ , is meant to provide the rules
according to which the states are inherited along the edges of T . That is, given
e ∈ E , a tensor (or matrix) A ∈ Ŵ e has entries

aij = A(α∗i , α
∗
j ) ∼ P (ξ∂(e)1 = αi | ξ∂(e)2 = αj)

Here, again, ∼ means that the actual equality makes sense when the entries of A
are real and non-negative, and the sum of every row (and column) is 1, i.e. when
A is doubly stochastic.

Example 1.6. Let us discuss some natural examples of isotropic models of
evolution. Recall that, in the matrix representation of an element of Ŵ , the sum
of the numbers in each row and each column is the same. If W is of dimension 2
this is equivalent to saying that the matrices in Ŵ are of the form[

a b
b a

]
for some a and b in C. Thus Ŵ is of dimension 2 and the only interesting example
of isotropic model for d = 2 since any proper subspace is of dimension ≤ 1 hence
trivial when it comes to normalizing.

If d = 4, which is a case of particular interest in biology, then there are a few
nontrivial choices for Ŵ . The most general case consists of the space of symmetric
matrices such that the sum of the numbers in each row and each column is the same.
The other two commonly known options are as follows: The Kimura 3-parameter
model with dim Ŵ = 4 and matrices of the form

a b c d
b a d c
c d a b
d c b a


and isotropic (!) strand symmetric model, c.f. [CS05],

a b c d
b e f c
c f e b
d c b a


where, because the matrix is proportional to doubly stochastic, it holds a+d = e+f ,
hence dim Ŵ = 5.

◦

Construction 1.7. The boundary map ∂ : E → V∧2 from 1.1 has its incar-
nation on the level of tensor products of vector spaces associated to both vertices
and edges of the tree T .

Let us consider a linear map of tensor products

Ψ̂
W,cW : Ŵ E =

⊗
e∈E

Ŵ e −→WV =
⊗
v∈V

Wv
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defined by setting its dual as follows

Ψ̂∗
W,cW (⊗v∈V α∗v) = ⊗e∈E (α∂1(e) ⊗ α∂2(e))∗|cW e

where αv stands for an element of the chosen basis A = {α1, . . . , αd} of the space
Wv. We will skip the subscripts in Ψ̂

W,cW and write just Ψ̂ if the model of evolution
is known.

The complete affine model of the phylogenetic tree (or, more precisely, of the
Markov process on the phylogenetic tree) (T ,W, Ŵ ) is the closure of the image of
the associated multi-linear map

Ψ̃ :
∏
e∈E

Ŵ e −→WV =
⊗
v∈V

Wv

We note that, by definition, for any function V 3 v −→ µ(v) ∈ {1, 2, . . . d} and any
point in the parameter space

(
Ae = (aeij)

)
e∈E ∈

∏
e∈E Ŵ

e the respective coordinate

of its image under the map Ψ̃ in the tensor product
⊗

v∈VWv is to be calculated
as follows

(⊗v∈V α∗µ(v))
(

Ψ̃
(
Ae = (aeij)

)
e∈E

)
=

∏
e=〈u,v〉∈E

aeµ(u)µ(v)

The induced rational map of projective varieties will be denoted by Ψ:

Ψ :
∏
e∈E

P(Ŵ e) − → P(WV) = P(
⊗
v∈V

Wv)

and the closure of the image of Ψ is called the complete projective model, or just the
complete model of (T ,W, Ŵ ). The maps Ψ̃ and Ψ are called the parametrization of
the respective model.

Given a set of vertices of the tree we can “hide” them by applying the map
σ =

∑
i α
∗
i to their tensor factors. In what follows we will hide all inner nodes and

project to tensor product of model spaces associated to leaves. That is, we consider
the map

ΠL : WV =
⊗

v∈VWv →WL =
⊗

v∈LWv

ΠL = (⊗v∈L idWv
)⊗ (⊗v∈N σWv

)

Definition 1.8. The affine model of a phylogenetic tree (or of a Markov process
on a phylogenetic tree) (T ,W, Ŵ ) is an affine subvariety of WL =

⊗
v∈LWv which

is the closure of the image of the composition Φ̃ = ΠL ◦ Ψ̃. The projective model,
denoted by X(T ,W, Ŵ ) or just X(T ) if W and Ŵ are fixed, is the underlying
projective variety in P(WL).

Note that X(T ) is the closure of the image of the respective rational map

Φ :
∏
e∈E

P(Ŵ e) − → P

(⊗
v∈L

Wv

)
which is defined by a special linear subsystem in the complete Segre linear system
|
⊗

e∈E p
∗
P(cW e)

OP(cW e)
(1)|, where p∗

P(cW e)
is the projection from the product to the

respective component. We will call this map a rational parametrization of the
model.
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The coordinates of Φ̃ can be computed as follows: for any function L 3 v −→
µ(v) ∈ {1, 2, . . . , d}, which describes the distribution of letters on leaves of L, the
respective coordinate of the tensor product

⊗
v∈LWv is determined as follows

(⊗v∈L α∗µ(v))
(

Φ̃
(
Ae = (aeij)

)
e∈E

)
=
∑

bµ
 ∏
e=〈u,v〉∈E

aebµ(u)bµ(v)


where the sum is taken over all functions µ̂ : V −→ {1, 2, . . . d} which extend µ.

Discussion 1.9. In the case of a Markov process on a tree T we fix a root
r ∈ V and this implies an order < on V = L ∪ N . Thus, every edge e ∈ E is
directed, which we denote by e = 〈u < v〉.

