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1 Lecturel

Let S = k[x1,...,z,] be the polynomial ring in n variables over a field k& and let
Mon(S) = {z* = z{*..ap" : a = (a1, ...,a,) € Z%,}

be the set of monomials of S.

a) Dickson’s Lemma

Let 22 = 29*..2% and 2P = 2% .2 We say that 2@ divides z® if a; < b; for all 1 < i < n.
Let ) # M C Mon(S). We say that 22 € M is minimal if for P € M such that 2P | 22 we have b = a.
Let M™™ be the set of minimal monomials in M.

Theorem 1.1 (Dickson’s Lemma). Let ) # M C Mon(S). Then M™™ is a finite set.

Proof. We use induction on n. For n = 1 the proof is easy. Let n > 2 and let y = z,. Write S =
k[z1,...,Tn_1,y] and B = k[zy1,...,xn_1]. Set N = {z® € Mon(B) | 22y® € M for some b > 0}. By
induction we have that N™" is a finite set. Let N™" = {uy,...,us} and uy®,...,usyb € M. Let
b = max{by,...,bs }. For each 0 < ¢ < b define

Ne={z*e N:2*y*e M} CN

Again, we know N is a finite set, say N/" = {ugc), s ugf)} Consider the following monomials:

b b bs
w1y, uy?, ... Uy

(0)
Uj 'y e Ugg

u -1

(b-1), b—1
up YT, U

It then follows easily that every monomial in M is divisible by one of the monomials on the above list W

b) Monomial order
A monomial order on S is a total order < on Mon(S) such that
i) 1 <wufor 1 # u € Mon(S),

ii) if u,v € Mon(S) and u < v, then ww < vw for all w € Mon(S).

by

Example 1.2. Let 22 = z{'...2%" and 2P = z]'...20"

o,

a) (Lexicographic order) We say that 2® <., xP if either Y7 ja; < > b or Y ja; = >, b;
and the leftmost non-zero component of the vector a — b is negative. We call <;., the lex order
on S induced by z; > ... > x,.



b) (Reverse lexicographic order) We say that 2® <,., P if either 1" a; < >0 b; or Y. a; =
Z?:l b; and the rightmost non-zero component of the vector a — b is positive. We call <;., the
reverse lex order on S induced by x; > ... > x,.

c¢) (Purely lexicographic order) We say that 2? <pureles ZP if the leftmost non-zero component of the
vector a — b is negative.

The reverse purely lexicographic order is not a monomial order since 1 > z7.
We have:

T223 <lex T1T4

L1124 <pey T2T3

-Tg <purelew -’I/‘:l3
Lemma 1.3. Ifu|v and u # v then u < v.

Proof. We have v = uw for some 1 # w € Mon(S). From the first property of the monomial order we
have that 1 < w. Hence, from the second property of the monomial order we have u < uw = v. [ |

Lemma 1.4. There exists no infinite descending sequence of monomials of the form ...us < uy < ug.

Proof. Suppose that there exists such a sequence M. Let M™" = {u;,, wi, , ..., u;, } withig < ip < ... < is.
Then we have Ui, | ui 41 for some 0 < j < s. Hence from the previous lemma we get u; 5 < Ui 41 Thus
i; > i, + 1, which is a contradiction.

c) Grobner bases

Fix a monomial order < on S. Given a polynomial 0 # f = ZueMon(s) cutt (¢ € k). We define the
support of f to be supp(f) = {u € Mon(S) | ¢, # 0}. Define also the initial monomial of f to be
in<f = the biggest monomial w.r.t < belonging to supp(f). Given an ideal 0 # I C S we define the
initial ideal of I:in.(I) = ({in<f:0# f e I}).

Lemma 1.5. There exists polynomials g1,...,gs € I s.tinc(I) = (incgi, ..., in<gs).

Proof. From 1.1 we have {incf : 0 # f € I} = {incg1,...,in<gs} for some polynomials gi,..,gs. It
follows that in.(I) = (in<gi, ..., iN<gs)- u

Let 0 # I C S be an ideal. A Grébner basis of I w.r.t. the monomial order < is a finite set G =
{91, .-, gs} of polynomials where each 0 # g; € I, such that in.(I) = (in<gi,...,in<gs).
A Grobner basis always exists but cannot be unique.

d) Hilbert’s basis theorem

Fix a monomial order < on S.

