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1 Lecture 1
Let S = k[x1, ..., xn] be the polynomial ring in n variables over a field k and let

Mon(S) = {xa = xa1
1 ...xan

n : a = (a1, ..., an) ∈ Zn
≥0}

be the set of monomials of S.

a) Dickson’s Lemma
Let xa = xa1

1 ...xan
n and xb = xb1

1 ...xbn
n . We say that xa divides xb if ai ≤ bi for all 1 ≤ i ≤ n.

Let ∅ ≠ M ⊂ Mon(S). We say that xa ∈ M is minimal if for xb ∈ M such that xb | xa we have b = a.
Let Mmin be the set of minimal monomials in M .

Theorem 1.1 (Dickson’s Lemma). Let ∅ ̸= M ⊂ Mon(S). Then Mmin is a finite set.

Proof. We use induction on n. For n = 1 the proof is easy. Let n ≥ 2 and let y = xn. Write S =
k[x1, ..., xn−1, y] and B = k[x1, ..., xn−1]. Set N = {xa ∈ Mon(B) | xayb ∈ M for some b ≥ 0}. By
induction we have that Nmin is a finite set. Let Nmin = {u1, ..., us} and u1y

b1 , ..., usy
bs ∈ M . Let

b = max{b1, ..., bs}. For each 0 ≤ c < b define

Nc = {xa ∈ N : xayc ∈ M} ⊂ N

Again, we know Nmin
c is a finite set, say Nmin

c = {u(c)
1 , ..., u

(c)
sc }. Consider the following monomials:

u1y
b1 , u2y

b2 , ... usy
bs

u
(0)
1 , ... u(0)

s0

u
(b−1)
1 yb−1, ... u(b−1)

sb−1

It then follows easily that every monomial in M is divisible by one of the monomials on the above list ■

b) Monomial order
A monomial order on S is a total order < on Mon(S) such that

i) 1 < u for 1 ̸= u ∈ Mon(S),

ii) if u, v ∈ Mon(S) and u < v, then uw < vw for all w ∈ Mon(S).

Example 1.2. Let xa = xa1
1 ...xan

n and xb = xb1
1 ...xbn

n .

a) (Lexicographic order) We say that xa <lex xb if either
∑n

i=1 ai <
∑n

i=1 bi or
∑n

i=1 ai =
∑n

i=1 bi
and the leftmost non-zero component of the vector a − b is negative. We call <lex the lex order
on S induced by x1 > ... > xn.
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b) (Reverse lexicographic order) We say that xa <rev xb if either
∑n

i=1 ai <
∑n

i=1 bi or
∑n

i=1 ai =∑n
i=1 bi and the rightmost non-zero component of the vector a − b is positive. We call <rev the

reverse lex order on S induced by x1 > ... > xn.

c) (Purely lexicographic order) We say that xa <purelex xb if the leftmost non-zero component of the
vector a − b is negative.

The reverse purely lexicographic order is not a monomial order since 1 > x1.
We have:

x2x3 <lex x1x4

x1x4 <rev x2x3

x5
2 <purelex x3

1

Lemma 1.3. If u | v and u ̸= v then u < v.

Proof. We have v = uw for some 1 ̸= w ∈ Mon(S). From the first property of the monomial order we
have that 1 < w. Hence, from the second property of the monomial order we have u < uw = v. ■

Lemma 1.4. There exists no infinite descending sequence of monomials of the form ...u2 < u1 < u0.

Proof. Suppose that there exists such a sequence M . Let Mmin = {ui0 , ui1 , ..., uis} with i0 < i1 < ... < is.
Then we have uij | uis+1 for some 0 ≤ j ≤ s. Hence from the previous lemma we get uij < uis+1. Thus
ij > is + 1, which is a contradiction.

■

c) Gröbner bases
Fix a monomial order < on S. Given a polynomial 0 ̸= f =

∑
u∈Mon(S) cuu (cu ∈ k). We define the

support of f to be supp(f) = {u ∈ Mon(S) | cu ̸= 0}. Define also the initial monomial of f to be
in<f = the biggest monomial w.r.t < belonging to supp(f). Given an ideal 0 ̸= I ⊂ S we define the
initial ideal of I: in<(I) = ({in<f : 0 ̸= f ∈ I}).