Random variables ξv determine a Markov process on T if the value of ξv depends
only on the value of ξu, where u is the node immediately preceding v in terms of
the order <.

This determines the distribution of variables ξv in terms of the initial proba-
bility distribution at the root and the relative probability along every edge. That
is, for any function V 3 v −→ µ(v) ∈ {1, 2, . . . d}

P

(⋂
v∈V

(ξv = αµ(v))

)
= P

(
ξr = αµ(r)

)
·

 ∏
e=〈u<v〉∈E

P
(
ξv = αµ(v) | ξu = αµ(u)

)
We note that this formula is proportional to the one describing the coordinates
of the parametrization of the complete affine model of T , with identifications de-
scribed in 1.5, provided that the initial distribution at the root is uniform, that is
P (ξr = αi) = 1/d for i = 1, . . . , d.

The above definition of parametrization is an unrooted, isotropic and alge-
braicized version of what is commonly considered in the literature, see e.g. [SS03,
Sect. 8] or [PS05, Sect. 1.4.4], or [DK07].

2. Symmetric models of evolution.

Notation 2.1. Let G ≤ Sd be a subgroup of group of permutations of d ele-
ments. In the present paper these will be the letters in the set A = {α1, α2, . . . , αd}.
We will sometimes confuse A with its set of indices {1, . . . , d} and write g(αi) =
ag(i), where g ∈ G. In these terms we will write decomposition of elements of G
into cycles, i.e. g = (i1, . . . , ir) · · · . By ≤ or < we will denote the inclusion of
groups while 〈g〉 ≤ G will denote a subgroup generated by g. We will say that the
subgroup G ≤ Sd is transitive if its action on A is transitive.

We extend the action of Sd on letters to a linear action on W , the vector space
spanned on A. That is, we consider the natural representation ρ : Sd −→ GL(W )
which yields a representation ρG : G −→ O(W ) < GL(W ), where O(W ) is the
group of orthogonal transformations preserving the inner product on W in which
αi’s make an orthonormal basis. If no confusion is likely, we will write just g for
both g ∈ Sd as well as for the matrix ρG(g) ∈ O(W ) < GL(W ). That is, for
w ∈ W , we write ρG(g)(w) = g · w, where on the right hand side w is understood
as a column of coefficients of w in basis A.

Recall that the mentioned above inner product (or the choice of the dual basis)
allows us to identify W with W ∗. Note that, for g ∈ Sd, we have α∗i (αg(j)) =
α∗g−1(i)(αj). That is, the right action of G on W ∗, defined as ρ∗G(g)(u) = u ·
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g−1 = u · gt, where gt means transposition, makes the identification W ' W ∗

G-equivariant.
Therefore an induced action of G on the product W ⊗W and, eventually, on

S2W can be described in terms of the adjoint action AdG of G on End(W ). That is,
ifA ∈ S2W ⊂W⊗W is represented by a symmetric matrixA ∈ End(W ) = W⊗W ∗
and g ∈ G ⊂ O(d) then we have

S2ρG(g)(A) = g ·A · gt = g ·A · g−1 = AdG(g)(A)

In plain words it means that the permutation g ∈ G ≤ Sd permutes columns
and rows of the matrix A as it does with the elements of the set A. That is, if
A = (aij) then g(A)’s entry in the i-th row and j-th column is equal to ag−1(i),g−1(j).

By Fix(G) or Fix(ρG) we will denote the subspace of fixed points of the action
ρG. Similarly, by Fix(ρ∗G) or Fix(AdG) we denote the fixed point sets of the
respective representations. Clearly, Fix(ρSd

) contains α and its dual contains σ.
In fact we have the following easy observation.

Lemma 2.2. A subgroup G < Sd is transitive if and only if Fix(ρG) = C · α
or, equivalently, Fix(ρ∗G) = C · σ.

We adopt the following definition.

Definition 2.3. An isotropic model of evolution Ŵ ⊂ S2W on d letters is
called symmetric if Ŵ = Fix(S2(ρG)) for some transitive group of symmetries
G ≤ Sd.

In view of the discussion preceeding the definition the elements of Ŵ can be
identified with matrices whose entries are invariant with respect to permutation of
rows and columns by elements of the group G.

Example 2.4. Let h ∈ Sd be a cyclic permutation of length d, say h =
(1, . . . , d), and let H = 〈h〉 be the group generated by h. Then ŴH consists of
matrices of the form 

a0 a1 a2 · · · a2 a1

a1 a0 a1 · · · a3 a2

a2 a1 a0 · · · a4 a3

· · · · · · · · · · · · · · ·
a2 a3 a4 · · · a0 a1

a1 a2 a3 · · · a1 a0


where ai are arbitrary numbers, hence dim ŴH = (d+ 1)/2 if d is odd and d/2 + 1
if d is even. We note that the above matrix can be written as the following linear
combination of matrices

a0 · id+ a1 ·
(
h+ h−1

)
+ a2 ·

(
h2 + h−2

)
+ · · ·

with h here being presented as a matrix. Every such a matrix is symmetric with
respect to its center hence it is fixed by an involution ν of the type ν = (1, d)(2, d−
1), · · · such that h−1 = ν · h · ν−1. Thus ŴH is fixed not only by the cyclic group
H but also by the dihedral group 〈h, ν〉. These observations will be generalized in
section 5.