Theorem 1.6. If G = {¢1,...,9s} s a Grobner basis of an ideal 0 # I C S, then I is generated by
g1, -+, gs- In other words, every Grébner basis of I is a system of generators of I.

Proof by Gordan. Let 0 # f € I. Since in.f € in.I one has incg;, | incf for some 1 < iy < s.
Let incf = wpin<g;, for wg € Mon(S) . Set hg = f — cizlcowogio € I where LT(f) = cpin<f and
CioM<gic = LT(gi,)- If hg = 0, then f € (g1,...,9s). If hg # 0, then inchy < incf. Continue this
procedure and use Lemma 1.4 to finish the proof. |

Corrolary 1.7 (Hilbert’s basis theorem). FEwvery ideal of the polynomial ring is finitely generated.



e) Macaulay’ theorem
Notation 1.8. S = K[x1,...,2,],0 # I C S ideal, < monomial order
Definition 1.9. A monomial u € Mon(S) is called standard with respect to in<(I) if u & in<(I)

Theorem 1.10 (1.8 Macaulay). The set of standard monomials with respect to in<(I) is a K-basis of
S/I.

Proof. Let B={u=u+1¢€S5/I:ue Mon(S) is standard with respect to in(I)} We show that B is
a K - basis of S/I.

e B is linearly independent :

let c1a1 + ...cpt, = 0 in S/I where ¢; € K and u; < ug < ...u, are standard. Then 0 # f =
c1ug + ...cpiy, € I and in<(f) = uy, € in<(I). This is impossible since w,, is standard

o S/I is spanned by B:

Let (B) denote the subspace of S/I spanned by B. Let 0 # f € S. We show f € (B) by using
induction (lemma 1.4) on in<(f):

Suppose @ = in<(f) € B. By assumption of induction we know f — cu € (B) (coefficient of min f).
Since u € B, one has f € (B)

Suppose % = in<(f) ¢ B. Then u is not standard, i.e. u € in(I). Hence Joxger u = in<(g). Then
(by induction) ¢/f — c¢g € (B). However in S/I ¢/f =’ f —cg € (B). Thus ¢ f € (B) and f € (B).

Corrolary 1.11 (1.9). 0# I C S ideal, < monoid order, hy,...,hs € I with each h; #0. Let H = {u €
MO?’L(S) : Vléigsin< (hz) TU}

Suppose H is linearly independent over K in S/I. Then {hy,...,hs} is a GB of I w.r.t. <. In particular
{h1,...hs} is a system of generators of I

Example 1.12 (1.10). Consider the semigroup ring A = K|t, xt, yt, zyt, yzt, zyzt] C k[z,y, z,t]. Define
the surjective ring homomorphism u : S = k[z1, za, ..., x6] — A by setting u : x1 — t, 29 — xt,..., 26 —
ayzt, I = ker(u). We know T = zoxs — 2124, To = 2025 — 2126, T3 = x425 — w326 € I = (11,15, T3)
(this equality is not obvious).

By using (1.9) we can show that {T7,7%,75} a GB w.r.t. rev. lex. order induced by z1 > x5 > ...
(Problem 1)

Problem 1.13. In (1.10) show that {T1,T5, T3} is a GB, w.r.t <ey

Solution:
H = {z0a52aiads, el a2l ale a5 2 2P 2} is linearly independent if:
u,v € Hyu # v = 7m(u) # w(v)

Problem 1.14. (chsugi) S = K[x1,...,210],1 = (Th,...,T5), where Ty = 18 — 26,75 = 29 — 37,13 =
310 — 48,Ty = 46 — 59,Ts = 57 — 110. Show that A monomial order < on S for which {T1,...,T5} is a
GB of I w.r.t. <

Solution:

Suppose, on the contrary, that there exists a monomial order < on S such that G = f1, ..., f5 is a Grobner
basis of I with respect to <. First, note that each of the five polynomials: x1xgx9—T3TeT7, ToT9T10—T4T7T8
, LoXEL10—L5L7XL, L3TXEX10—L5X8LY, L1X9L10—L4XeL7 belongs to I.