Lemma 1.5. There exists polynomials g1, ..., gs ∈ I s.t in<(I) = (in<g1, ..., in<gs).

Proof. From 1.1 we have {in<f : 0 ̸= f ∈ I} = {in<g1, ..., in<gs} for some polynomials g1, .., gs. It
follows that in<(I) = (in<g1, ..., in<gs). ■

Let 0 ̸= I ⊂ S be an ideal. A Gröbner basis of I w.r.t. the monomial order < is a finite set G =
{g1, ..., gs} of polynomials where each 0 ̸= gi ∈ I, such that in<(I) = (in<g1, ..., in<gs).
A Gröbner basis always exists but cannot be unique.

d) Hilbert’s basis theorem
Fix a monomial order < on S.

Theorem 1.6. If G = {g1, ..., gs} is a Gröbner basis of an ideal 0 ̸= I ⊂ S, then I is generated by
g1, ..., gs. In other words, every Gröbner basis of I is a system of generators of I.

Proof by Gordan. Let 0 ̸= f ∈ I. Since in<f ∈ in<I one has in<gi0 | in<f for some 1 ≤ i0 ≤ s.
Let in<f = w0in<gi0 for w0 ∈ Mon(S) . Set h0 = f − c−1

io
c0w0gi0 ∈ I where LT (f) = c0in<f and

ci0in<gi0 = LT (gi0). If h0 = 0, then f ∈ (g1, ..., gs). If h0 ̸= 0, then in<h0 < in<f . Continue this
procedure and use Lemma 1.4 to finish the proof. ■

Corrolary 1.7 (Hilbert’s basis theorem). Every ideal of the polynomial ring is finitely generated.
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e) Macaulay’ theorem
Notation 1.8. S = K[x1, ..., xn], 0 ̸= I ⊂ S ideal, < monomial order
Definition 1.9. A monomial u ∈ Mon(S) is called standard with respect to in<(I) if u ̸∈ in<(I)

Theorem 1.10 (1.8 Macaulay). The set of standard monomials with respect to in<(I) is a K-basis of
S/I.
Proof. Let B = {ū = u+ I ∈ S/I : u ∈ Mon(S) is standard with respect to in<(I)} We show that B is
a K - basis of S/I.

• B is linearly independent :
let c1ū1 + ...cnūn = 0 in S/I where ci ∈ K and u1 < u2 < ...un are standard. Then 0 ̸= f =
c1u1 + ...cnun ∈ I and in<(f) = un ∈ in<(I). This is impossible since un is standard

• S/I is spanned by B:
Let ⟨B⟩ denote the subspace of S/I spanned by B. Let 0 ̸= f ∈ S. We show f̄ ∈ ⟨B⟩ by using
induction (lemma 1.4) on in<(f):
Suppose ū = in<(f) ∈ B. By assumption of induction we know f − cu ∈ ⟨B⟩ (coefficient of min f).
Since u ∈ B, one has f ∈ ⟨B⟩
Suppose ū = in<(f) ̸∈ B. Then u is not standard, i.e. u ∈ in<(I). Hence ∃0̸=g∈I u = in<(g). Then
(by induction) c′f − cg ∈ ⟨B⟩. However in S/I c′f = c′f − cg ∈ ⟨B⟩. Thus c′f ∈ ⟨B⟩ and f ∈ ⟨B⟩.

■

Corrolary 1.11 (1.9). 0 ̸= I ⊂ S ideal, < monoid order, h1, ..., hs ∈ I with each hi ̸= 0. Let H = {u ∈
Mon(S) : ∀1≤i≤sin<(hi) ∤ u}

Suppose H̄ is linearly independent over K in S/I. Then {h1, ..., hs} is a GB of I w.r.t. <. In particular
{h1, ...hs} is a system of generators of I
Example 1.12 (1.10). Consider the semigroup ring A = K[t, xt, yt, xyt, yzt, xyzt] ⊂ k[x, y, z, t]. Define
the surjective ring homomorphism u : S = k[x1, x2, ..., x6] → A by setting u : x1 7→ t, x2 7→ xt, ..., x6 7→
xyzt, I = ker(u). We know T1 = x2x3 − x1x4, T2 = x2x5 − x1x6, T3 = x4x5 − x3x6 ∈ I = (T1, T2, T3)
(this equality is not obvious).