The isotropic model of evolution presented above will be called the dihedral
model.
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◦
A subgroupG ≤ Sd is called saturated if for any groupH, such thatG ≤ H ≤ Sd

and Fix(S2ρG) = Fix(S2ρH), it follows thatH = G. In other words, G is saturated
if it is the stabilizer of Fix(S2ρG).

We have yet another immediate observation and thus a subsequent definition.

Lemma 2.5. There is an inclusion reversing bijection between transitive satu-
rated subgroups of Sd and isotropic symmetric models of evolution on d letter.

Definition 2.6. If (W, Ŵ ) is an isotropic symmetric model of evolution on d
letters then its group of symmetries is the unique transitive saturated G ≤ Sd such
that Fix(S2ρG) = Ŵ .

Since conjugating subgroups of Sd is just renaming its elements we can identify
models associated to conjugate subgroups.

Proposition 2.7. Let T be a tree and let ŴH , ŴG be two models of evolution
on d letters with groups of symmetries H and G, respectively. The inclusion of
groups H ≤ G ≤ Sd implies an inclusion of geometric models X(T ,W, ŴG) ⊂
X(T ,W, ŴH). If groups G and H are conjugate in Sd then, after some linear
change of coordinates in P(WL), the models X(T ,W, ŴG) and X(T ,W, ŴH) are
equal.

Thus, in what follows we will look at a classification of saturated transitive
subgroups of Sd, up to conjugation.

The assumption that matrices in Ŵ are doubly stochastic, up to a multiplicative
constant, is redundant for transitive groups of symmetries.

Lemma 2.8. Let G ≤ Sd be a transitive subgroup. If a matrix A ∈ S2W is fixed
by S2ρG then the sum of rows (columns) of A is constant.

Proof. Recall that α = α1+· · ·+αd, σ = α∗1 +· · ·+α∗d and we are to verify the
condition that A evaluated on σ is a multiplicity of α. But for every g ∈ G < O(W )
we have A = g ·A · g−1 hence

g (A(σ)) = g · g−1 ·A · (g(σ)) = A(σ)

and we are done by 2.2 �

In addition, for transitive groups G ≤ Sd we have a bound on the dimension of
ŴG = Fix(S2ρG).

Lemma 2.9. If G ≤ Sd is transitive then dim Ŵ ≤ d. Moreover, if d is odd
then dim Ŵ ≤ (d+ 1)/2.

Proof. Let us write a general element A ∈ ŴG as a matrix A = (aij) and
note that if an element appears in the first row then, because of transitivity, it has
to appear in every row. That is, for i = 1, . . . , d there exists gi ∈ G such that
gi(1) = i and, for such gi and any j = 1, . . . , d, it holds

a1,j = a2,g2(j) = · · · = ad,gd(j)

Therefore the number of linearly independent coefficients in A can not exceed the
length of the row, that is d. This proves the first statement of the lemma. By the
same argument all the coefficients on the diagonal of A are equal. By symmetry
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of A each coefficient outside the diagonal appears the same number of times above
the diagonal as below the diagonal. Thus, if d is odd then every coefficient outside
the diagonal appears at least 2d times, hence the second part follows. �

The above argument can be extended to the following.

Lemma 2.10. Suppose that G ≤ Sd is transitive. Let G1 = Gα1 < G be the
subgroup fixing α1. Then the dimension of ŴG does not exceed the number of orbits
of Gα1 in the set A.

Proof. Let g ∈ Gα1 then g(αi) = αj implies a1,i = a1,j in the matrix A =
(ai,j) ∈ Ŵ . Since the other rows of A are obtained by permuting the entries in the
first row we get the conclusion. �

The boundary cases with regard to the dimension of Ŵ are of particular in-
terest. We discuss the case when dim Ŵ = dimW in the subsequent section, see
3.8.

At this point we note the following general observation which follows by our
construction.

Proposition 2.11. Let (T ,W, Ŵ ) be an isotropic phylogenetic tree such that
(W, Ŵ ) has a group of symmetries G ≤ Sd. Then the parametrization maps Ψ and
Φ are G equivariant. In particular

X(T ,W, Ŵ ) ⊂ P

(⊗
v∈L

Wv

)G ⊂ P

(⊗
v∈L

Wv

)
.

Let us consider a subset of letters B ⊂ A which spans a vector subspace WB ⊂
W . We have a decomposition W = WB ⊕ W⊥B where W⊥B is spanned on the
complement of B, that is A \ B. We fix the projection πB : W −→ WB the kernel
of which is W⊥B . This projection extends to S2πB : S2W −→ S2WB. For G ≤ Sd
take GB = {g ∈ G : g(WB) ⊂WB}. Elements of GB define symmetries of WB with
ŴB = Fix(S2ρGB).

Example 2.12. Let g ∈ G ≤ Sd be an element whose decomposition into cycles
contains a cycle of length r. We may assume that the cycle concerns the first r
letters, more precisely that g = (1, . . . , r) · · · . We take B = {α1, . . . , αr}. In terms
of symmetric matrices the projection S2πB is taking the r×r upper-left corner from
the d× d matrix A ∈ S2W . In view of example 2.4 this implies constraints on the
coefficients of matrices in Ŵ . Namely, for A = (ai,j) ∈ Ŵ we have the following
constraints a1,2 = a1,r, a1,3 = a1,r−1, etc.

◦

Definition 2.13. In the above situation we say that the subset B ⊂ A, or the
subspace WB ⊂ W , is faithful if S2π determines an isomorphism of Ŵ and ŴB.
We say that the model of evolution (W, Ŵ ) with group of symmetries G is minimal
if A contains no proper faithful subset.