Let, say, x1z829 > x3x627 . Since xl1x8x9 € in(I), there is ¢ € G such that in.(g) divides
21a8xz9 . Such g € G must be f1 . Hence z1x8 > 22x6 . Thus 2226 ¢ in.(I). Hence there exists
no g € G such that in.(g) divides 226210 . Hence 226210 < x5x728 . Thus 527 > z1x10 . Con-
tinuing these arguments yields x1x8x9 > x3x6x7, 2229210 > xdx7z8, 2226210 < xdx7x8, 3x62x10 >
252829, x12x9x10 < x4x6x7 and zlx8 > x2x6, 2229 > x3x7, 23210 > xdx8, xdx6 > x5x9, x5x7 > x1x10
. Hence (x128)(x229)(23210)(x4x6)(x527) > (x226)(x327)(x428)(x5x9)(x1210). However, both sides of
the above inequality coincide with x1x2 - - - 10 . This is a contradiction.



2 Toric rings and toric ideals

a) Configuration matrix

XA, 1]

Definition 2.1. We call A a configuration matrix if Jy..cge for which Vi<j<,a; - ¢ = 1 usual inner
product in R? <= ¢cA =0

A
Example 2.2. Given A € Z(d=D*" define A# € 24" = matrix with A on top, ones below.
Then A% is a configuration matrix with ¢ = [0, ...,0, 1]

Example 2.3. If a1 + ...aq; = h # 0V1<;<, then A is a configuration matrix with ¢ = [1/h,...1/h]

b) toric ideal

Definition 2.4. A binomial is a polynomial of the form v — v where v and v are monomials with
degu = degv
A binomial ideal of S = k[z1, ..., z,] is an ideal of S generated by binomials

Given a configuration matrix A € Z4*" define KerzA = {b € Z" : Ab = 0}
Lemma 2.5 (2.2). Ifb=[by,...,b,] € KergA, then by +...,b, = 0.

Proof. Since A is a configuration matrix, one has 0 # ¢ € R? with Vi<j<najc = 0. Since Ab = 0, one has
> j—1bja; = 0. Hence 0 = (327 bja;)e =37 o bj(ajc) = 32b;. u

Definition 2.6. Now, for each b = [b1, ..., by] € kerzA, define the binomial f, =[], -, xf —1I1s, <o xf =
fif = f; € S. By (2.2) one has deg f; = deg f, .
Let us define 14 := ({f» : b € kerzA})

01 1 0 1

01 0 1 1 4%5 . . T
Example 2.7. A = 00 1 1 1| € Z configuration matrix. One has A * [-1,1,1,1,-2]" =:

11 1 1 1

Ab=0,b € kerzA, f, = zow374 — T12%. One can show that 4 = (fy)

c) Toric ring

Definition 2.8. A = (a;;) € Z%¥*" is a configuration matrix if 30 # ¢ € R? such that for all horizontal
vector aj,ajc=1 & cA=]1,..,1]
t4 = VgV € Kty 1Y o tan )]

Definition 2.9. The toric ring of A is the subring K[A] C k[t1,t;"...tq,t;'] generated by 91, ¢ ... %
KAl = K[t™,t%, . t%)(C k[t 67 . ta t] ')

1 0 -1
Example 2.10. A= |0 1 -1
1 1 1

K[A] = Klt1,t3, tats, t1tats]

Now define the surjective ring homomorphism 7 : S = k[z1, ..., z,] = k[A4] = E[t™, ..., t%] x; — t%
C okttt o tanty ]

Theorem 2.11. [4 = ker(n).

Corrolary 2.12. I, is a prime ideal.



Proof of Theorem 2.11. (First Step)
n (fj

We will show that, for u,v € Mon(S), if m(u) = 7(v), then degu = degv. Let u = [[j_, 27, v
1%, 2%. Then m(u) = [],(t%)%, x(v) = [T}—,(t%)% In other words, m(u) = t2i=1%% n(y) =
c

j=17%; j=1
t=i=14% If 7(u) = 7(v), then doimiciag = iy djay. Thus (307 cjay) - ¢ = (30, djay)

> dj =327, ¢j. Hence degu = degv.

(Second step) We will show that ker(w) is a binomial ideal. Write f € S = k[z1,...,z,] as f = fi+...+ [
where each f; € S and for monomials u € supp(f;) and v € supp(f;), one has m(u) = w(v) if and only if
i= 3.

Let f; = > 7o, cikwi, where 0 # ¢, € k, u;, € Mon(S). Since m(u;1) = w(uy) for k = 2, ..., s; it follows
that 7(fi) = Soiy cavm(uin) = (S cin)m(uir). Hence m(f) = m(f1)++m(fi) = Sy (S co)m(uin).