By using (1.9) we can show that {T1, T2, T3} a GB w.r.t. rev. lex. order induced by x1 > x2 > ...
(Problem 1)
Problem 1.13. In (1.10) show that {T1, T2, T3} is a GB, w.r.t <rev

Solution:
H = {xa1

1 xa2
2 xa4

4 xa6
6 , xb1

1 xb3
3 xb4

4 xb6
6 , xc1

1 xc3
3 xc5

5 xc6
6 } is linearly independent if:

u, v ∈ H, u ̸= v ⇒ π(u) ̸= π(v)

■
Problem 1.14. (chsugi) S = K[x1, ..., x10], I = (T1, ..., T5), where T1 = 18 − 26, T2 = 29 − 37, T3 =
310 − 48, T4 = 46 − 59, T5 = 57 − 110. Show that ̸ ∃ monomial order < on S for which {T1, ..., T5} is a
GB of I w.r.t. <

Solution:
Suppose, on the contrary, that there exists a monomial order < on S such that G = f1, ..., f5 is a Grobner
basis of I with respect to <. First, note that each of the five polynomials: x1x8x9−x3x6x7, x2x9x10−x4x7x8

, x2x6x10−x5x7x8, x3x6x10−x5x8x9, x1x9x10−x4x6x7 belongs to I.
Let, say, x1x8x9 > x3x6x7 . Since x1x8x9 ∈ in<(I), there is g ∈ G such that in<(g) divides

x1x8x9 . Such g ∈ G must be f1 . Hence x1x8 > x2x6 . Thus x2x6 ̸∈ in<(I). Hence there exists
no g ∈ G such that in<(g) divides x2x6x10 . Hence x2x6x10 < x5x7x8 . Thus x5x7 > x1x10 . Con-
tinuing these arguments yields x1x8x9 > x3x6x7, x2x9x10 > x4x7x8, x2x6x10 < x5x7x8, x3x6x10 >
x5x8x9, x1x9x10 < x4x6x7 and x1x8 > x2x6, x2x9 > x3x7, x3x10 > x4x8, x4x6 > x5x9, x5x7 > x1x10
. Hence (x1x8)(x2x9)(x3x10)(x4x6)(x5x7) > (x2x6)(x3x7)(x4x8)(x5x9)(x1x10). However, both sides of
the above inequality coincide with x1x2···x10 . This is a contradiction.

■
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2 Toric rings and toric ideals
a) Configuration matrix

A = (aij)1≤i≤d,1≤j≤n ∈ Zd×n, column vector aj = [a1,j , ..., ad,j ]
T , 1 ≤ j ≤ n

Definition 2.1. We call A a configuration matrix if ∃0̸=c∈Rd for which ∀1≤j≤naj · c = 1 usual inner
product in Rd ⇐⇒ cA = 0

Example 2.2. Given A ∈ Z(d−1)×n, define A# ∈ Zd×n =

 A

1 1 1

 matrix with A on top, ones below.

Then A# is a configuration matrix with c = [0, ..., 0, 1]

Example 2.3. If a1j + ...adj = h ̸= 0∀1≤j≤n then A is a configuration matrix with c = [1/h, ...1/h]

b) toric ideal
Definition 2.4. A binomial is a polynomial of the form u − v where u and v are monomials with
degu = deg v

A binomial ideal of S = k[z1, ..., zn] is an ideal of S generated by binomials

Given a configuration matrix A ∈ Zd×n define KerZA = {b ∈ Zn : Ab = 0}

Lemma 2.5 (2.2). If b = [b1, ..., bn] ∈ KerZA, then b1 + ..., bn = 0.