Example 2.14. The full symmetric group G = Sd is clearly saturated, its
symmetric model of evolution will be called the Jukes-Cantor model (we note that
originally, in statistics, this name refers only to the case when d = 4). Then, for any
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d > 1 any subset of {α1, . . . , αd} consisting of more than 1 letter yields a faithful
inclusion.

◦

3. Hyperbinary model of evolution

Construction 3.1. Let us consider a hyperbinary group Bn = (Z2)n for which
we use additive notation (so its elements are 0/1 sequences of length n). It is well
known that any finite group whose elements (except the unit) are of order 2 is
isomorphic to some Bn.

Define a representation ρn : Bn −→ GL(C2n

) by induction with respect to n.
For n = 0 we set ρ0 = 1. Suppose that ρn is defined. Let us decompose Bn+1 =
Bn ⊕ Z2 · en+1 with Bn < Bn+1 consisting of these elements whose last coordinate
is 0 and en+1 = (0, . . . , 0, 1). For the subset Bn < Bn+1 we set ρn+1

|Bn = ρn ⊕ ρn and
in addition

ρn+1(en+1) =
[

0 I2n

I2n

0

]
where I denotes the identity matrix of the respective dimension.

Before discussing the properties of the hyperbinary representation let us re-
call the following general property of representations of abelian groups. Since our
abelian groups will usually be subgroups of multiplicative groups of matrices we
prefer to use multiplicative notation to state this result.

Lemma 3.2. Let G be an abelian group which acts effectively (i.e. no non-unit
element of G acts trivially) and transitively on a finite set X. Then the action
is equivalent to the action of G on itself. That is, choosing an element in X and
identifying it with the unit of G gives a bijection G −→ X such that the action
G×X −→ X is identified with multiplication G×G −→ G.

The complex representation arising from such an action of G will be called the
regular representation of G. We get an immediate corollary.

Lemma 3.3. Let A be the standard basis of Wn
B := C2n

. Then Bn acts effectively
and transitively on A and thus the representation ρn is equivalent to the regular
representation of Bn.

We identify, via ρn|A, the group Bn with a subgroup of S2n ; that is, ρn is then
just the restriction of the natural representation of S2n . Note that all matrices in
ρn(Bn) are symmetric. This is a very special feature of Bn as it follows from the
subsequent observation.

Lemma 3.4. Let W be an arbitrary vector space. All matrices (except identity)
in the intersection S2(W ) ∩ O(W ) are of order 2, hence any finite subgroup of
S2(W ) ∩O(W ) is hyperbinary.

Let Ŵn
B ⊂ S2(Wn

B ) be the linear subspace spanned by ρn(Bn). The following
lemma will be generalized in the last section of the paper. For the sake of clarity
here we present an explicit argument.

Lemma 3.5. The space Ŵn
B is equal to Fix(Bn), it is of dimension 2n and its

intersection with GL(W ) is a Cartan torus in GL(Wn
B ).
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Proof. The fact that the space Ŵn
B is of dimension 2n follows from a general

lemma 5.1. Here, however, we note easily by induction on n that the matrices in
ρn(Bn) are linearly independent. Indeed, since Bn+1 = Bn + en+1 · Bn then every
linear combination of matrices in ρn+1(Bn+1) can be written as

A =
∑
Ai∈Bn

ai

[
Ai 0
0 Ai

]
+
∑
Bi∈Bn

bi

[
0 Bi
Bi 0

]
which yields the inductive step.

Next, we note that Ŵn
B ⊂ Fix(Bn). For this we are to check that g ·A ·g−1 = A

for every g ∈ ρn(Bn) and A ∈ Ŵn
B . But this equality is linear with respect to A

so it is enough to check it on the basis of Ŵn
B consisting of elements of ρn(Bn) for

which this is obvious.
By the same argument Ŵn

B ∩ GL(Wn
B ) is commutative hence it is a complex

torus. Its dimension is 2n, hence it is a Cartan subgroup of GL(Wn
B ).

Finally we prove the equality Fix(ρn(Bn)) = Ŵn
B . One inclusion is already

proved so suppose that A ∈ S2(Wn
B ) is such that g · A · g−1 = A for every g ∈ B.

We may assume that A is invertible. Thus the subgroup of GL(Bn) generated by
ρn(Bn) and A is abelian and thus contained in a Cartan subgroup of GL(Wn

B ) which
must be Ŵn

B ∩GL(Wn
B ). �

Lemma 3.6. The group Bn < S2n is saturated.

Proof. Suppose that h ∈ S2n preserves Ŵn
B . Then, in particular, h·g ·h−1 = g

for every g ∈ B < S2n . Thus subgroup H generated by h and Bn is abelian. Since
it acts effectively on a set of 2n letters we get |H| ≤ 2n and thus H = Bn. �

We summarize the above results in the following.

Proposition 3.7. The pair (Wn
B , Ŵ

n
B ) defined above is a symmetric model of

evolution with group of symmetries Bn.

Phylogenetic trees with hyperbinary model of evolution will be called just
hyperbinary phylogentic trees. In the above situation, if n = 1 then such a model is
just a binary model and if n = 2 then it is a Kimura 3-parameter model, see 1.6.

The hyperbinary model of evolution is the unique one which admits the biggest
dimension, recall 2.9.