If i # j, then w(u;1) # m(uj1). Thus, if f € ker(r) then Y ;* ¢y = 0 for all 1 < i < ¢. Hence
Ci1 = — Y po Cik. Wehave fi =370 | cipwie = Yo Cik(Ui—u;1). Thus f = Z§=1(ZZ=2 ik (Wik—Us1))-
We have w;, — u;; € ker(w). Therefore, first step shows that w;; — u;1 is a binomial. Hence ker(7) is
generated by those binomials v — v with 7(u) = 7(v).

(Third step) We will show that T4 = ker(n). Let f = [[j_, =’ — [1}_, x;-lj be a binomial. Then 7(f) =
[[(t%9)% — H?:l(t“f)dj = tX %% — t2 %% Hence 7(f) = 0 if and only if Yooy ciay = > djay
if and only if f, = f, b = ¢ — d € Kerz A. Thus binomials belonging to ker(w) must belong to 4. The
converse is clear. Hence I4 = ker(7). |

d) Toric ideals arising from finite graphs

Let G be a finite connected simple graph on the vertex set [d] = {1,2,...,d} with the set of edges
E(G) = {ex,...,en}. For each edge e; connecting vertices p; and g; € [d] define t* =t t,, € k[t1, ..., td).
The toric ring (or edge ring)of G is k[G] = k[t®,...,t*"]. Define 7 : S = k[z1,...,z,] — k[G], by
x; — t%. We call ker(7) the toric ideal of G and we denote it by Ig.

Graph terminology: (even, odd) cycle, chord, (closed) walk.

Problem 2.13. Find a configuration matriz A with [4 = Ig

Solution:
The matrix M € Z™*™ where n is a number of vertices. In columns there are 0 and 1, every column
corresponds to a one edge, ones are in vertices of the edge. Proof follows from the definition of surjections
in IG and IA.

|
Problem 2.14. IfT is an even closed walk, then show that fr € Ia

Solution:
going through the graph and taking even edges we will take edges with all vertices possible. the same
with even edges. Closed walk was even so there is the same number of even and odd edges. When we
multiplicate we obtain the same monomials. Hence f, € Iq.

]
Problem 2.15. Show that Ig is generated by those binomials fr, where I' is an even closed walk

Solution:

Let I}, denote the binomial ideal generated by these binomials fr, where I' is an even closed walk of G.
Choose a binomial f = [[f_, z;, — [[}_, zj, € Ig. We prove f € I/, by induction on ¢ = degf. One
can assume that i # ji for all k and k’. Let say, 7(z;,) = t1ts. Since m([]{_, z:,) = m([T{_, z;,) one
has m(zj,,) = tot, for some m with r # 1. Say m = 1,r = 3. Thus 7(z;,) = tots. Then 7(z;,) = tsts
for some [ with s # 2. Say [ = 2, s = 4. Repeated application of these procedure yields an even closed
walk I = (ei;, ), €y €5,) with fro = [Tp_ @i, — [[}=; 2. € Ij. This one has 7([[{_,,, i) =
m([Ti=pi1 ®j)- Hence g = [Ti_, ) @i, — [T}—, 1 2 € Ig. By induction one has g € Ij;. Now one has:
=iz zi) fro + (TR=y 25)9- frr,g € I, Thus f € If; as desired



Problem 2.16. We say that an even closed walk T" is primitive if there is no even closed walk T with
" # T such that flf,|f;r and fr|fr . Show that Ig is generated by those binomials fr, where I' is a
primitive even closed walk.

Problem 2.17. Find a “minimal” system of binomial generators of I for the following graphs G =<><>
,Go = “hexagon with the diameter

Solution:
for <><>: we take binomials representing <> and <> - it’s enough
for hexagon:
we don’t need to take the whole hexagon, we only need both halfs as a cycles. z1x3 —x2x7, x527 — X426

Problem 2.18. Let G be a finite connected simple bipartite graph. Show that Ig is generated by those
binomials fc, where C is an even cycle without chord (cieciwa)

3 Regular triangulation of lattice polytopes

a) Triangulation of lattice polytopes (integral polytopes

Definition 3.1. A convex polytope is a convex hull of a finite set
A convex polytope P C R? of dimension d is called a lattice (or integral) polytope if each vertex
€ 7. Let P € R? be a lattice polytope of dim = d and P NZ? = {a;,as,...,a,}

Write A(P) C Z@+D*" for the configuration matrix A(P) = {311 alQ al”] € Zd+X1 gince
dimP = d one have rank A(P) =d+1
01 1 01
. 01 011
Example 3.2. for two tetrahedrons with common base 00 1 1 1
111 11