Proof. Since A is a configuration matrix, one has 0 ̸= c ∈ Rd with ∀1≤j≤najc = 0. Since Ab = 0, one has∑n
j=1 bjaj = 0. Hence 0 = (

∑n
j=0 bjaj)c =

∑n
j=0 bj(ajc) =

∑
bj . ■

Definition 2.6. Now, for each b = [b1, ..., bn] ∈ kerZA, define the binomial fb =
∏

bn>0 x
bi
i −

∏
bi<0 x

bi
i =

f+
b − f−

b ∈ S. By (2.2) one has deg f+
b = deg f−

b .
Let us define IA := ({fb : b ∈ kerZA})

Example 2.7. A =


0 1 1 0 1
0 1 0 1 1
0 0 1 1 1
1 1 1 1 1

 ∈ Z4×5 configuration matrix. One has A ∗ [−1, 1, 1, 1,−2]T =:

Ab = 0, b ∈ kerZA, fb = x2x3x4 − x1x
2
5. One can show that IA = (fb)

c) Toric ring
Definition 2.8. A = (aij) ∈ Zd×n is a configuration matrix if ∃0 ̸= c ∈ Rd such that for all horizontal
vector aj ,ajc = 1 ⇔ cA = [1, ..., 1]

taj := t
a1j

1 t
a2j

2 ...t
adj

d ∈ K[t1, t
−1
1 , ..., td, t

−1
d ]

Definition 2.9. The toric ring of A is the subring K[A] ⊂ k[t1, t
−1
1 ...td, t

−1
d ] generated by ta1 , ta2 , ..., tan

K[A] = K[ta1 , ta2 , ..., tan ](⊂ k[t1, t
−1
1 , ..., td, t

−1
d ])

Example 2.10. A=

1 0 −1
0 1 −1
1 1 1


K[A] = K[t1, t3, t2t3, t1t2t3]

Now define the surjective ring homomorphism π : S = k[x1, ..., xn] → k[A] = k[ta1 , ..., tan ] xi 7→ tai

⊂ k[t1, t
−1
1 , ..., td, t

−1
d ]

Theorem 2.11. IA = ker(π).

Corrolary 2.12. IA is a prime ideal.
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Proof of Theorem 2.11. (First Step)
We will show that, for u, v ∈ Mon(S), if π(u) = π(v), then degu = deg v. Let u =

∏n
j=1 x

cj
j , v =∏n

j=1 x
dj

j . Then π(u) =
∏n

j=1(taj )cj , π(v) =
∏n

j=1(taj )dj In other words, π(u) = t
∑n

j=1 cjaj , π(v) =

t
∑n

j=1 djaj . If π(u) = π(v), then
∑n

j=1 cjaj =
∑n

j=1 djaj . Thus (
∑n

j=1 cjaj) · c = (
∑n

j=1 djaj) · c =∑n
j=1 dj =

∑n
j=1 cj . Hence degu = deg v.

(Second step) We will show that ker(π) is a binomial ideal. Write f ∈ S = k[x1, ..., xn] as f = f1+ ...+ft
where each fi ∈ S and for monomials u ∈ supp(fi) and v ∈ supp(fj), one has π(u) = π(v) if and only if
i = j.

Let fi =
∑si

k=1 cikuik where 0 ̸= cik ∈ k, uik ∈ Mon(S). Since π(ui1) = π(uik) for k = 2, ..., si it follows
that π(fi) =

∑si
k=1 cikπ(uik) = (

∑si
k=1 cik)π(ui1). Hence π(f) = π(f1)+...+π(ft) =

∑t
i=1(

∑si
k=1 cik)π(ui1).

If i ̸= j, then π(ui1) ̸= π(uj1). Thus, if f ∈ ker(π) then
∑si

k=1 cik = 0 for all 1 ≤ i ≤ t. Hence
ci1 = −

∑si
k=2 cik. We have fi =

∑si
k=1 cikuik =

∑si
k=2 cik(uik−ui1). Thus f =

∑t
i=1(

∑si
k=2 cik(uik−ui1)).

We have uik − ui1 ∈ ker(π). Therefore, first step shows that uik − ui1 is a binomial. Hence ker(π) is
generated by those binomials u− v with π(u) = π(v).