Proposition 3.8. Let (W, Ŵ ) be a symmetric model of evolution with group
of symmetries G such that dim Ŵ = dimW . Then, up to renumbering elements of
A (i.e. up to conjugation in the group of permutations), this model coincides with
the hyperbinary model of evolution.

Proof. In view of the proof of 2.9, because of the discussion in the example
2.12, we see that G contains only elements of order 2. Thus G is hyperbinary and
the rest follows by 3.2. �

Thus we get a corollary.

Corollary 3.9. The hyperbinary model of evolution is minimal.

And finally we prove the following theorem which follows from somewhat more
general results proved in section 5.
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Theorem 3.10. The hyperbinary group is the only abelian saturated group.

Proof. If G is an abelian saturated group then it satisfies assumptions of
5.3 thus it contains an element ν of order 2 such that for every g ∈ G we have
ν · g · ν = g−1. Thus every element of G is of order 2 and G is hyperbinary. �

It follows that the hyperbinary model is the only isotropic group-based model,
in the sense of [SS03, Sect. 8] or [PS05] and the references therein.

4. Low dimensional models of evolution

In order to have a nontrivial set of examples we determined all transitive sat-
urated subgroups of Sd for d = dimW ≤ 9. Computations were done by simple
functions in GAP (see [GAP]), which were effective only for d ≤ 9. The GAP
code of our program can be found at www.mimuw.edu.pl/˜marysia/isotrees. This
section gives a brief description of the results of computations.

First, let us give the main ideas of the algorithm determining saturated sub-
groups of Sd. There are two parts of the algorithm:

• find ŴG = Fix(S2ρG) for all G < Sd,
• for each G < Sd, decide whether it is maximal subgroup fixing ŴG.

We consider only representatives of conjugacy classes of subgroups, because models
of evolution for conjugate groups are essentially the same, see lemma 4.1.

The second part of the algorithm is based on functions provided by GAP. The
most important is LatticeSubgroups, which returns the lattice of subgroups of
Sd, that is the set of all subgroups and the relation of inclusion on this set (up to
conjugacy). We also use MinimalSupergroupsLattice which, given the lattice of
subgroups, calculates all minimal proper supergroup for each subgroup. Using these
functions we check whether the group G is saturated by comparing ŴG to ŴH for
all minimal proper supergroups H of G. However, the function LatticeSubgroups
is not effective enough to be used in the cases d ≥ 10. We think that this step can
be done more effectively by more subtle algorithms and low-level programming.

We now turn to the first part of the algorithm, that is, to the question of
determining ŴG for given G < Sd. Recall that a matrix (ai,j) is a fixed point of
S2ρG if and only if for each g ∈ G we have ai,j = ag(i),g(j), so the task is to find
the sets of equal matrix entries. Obviously it suffices to consider only the equalities
of entries for g in a generating set of G. For generators we choose the result of the
GAP function SmallGeneratingSet. It returns a generating set which is small,
not necessarily minimal, but the function is much faster than the function which
computes a minimal set of generators. An important step is to find an appropriate
data structure for storing information about equal matrix entries. This algorithm
is implemented in the function ModifySymmetricMatrix. Probably much more
effective algorithms to this task can be found, but our idea gives a solution which
is short and easy to implement.

The program contains also a few functions which check various properties of
saturated groups and models of evolution. These use similar data structures and
ideas as ModifySymmetricMatrix, described above. For example, the function
CompareSaturatedSubgroups tests the inclusion ŴG ⊂ ŴH for given saturated
subgroups G,H < Sd, so it solves the main problem in creating diagrams included
in this section.
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As stated at the beginning of this section, we identify models of evolution
which differ only by a permutation of letters, i.e. models determined by conjugate
subgroups of Sd. Therefore, we can reformulate lemma 2.5 as follows.

Lemma 4.1. There is an inclusion reversing bijection between conjugacy classes
of saturated transitive subgroups of Sd and (isomorphism classes of) isotropic sym-
metric models of evolution on d letters.

Example 4.2. There are 3 possible forms of the model of evolution with d =
4 and dihedral group of symmetries D8 (Kimura 2-parameter model). They are
associated to the three conjugate subgroups of S4 hence the choice of a cyclic
permutation of length 4, c.f. example 2.4.

a b c b

b a b c

c b a b

b c b a



a c b b

c a b b

b b a c

b b c a



a b b c

b a c b

b c a b

c b b a


◦

The relation between models of evolution described by lemma 4.1, i.e. inclusion
of their groups of symmetries up to conjugation, is presented in diagrams included
in this section. For each conjugacy class of saturated groups a generating set of a
chosen representative is given. We also find minimal models for all examples in the
sense of definition 2.13.

As noted in example 1.6, the only model of evolution for d = dimW = 2
is binary symmetric (or the Jukes-Cantor model, or the Cavender-Farris-Neyman
model, as it is called in statistics). Also for d = 3 the symmetric group S3 is the
only saturated group and its model is the Jukes-Cantor model.