Definition 3.3. A simplex belonging to P of a dimension s — 1 is a subset F' = {a;,,...,a;,} C PNZ4

for which [ail] [aiz} {a{*’} are linearly independent over Q

In particular ) is a simplex belonging to P of dimension —1
A maximal simplex = {a;,, ..., a;,,, } belonging to P is a simplex of dimension d. A maximal simplex
is called fundamental if

ZA(P) = ZA(F), where ZA(F) == Z [“1} +7Z [“1} .tz [‘”iﬂ} and ZA(P) := Z {ﬂ +7Z [ﬂ +
./ [‘ﬂ C 74+
Definition 3.4. A collection A of simplices belonging to P is called a triangulation of P if the following
conditions are satisfied::

1. f FeAand F/ C F, then F' € A

2. If F,G € A, then conv(F) N conv(G) = conv(F N G)

3. P =Upena conv(F) (convex hull of F in R%)

Definition 3.5. A triangulation Aof P is called unimodular if every maximal simplex F' € A is funda-
mental.



b) Regular triangulations

P C R%lattice polytope of dimension d, PNZ¢ = {ay, ..., ,an}, A(P) = {le af aln] e 7ld+1)xn

K[A(P)] = K[t"s,...,t%s] C K[t,t7,....tq,t;", 5] toric ring, 7 : S = K[z1,...,3,] — K[A(P)]
m(x;) = t%s, I5(py = ker(m) toric ideal

Fix monomial order on S and let in(I4(py) denote initial ideal

Recall that the radical of in<(I4(py) is the ideal of S generated by those polynomials f € S with
N € inc(Lacpy) for some N = Ny >0

Example 3.6. if inc(I4(p)) = (a3z2a52y, 232523), then \/inc (I4(p)) = (x1220324, T2x526) generated
by square free monomials

Lemma 3.7 (3.1). A subset ' C PNZ is a simplex belonging to P if HajeF x5 & \/in<(Iapy)

Sketch of proof. Let F = {a;,, ..., a;, }. Suppose that F satisfies the inclusion. We show that [a{d} [G{Z] {ai‘i“]

are linear independent. If not, then 3(0,...,0) # (ai,...,a;,) € Z* such that: a;, [ail} + ay, [ai"l et

1 1
a;, [alz] = 0. Then one can easily show that 0 # [[, o2i" —[], -2, = u—v € I4p) Thus
uor v € inc(lap). Hence [], ozj, € /inc(lap)) or [1,, <o %5 € /in<(Lap)). This contradicts
[.,er i & VVinc(Iap))- n

Definition 3.8. Let A(inc(I4(p))) :={F C PNZ*: HajeF z; & /inc(Iapy)}
Theorem 3.9 (3.2 Strumfels). A(in<(l4p))) is a triangulation of P.
We omit the proof

Example 3.10. in the example of tetrahedrons with common base: I4(py = (z2x3r4—2123),in< (La(p)) =
(z123), /(in<(Lacp))) = (z125)

Definition 3.11. A triangulation A of P is called regular if A = A(in<(I4(p))) for some monomial
order <

Theorem 3.12. A(inc(Iap))) is unimodular < inc(Iap)) = v/inc(apy) ( & in<(Iapy) is
generated by square free monoids)

Commutative Algebra
3 unimodular triangulation = toric ring K[A(P)] is normal and Cohen - Macaulay.

4 The join-meet ideals of finite lattice

a) Review on classical lattice theory

Definition 4.1. A lattice is a poset L in which any two elements ¢ and b of L has a meet a A b and a
join a V b. In particular, a finite lattice has both the minimal element 0 and the maximal element 1

A finite lattice L is called distributive if aA (bV¢) = (aAb)V (aAc) and aV (bAc) = (aVb)A(aVe)

A finite L is called modular if a <c=aV (bAc)=(aVD) Ac

Every distributive lattice L is modular. In fact if L is distributive lattice and a < ¢, then aV (bAc¢) =
(aVb)A(aVe)=(aVb)Ac

Problem 4.2. Let G be a finite group and L(G) the set of normal subgroups of G. We can regard L(G)
as a poset ordered by inclusion. Show that:

1. L(G) is a lattice

2. L(G) is a modular lattice



3. For G a finite abelian group: L(G) is a distributive lattice < G is a cyclic group

Solution:
[for 1.c) | If G ~ Z/nZ. Subgroups are Z/kZ for k|n Z/k1ZNZ[koZ = Z[lem(k1, k2)Z, L/ ki Z+ 7L ] ko7 =
Z/gcd(k1, ko)Z. Enough to check ged, lem satisfies distributive laws.

G not cycle = F = Z/nZ x Z/nyZ % ... such that ni|n2|.... Let’s take 3 subgroups isomorphic to
Z/an

H, :={(1,0,0,...)), H := {(0, 2.0, ) Hy o= {(1, 2,0, ...)) so we obtain a sublattice of “diamond”
type, so it’s not distributive.

Definition 4.3. N5 pentagon lattice
M; the diamond lattice (quadrangle with a diagonal and a vertex on a diagonal)

Fact 4.4. Nj; is not modular (in fact, even though a < ¢, one has aV(bAc) = aV0 = a, (aVb)Ac = 1Ac = ¢)
My modular, but not distributive (In fact a N (bVc)=aAl=a,(aN)V(aAc)=0V0=0)

Theorem 4.5 ((4.1.) Dedekind).
1. a finite lattice L is modular < no sublattice of L is Ny

2. a modular lattice L is distributive < no sublattice of L is Mj5

3. a finite lattice L is distributive < neither N5 nor Ms is a sublattice of L.

Definition 4.6. Let P = {pi,..,p,} be a finite poset with a partial order <. A poset ideal of P is a
subset o C P such that if p; € a,, p; < p;,then p; € a.
Let J(P) denote the set of poset ideals of P.

Fact 4.7. If o and B are poset ideals, « U B and aN B are also poset ideals of P. Hence J(P) can be a
finite lattice, ordered by inclusion. It is distributive.

Theorem 4.8 (4.2 Birkhoff). Give a finite distributive lattice L, there is a unique poset P such that
L=J(P).

Definition 4.9. Join irreducible element of a lattice is an element which has only one arrow going
down.

b) Join-meet ideals of finite lattices

Let L be a finite lattice and K[L] := K[{z, : a € L}] the polynomial ring in |L| - variables over a
field K.

Given a,b € L, define the binomial f,; by setting f, s = TaTs — TarpTave

In particular f,, =0 < @ and b are comparable (either a < b or b < a)

Definition 4.10. The join-meet ideal of L is finite binomial ideal Iy, := ({f,» : @ and b are incomparable})

Example 4.11. Iy, = (242p — ToT1, TpTe — ToX1)
Ingg = (Taxy — ToT1, TaZe — ToT1, TpTe — ToT1, )

Definition 4.12. A monomial order < on K[L] is called compatible if for any a and b of L for which
a and b are incomparable, one has in<(fq ) = T2

Example 4.13. L = {z1,22,...,xp},2; < z; in L = i > j. Then <., induced by =1 > ... > z,. Then
<rev 18 @ compatible monomial order on K[L]. We called it rank reversed lexicographic order.

Theorem 4.14 ((4.4)). Let L be a finite lattice and fix a compatible monomial order < on K[L]. Let
Gr = {fap : a,b € L are incomparable} Then the following are equivalent:

1. Gy, is a Grobner basis with respect to <
2. L is distributive
Theorem 4.15 (4.5). Give a finite lattice L. The following conditions are equivalent:
1. Iy, is a prime ideal
2. L is distributive

In both upper theorems implication from top to bottom is easy - exercise



c) Toric ring Rg[L] with L = J(P) distributive lattice

Let P = {p1,p2,...,pn} be a finite poset and L = J(P) the distributive lattice consisting of all
poset ideals of P, ordered by the inclusion. Let S = K|[z1, 22, ..., Zp,t] denote the polynomial ring in
(n + 1) variables over a field K. Give a poset ideal & € L = J(P). We introduce the monomial u, by
setting u, = (HpiEa x;)t € S. In particular ug = t,up = x1---x,t. Let Rx[L] denote the toric ring
RilL] = K[{uq : € L =J(P)}].

Example 4.16. rysunki

Define the surjective ring homomorphism 7 : K[L] = K[{z, : « € L = J(P)}| — Rk[L] by setting
(o) = Uq for all @« € L = J(P).