The smallest nontrivial example is d = 4. We tackled this case already in
1.6. Note however that the isotropic strand-symmetric model is not symmetric in
the sense of our definition 2.6 because its group of symmetries Z2 does not act
transitively on the set of letters.


a b c d
b a d c
c d a b
d c b a



a b b b
b a b b
b b a b
b b b a



a b c c
b a c c
c c a b
c c b a



Figure 1. Hierarchy of models of evolution for d = 4

The first of the models in figure 1 is a hyperbinary model, or Kimura 3-
parameter model, which is minimal. The second, Kimura 2-parameter model, must
be minimal as well, because there are no models of evolution with d < 4 and
dim Ŵ = 3. Generators of chosen representatives are given in the table below
where we also indicate the isomorphism type of the group in question. The last
entry in each row indicates if the model is minimal, if it is not then the name of a
minimal submodel is provided (J–C stands for the Jukes-Cantor model).
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group type generators model

g4 1 Z2 × Z2 (1, 3)(2, 4), (1, 4)(2, 3) B2

g4 2 D8 (3, 4), (1, 3)(2, 4) min
g4 3 S4 (1, 2, 3, 4), (1, 2) J–C

Dimensions d = 5 and d = 7 are not very interesting. In each of these cases
there are only two models of evolution, one of them being the Jukes-Cantor model
associated to the full symmetric group. The other model of evolution in each case
is minimal and it is the dihedral model described in example 2.4.



a b b c d e
b a b d e c
b b a e c d
c d e a b b
d e c b a b
e c d b b a





a b b c c d
b a b c d c
b b a d c c
c c d a b b
c d c b a b
d c c b b a

 

a b b b b c
b a b b c b
b b a c b b
b b c a b b
b c b b a b
c b b b b a





a b b c c c
b a b c c c
b b a c c c
c c c a b b
c c c b a b
c c c b b a

 

a b b b b b
b a b b b b
b b a b b b
b b b a b b
b b b b a b
b b b b b a



g6 1

g6 2

g6 3g6 4
g6 5

Figure 2. Hierarchy of models of evolution for d = 6

Figure 2 presents the case of d = 6. Only the model of g6 1 is minimal. For
the remaining models we can find faithful subspaces of dimension 2, in the case of
g6 5, or 4. The set {α2, α3, α4, α5} is faithful in cases of g6 2, g6 3 and g6 4. We
give examples of generators of saturated subgroups:

group type generators model

g6 1 D6 (1, 3, 2)(4, 5, 6), (1, 6)(2, 4)(3, 5) min
g6 2 D12 (1, 5, 3, 6, 2, 4), (1, 2)(5, 6) g4 1
g6 3 Z2 × S4 1, 4)(3, 6), (1, 3, 6, 4), (1, 5)(2, 6)(3, 4) g4 2
g6 4 (S3 × S3) o Z2 (1, 2, 3)(5, 6), (1, 5, 3, 4)(2, 6) g4 2
g6 5 S6 (1, 2), (1, 2, 3, 4, 5, 6) J–C
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

a b c c d d e e
b a c c e e d d
c c a b d e d e
c c b a e d e d
d e d e a c c b
d e e d c a b c
e d d e c b a c
e d e d b c c a





a b b b b b b b
b a b b b b b b
b b a b b b b b
b b b a b b b b
b b b b a b b b
b b b b b a b b
b b b b b b a b
b b b b b b b a





a b b b c c c c
b a b b c c c c
b b a b c c c c
b b b a c c c c
c c c c a b b b
c c c c b a b b
c c c c b b a b
c c c c b b b a





a b c c d d d d
b a c c d d d d
c c a b d d d d
c c b a d d d d
d d d d a b c c
d d d d b a c c
d d d d c c a b
d d d d c c b a





a b c c c c c c
b a c c c c c c
c c a b c c c c
c c b a c c c c
c c c c a b c c
c c c c b a c c
c c c c c c a b
c c c c c c b a





a b c c d d e e
b a c c d d e e
c c a b e e d d
c c b a e e d d
d d e e a b c c
d d e e b a c c
e e d d c c a b
e e d d c c b a





a b b b c d d d
b a b b d c d d
b b a b d d c d
b b b a d d d c
c d d d a b b b
d c d d b a b b
d d c d b b a b
d d d c b b b a





a b c d e e e e
b a d c e e e e
c d a b e e e e
d c b a e e e e
e e e e a b c d
e e e e b a d c
e e e e c d a b
e e e e d c b a





a b c d e f g g
b a d c f e g g
c d a b g g e f
d c b a g g f e
e f g g a b d c
f e g g b a c d
g g e f d c a b
g g f e c d b a





a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
e f g h a b c d
f e h g b a d c
g h e f c d a b
h g f e d c b a





a b c d e e f f
b a d c e e f f
c d a b f f e e
d c b a f f e e
e e f f a b c d
e e f f b a d c
f f e e c d a b
f f e e d c b a



g8 1

g8 2g8 3

g8 4

g8 5

g8 6

g8 7

g8 8

g8 9

g8 10

g8 11

Figure 3. Hierarchy of models of evolution for d = 8
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In dimension d = 8 the relation between models of evolution (see figure 3) is
much more complex than in previous examples (in the subsequent table we skip the
description of the isomorphism type of the group in question if it is too complicated).
It can be seen from the following table that only 4 of 11 models of evolution are not
minimal. Thus the situation is much different from the cases d = 6 (one minimal
model) and d = 9 (no minimal models).

group type generators model

g8 1 Z3
2 (1, 2)(3, 4)(5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8),

(1, 5)(2, 6)(3, 7)(4, 8)
B3

g8 2 D8 (1, 4)(2, 3)(5, 8)(6, 7), (1, 7, 2, 8)(3, 6, 4, 5) min
g8 3 Z2 ×D8 (5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8),

(1, 5)(2, 6)(3, 7)(4, 8)
min

g8 4 D16 (1, 2)(5, 7)(6, 8), (1, 8)(2, 5)(3, 7)(4, 6) min
g8 5 Z4

2 o Z2 (1, 8, 4, 5)(2, 7, 3, 6), (1, 8, 3, 6)(2, 7, 4, 5),
(1, 8)(2, 7)(3, 6)(4, 5)

min

g8 6 Z2 × S4 (1, 3, 4, 2)(5, 7, 8, 6), (1, 7, 2, 8)(3, 6, 4, 5) g4 1
g8 7 — (1, 5, 2, 6)(3, 7, 4, 8), (1, 5)(2, 6)(3, 8, 4, 7),

(1, 7)(2, 8)(3, 5, 4, 6)
min

g8 8 (D8 ×D8) o Z2 (1, 4, 2, 3)(5, 8)(6, 7), (1, 5)(2, 6)(3, 7, 4, 8),
(1, 8, 4, 6)(2, 7, 3, 5)

min

g8 9 — (1, 2)(3, 8, 4, 7)(5, 6), (1, 5, 8, 3)(2, 6, 7, 4) g4 2
g8 10 (S4 × S4) o Z2 (1, 4, 3, 2)(5, 8)(6, 7), (1, 7, 2, 5, 3, 6)(4, 8) g4 2
g8 11 S8 (1, 2), (1, 2, 3, 4, 5, 6, 7, 8) J–C

In case of d = 9 there are 6 different models of evolution, presented at figure 4.
It turns out that there are no minimal models of evolution. For all models we can
find faithful subspaces of dimensions 6, 4 or 2. In all cases a 6-dimensional faithful
subspace is spanned by the set of the first 6 basis vectors. For g9 3, g9 4 and g9 5
there are 4-dimensional faithful subspaces contained in the subspace spanned by
the first 6 letters. We give examples of generating sets of saturated groups.

group type generators model

g9 1 (Z3 × Z3) o Z2 (2, 3)(4, 7)(5, 9)(6, 8), (1, 2, 3)(4, 5, 6)(7, 8, 9),
(1, 4, 7)(2, 5, 8)(3, 6, 9)

g6 1

g9 2 D18 (1, 6)(2, 5)(3, 4)(7, 8), (1, 7)(2, 9)(3, 8)(5, 6) g6 1
g9 3 S3 × S3 (1, 2)(4, 5)(7, 8), (1, 2)(4, 8)(5, 7)(6, 9),

(1, 8, 3, 7, 2, 9)(4, 5, 6)
g4 1

g9 4 (S3 × S3) o Z2 (1, 5)(3, 8)(6, 7), (1, 7, 8, 2)(3, 4, 9, 5) g4 2
g9 5 — (4, 5), (1, 5, 3, 4)(2, 6)(7, 8, 9),

(1, 7, 3, 9)(2, 8)(4, 5, 6)
g4 2

g9 6 S9 (1, 2), (1, 2, 3, 4, 5, 6, 7, 8, 9) J–C

These low-dimensional examples suggest that there are more models of evolu-
tion (or classes of saturated subgroups) in even dimensions than in odd dimensions.
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

a b b b b b b b b
b a b b b b b b b
b b a b b b b b b
b b b a b b b b b
b b b b a b b b b
b b b b b a b b b
b b b b b b a b b
b b b b b b b a b
b b b b b b b b a





a b b c c c c c c
b a b c c c c c c
b b a c c c c c c
c c c a b b c c c
c c c b a b c c c
c c c b b a c c c
c c c c c c a b b
c c c c c c b a b
c c c c c c b b a





a b b b c c b c c
b a b c b c c b c
b b a c c b c c b
b c c a b b b c c
c b c b a b c b c
c c b b b a c c b
b c c b c c a b b
c b c c b c b a b
c c b c c b b b a





a b b c d d c d d
b a b d c d d c d
b b a d d c d d c
c d d a b b c d d
d c d b a b d c d
d d c b b a d d c
c d d c d d a b b
d c d d c d b a b
d d c d d c b b a





a b b c d e e d c
b a b e c d c e d
b b a d e c d c e
c e d a b b c d e
d c e b a b e c d
e d c b b a d e c
e c d c e d a b b
d e c d c e b a b
c d e e d c b b a





a b b c d e c e d
b a b e c d d c e
b b a d e c e d c
c e d a b b c d e
d c e b a b e c d
e d c b b a d e c
c d e c e d a b b
e c d d c e b a b
d e c e d c b b a



g9 1 g9 2

g9 3

g9 4 g9 5

g9 6

Figure 4. Hierarchy of models of evolution for d = 9

It is also possible that minimal models appear more often in even dimensions, and
most often in dimensions d = 2k. Our examples also yield an observation regarding
the family of hyperbinary models: up to dimension 9 there are no other abelian
saturated groups.

5. Abelian groups of symmetries

The present section concerns the case when the group of symmetries of an
isotropic model contains an abelian subgroup acting transitively on the set of letters.
Let us begin by recalling trivialities regarding actions of abelian groups. The set
A, as usual, consists of d letters. Let H be an abelian group acting effectively and
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transitively on the set A, which yields the regular representation of H on the vector
space W spanned by A.

Lemma 5.1. The regular representation ρH : H −→ GL(W ) can be diagonalized
in terms of characters of H. That is, ρH is equivalent to ρχH : H −→ GL(W ) such
that for every h ∈ H it holds ρχH(h) = Diag(χi(h)), where Diag stands for a
diagonal matrix and χi runs over all different characters in the dual group Ĥ =
Hom(H,C∗).