Lemma 4.17 (4.6). I C ker(m)

Proof. a, € L =J(P),aVvp = aUp,alB = anB, m(zansTaus) = (I1,,cans i) (L, caus z) 2, m(zarp) =
UgUg = (HmEa xi)(HmB x;)t? Hence uaup = Uanglaus in Ri[L]. Thus 2475 — TarpZavs € ker(r) N

Theorem 4.18 (4.7). Let L = J(L) and fix compatible monomial order < on K[L]. Then G :=
{fap:@,B € L=J(P) are incomparable} is a Grobner basis of ker(mw) with respect to <. In particular
I, = ker(w), so 2= 1 in Theorems 4.4 and 4.5.

Proof. the technique of corollary of Macaulay’s theorem in paragraph 1. can be applied. Let In.(Gp) :=
{inc(fa,) : fa.3 € Gr}. In other words in(Gy) is the set of monomials z,z3 € K[L] for which a and 3
are incomparable. Lemma (4.6) says that in<(Gp) C in<(ker w). Let B denote the set of those monomials
w € K[L] such that V,_.,cin_(c.) Ta®p { w and B’ those monomials w € K[L] with w ¢ in<(kerm).
Recall that, Macaulay’s theorem = B’ is a K —basis of Rx[L] = K[L]/kerw. Since B’ C B, in order to
show that B’ = B, our work is to show that B is linearly independent in Rx[L] = K[L]/ker 7. Now, we
prove, for w,w’ € B with w # w’ one has 7(w) # m(w'):

Let w = o, Ty Ta,, W = g0, -5, and oy < ap < ... <, 01 < P2 < . < By m(w) =
(monomials in z;)t?, 7(w') = (monomials in z;)t?. We may assume that p = ¢. Induction on degw
(= degw’) one can assume that V; jo; # B;. Thus oy ¢ Bi. Take p;, € aq \ Bi. As subsets of P
one has a1 C az C ... € o, 01 C B2 C ... C B,. Since Vi<i<ppi, € @i, m(x;,)P appears in 7m(w) =
(Lo, )T (Tay) - - T(Ta,) . However, since p;, & f1, the power 7 of z;, for which 7(x;,)" appears in 7(w’)
is at most p — 1 = a; = ;. Contradiction. | |

Problem 4.19.

1. Find a configuration matriz A with I, = I 4 where lattice L = tree squares connected to look like a
sign “>".

2. Find a finite poset P with L = J(P) where L = two cubes with common edge.

Solution:

)

Ty — t,x1 — 218, T12 > T122t, x1,3 r1xt, T2 3 > Toxst, x1,2,3 > T122x3t, T1,2,4 T1T2x4t, r1,2,3,4
01 1 1 0 1 1
00 1 0 1 1 1
T1Tox324t SO the matrix should be: |0 0 0 1 0 1 1
00 001 01
11 1 1 1 11

lattice of ideals are always distributive, so from theorem (4.7) I, = kerw
]

Problem 4.20. By using Dedekind theorem, prove 1 = 2 of theorem (4.4) and 1 = 2 of theorem (4.5)



5 Order polytopes of finite posets

a) Order polytopes

P = {p1,pa, ..., pn} finite poset, e; = [1,0,...0]T,ex = [0,1,0,...,0]7, ...;e, = [0, ..., 0, 1]T € R™.
a€ J(P),Pla) =) e; € R™. In particular P(() = [0,...,0]T € R*, P(P) =[1,...,1]T € R®

pi€a

Definition 5.1. The order polytope of P is the convex polytope O(P) C R™ which is the convex hull
of {P(a): € J(P)} € R"

Example 5.2. rysunek

b) Linear extensions

Definition 5.3. A permutation 414s...i, of [n] = {1,...,n} is called a linear extension of poset P if
Di, < p;, in poset P, then k <

Definition 5.4. e(P) := the number of linear extension of P
Example 5.5. rysunek
Lemma 5.6 (5.2).

1. Suppose that iy,is, ..., i, is a linear extension of P. Then a; = {pi,, Piy, -, Pi; } C P is a poset ideal
for all 1 < j < m. Moreover, ) = ap < a1 < ag < ... < oy, = P is a mazimal chain of L = J(P)

2. If0 =y < a1 < ag <..<a,=P is a marimal chain of L = J(P) then i1,%2,...,1, is a linear
extension of P. where p;; € aj \ a1

Proof.
1. If p;,, < pi, € o, then £ <1 < j. Hence p;, € a;

2. Let p;, < pj,. Since oy = {p;,, iy, .-, Pi,} and oy is a poset ideal of P, one has p;, € «;. Hence
k<.

|
Example 5.7. rysunek

Corrolary 5.8 (5.3). {linear extensions of P} <+1.1 {mazimal chains of L = J(P)}. In particular, e(P)
is equal to the number of maximal chains of L = J(P).