In this situation, we identify H with a subgroup of GL(W ) and argue similarly
as in 3.5. Let us consider a linear span WH =

∑
h∈H C · h ⊂ End(W ). Then

dimWH = d (because characters are linearly independent) and H acts by multipli-
cations on WH as the regular representation. Letus set TH := WH ∩GL(W ). Then
TH is a connected abelian algebraic subgroup of GL(W ) of dimension d, hence a
Cartan torus in GL(W ). Thus WH is the fixed point set of the adjoint action of
H on End(W ). By the above lemma, the lattice of (algebraic) characters of TH ,
MH = Hom(TH ,C∗), has a distinguised basis consisting of characters of H, that is
Ĥ = Hom(H,C∗).

Now we turn to the situation which is our principal interest.

Set-Up 5.2. Let (W, Ŵ ) be an isotropic symmetric model of evolution on the
set A of d letters with the (saturated) group of symmetries G ≤ Sd. Assume that
there exists H ≤ G, an abelian subgroup which acts transitively on A.

The following result generalizes our observation from example 2.4.

Proposition 5.3. In the situation of 5.2 there exists an involution ν ∈ G,
ν2 = id, such that for every h ∈ H it holds ν · h · ν = h−1.

The proof of the above proposition is divided into some steps. Elements of H
can be identified with the letters, so that the action of H on A is equivalent to
the action of H on itself. From now on we use this identification. Also, we will
use additive notation for H, as for an abelian group, while for permutations and
matrices (the group G and H treated as its subgroup) we will use multiplicative
notation.

By classification of finite groups we can write H as a product of cyclic groups,
that is H = Zp1× . . .×Zpk

, for suitable choice of numbers pi. We have an inclusion
of sets H ⊂ Zk, coming from the natural inclusion Zpi

= {0, 1, . . . , pi − 1} ⊂ Z.
This leads to a linear order on H, which is the restriction of the lexicographical
order on Zk to H. That is, hi = (i1, . . . , ik) is the i-th element of H with respect
to this order, if

i = i1 · p2 · · · pk + i2 · p3 · · · pk + · · ·+ ik.

Now we can write H = {h0, . . . , hd−1}.
We use the map ν : Zk → Zk, defined by

ν((i1, . . . , ik)) = (p1 − 1− i1, . . . , pk − 1− ik).

Note that ν is an involution, ν2 = id, and it can be restricted to the subset H. The
restriction, also denoted by ν, is a permutation of elements of H (hence of A) such
that ν · h · ν = h−1 for every h ∈ H. Indeed, in terms of operations within H we
have the following indentities

ν((i1, . . . , ik)) = (−i1 − 1, . . . ,−ik − 1) = −(i1, . . . , ik)− (1, . . . , 1)
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from which we get ν · h · ν = h−1. Similarly we note that for every h ∈ H we have
h+ ν(h) = −(1, 1, . . . , 1).

It turns out that the involution ν is compatible with the chosen order on H in
the sense of the following lemma.

Lemma 5.4. The map ν satisfies ν(hi) = hd−1−i.

Proof. Let hi = (i1, . . . , ik). Then, by the definition of the chosen order on H,
i =

∑k
m=1 im · pm+1 · · · pk. Let hj = ν(hi) = (p1 − 1− i1, . . . , pk − 1− ik), then

j = (p1 − 1− i1) · p2 · · · pk + (p2 − 1− i2) · p3 · · · pk + . . .+ pk − 1− ik =

= d− 1−
k∑

m=1

im · pm+1 · · · pk = d− 1− i.

�

Now the proposition 5.3 is obtained by the following lemma.

Lemma 5.5. Let H = {h0, . . . , hd−1} be as above, with its regular represention
(on the set A = H with the order defined above) denoted by ρH . Let A = (ai,j) be
a symmetric matrix fixed by the induced action S2ρH . Then A is also fixed by the
involution ν.

Proof. To prove the lemma we need to show that for any i, j ∈ {0, . . . d−1} we
have ai,j = aν(i),ν(j). Because A is symmetric we have ai,j = aj,i so this is equivalent
to proving aj,i = aν(i),ν(j). However, we noted that hi + ν(hi) = hj + ν(hj) =
−(1, . . . , 1) and thus we can take h ∈ H such that h = ν(hi)−hj = ν(hj)−hi (the
± operations are in group H). This implies that h+hj = ν(hi) and h+hi = ν(hj)
hence, in terms of the action of H on itself, h(j) = ν(i) and h(i) = ν(j) . Thus,
because A is fixed by H, we get

aj,i = ah(j),h(i) = aν(i),ν(j)

�

The above argument can be reversed.

Lemma 5.6. Let H and ρH be as above. Suppose that a matrix A = (ai,j) ∈
End(W ) is fixed by AdH and Ad(ν). Then A is symmetric.

Proof. If A is fixed by H then, as above, aj,i = aν(i),ν(j) and since it is fixed
by ν it follows aj,i = ai,j . �

As a result we get the following.

Proposition 5.7. Assume that (W, Ŵ ) is a symmetric model of evolution with
G, the saturated group of symmetries, satisfying 5.2. Then any matrix A ∈ End(W )
fixed by AdG is symmetric hence Ŵ = Fix(AdG).

Proof. By 5.5 the involution ν is in G hence the result follows by 5.6. �

From the above it follows that, in the situation of 5.2, the space Ŵ is the
centralizer of G in End(W ) or, more precisely, the closure of the centralizer of ρ(G)
in GL(W ) ⊂ End(W ).
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