Book: R.Stanley, “Enumerative combinatorics, voll”, chapter 3.
Let iy,i2,...,%, be a linear extension of P and a; C {pi,,Piy,...,pi;} € L = J(P). Since P(a;) =
e, + €, + ...e;; € O(P) and convex hull conv({P(0), P(a), ..., P(a,)}) € O(P) is a standard lattice

J
simplex in R™. Standard means volume = %

Example 5.9. rysunek
Proposition 5.10 (5.4). dimO(P) =n

Proposition 5.11 (5.5). The set of vertices of O(P) is V(O(P)) = {P(a) : « € J(P)}. In particular
O(P) is a lattice polytope.

Lemma 5.12 (5.6). O(P)NZ" =V (O(P)) extension
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c¢) Toric rings of order polytopes

Recall that, in general, given a lattice polytope P C R"™ of dimension n, the toric ring of P is

the toric ring K[A(P)] of the configuration matrix A(P) = {all af aln] c Zn+DXN where

PNZ" = {ai1,as,..,an}. In other words, K[A(P)] = K[z®t,....,29t] C K[x1, 27", ., Tn, 2], 2% =
aij azj Anj
xl xZ BRI %
Now we discuss the toric ring of O(P). O(P)NZ" = V(O(P)) = {P(«) : « € L = J(P)}. One has
2P@) = g2ipea i = [1,,cq #i- Hence toric ring of O(P), K[{zP@t:a c J(P)}] = K{(Il,,cqrit:a €
J(P)}] - K[‘rlv "‘7xnvﬂ

Recalling section 4: L = J(P), R [L] = K[{uat : a« € J(P)}] where uo =[], c,, %:-
Example 5.13. rysunek
d) Regular triangulation of O(P)

m: K[{zp(a) : a € J(P)] = K[A(O(P))] toric ring zp(q) — 27t = (I, caxit-

I40(py) = kerm, toric ideal of O(P). Since K[A(O(P))] = Ri[L] with L = J(P) it follows that
Iyopy) = {TP@)TPB) — TP(arng)TP(avp) : @, € L = J(P) are incomparable in L } =: Gp)

Fix a compatible monomial order < on K[{zp(y) : a € J(P)}] Then we notice G, is a Grobner base
of I4(0(p)) With respect to <.

Inc(Ix0py) = {rpyrpp) : a,f € L = J(P) are compatible }. Now we discuss the regular
(unimodular) triangulation A = A(In<(Iao(py)))-

F CV(O(P)) = O(P)NZ" belongs to A (see section 3) < (de finition) [ p(s)er Trs) € Vin<(Ia(O(P))) =
inc(laopy) © Tp@Zpp) 1 Tp@e)er for all a,f € L = J(P) which are incomparable in L <« if
F ={P(a;,), P(tiy), ..., P(a;,)} then oy, < o, < ..., in L = J(P).

Thus in particular

Proposition 5.14 (5.8). F' = {P(w), P(a1),..,P(an)} is a mazimal simplex of A & ) = ap <
A1y ey @y = P is a mazimal chain of L = J(P). Furthermore conv(F) is a standard lattice simplex in
R".

Theorem 5.15 (5.9). The volume of O(P) is “£) where e(P) is the number of linear extensions of P.

n! 7

Proof. Since A is a triangulation of O(P), one has volume of O(P) = >~ ;e A naximal (volume of conv(F)) =

( the number of maximal simplex of A)/n! = (the number of maximal chains of L)/n! = % (because
of corollary 5.3). |

Problem 5.16. Let V C R™ be a set of (0,1) vectors of R™ and P C R™ the convex polytope which is
the convex hull of V' in R™. Show that:

1. The set of vertices of P coincides with V. (= (5.5) )
2. PNZ"=V (= (5.6))

Proof. Let w be a (0,1) vector with w ¢ V. Then w & conv(V),V = {v1,...,vp}. If w € conv(V),w =
)\1’[)1+...+)\S’Us,>\1+)\2+...)\s: 1,)\1 20 |

Definition 5.17. v € P vertex < (Ifv="3% yweP=>v=u=w)

Lemma 5.18. If P = conv(V), then each vertex belongs to V. Moreover, if V(P) is the set of vertices
of P, then P = conv(V(P)).
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