(Third step) We will show that IA = ker(π). Let f =
∏n

j=1 x
cj
j −

∏n
j=1 x

dj

j be a binomial. Then π(f) =∏n
j=1(taj )cj −

∏n
j=1(taj )dj = t

∑
ajcj − t

∑
ajdj . Hence π(f) = 0 if and only if

∑n
j=1 cjaj =

∑n
j=1 djaj

if and only if fb = f , b = c − d ∈ KerZ A. Thus binomials belonging to ker(π) must belong to IA. The
converse is clear. Hence IA = ker(π). ■

d) Toric ideals arising from finite graphs
Let G be a finite connected simple graph on the vertex set [d] = {1, 2, ..., d} with the set of edges

E(G) = {e1, ..., en}. For each edge ei connecting vertices pi and qi ∈ [d] define tei = tpitqi ∈ k[t1, ..., td].
The toric ring (or edge ring)of G is k[G] = k[te1 , ..., ten ]. Define π : S = k[x1, ..., xn] → k[G], by
xi 7→ tei . We call ker(π) the toric ideal of G and we denote it by IG.

Graph terminology: (even, odd) cycle, chord, (closed) walk.

Problem 2.13. Find a configuration matrix A with IA = IG

Solution:
The matrix M ∈ Zn×n where n is a number of vertices. In columns there are 0 and 1, every column
corresponds to a one edge, ones are in vertices of the edge. Proof follows from the definition of surjections
in IG and IA.

■

Problem 2.14. If Γ is an even closed walk, then show that fΓ ∈ IG

Solution:
going through the graph and taking even edges we will take edges with all vertices possible. the same
with even edges. Closed walk was even so there is the same number of even and odd edges. When we
multiplicate we obtain the same monomials. Hence fγ ∈ IG.

■

Problem 2.15. Show that IG is generated by those binomials fΓ, where Γ is an even closed walk

Solution:
Let I ′G denote the binomial ideal generated by these binomials fΓ, where Γ is an even closed walk of G.
Choose a binomial f =

∏q
k=1 xik −

∏q
k=1 xjk ∈ IG. We prove f ∈ I ′G by induction on q = degf . One

can assume that ik ̸= jk′ for all k and k′. Let say, π(xil) = t1t2. Since π(
∏q

k=1 xik) = π(
∏q

k=1 xjk) one
has π(xjm) = t2tr for some m with r ̸= 1. Say m = 1, r = 3. Thus π(xj1) = t2t3. Then π(xil) = t3ts
for some l with s ̸= 2. Say l = 2, s = 4. Repeated application of these procedure yields an even closed
walk Γ′ = (ei1 , ej1 , ..., eil , ejl) with fΓ′ =

∏p
k=1 xik −

∏p
k=1 xjk ∈ I ′g. This one has π(

∏q
k=p+1 xik) =

π(
∏q

k=p+1 xjk). Hence g =
∏q

k=p+1 xik −
∏q

k=p+1 xjk ∈ IG. By induction one has g ∈ I ′G. Now one has:
f = (

∏q
k=f+1 xik)fΓ′ + (

∏p
k=1 xjk)g. fΓ′ , g ∈ I ′G. Thus f ∈ I ′G as desired
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■

Problem 2.16. We say that an even closed walk Γ is primitive if there is no even closed walk Γ′ with
Γ′ ̸= Γ such that f+

Γ′ |f+
Γ and f−

Γ′ |f−
Γ . Show that IG is generated by those binomials fΓ, where Γ is a

primitive even closed walk.

Problem 2.17. Find a “minimal” system of binomial generators of IG for the following graphs G1 =<><>
,G2 = “hexagon with the diameter“.

Solution:
for <><>: we take binomials representing <> and <> - it’s enough

for hexagon:
we don’t need to take the whole hexagon, we only need both halfs as a cycles. x1x3−x2x7, x5x7−x4x6

■

Problem 2.18. Let G be a finite connected simple bipartite graph. Show that IG is generated by those
binomials fC , where C is an even cycle without chord (cięciwa)

3 Regular triangulation of lattice polytopes
a) Triangulation of lattice polytopes (integral polytopes
Definition 3.1. A convex polytope is a convex hull of a finite set

A convex polytope P ⊂ Rd of dimension d is called a lattice (or integral) polytope if each vertex
∈ Zd. Let P ∈ Rd be a lattice polytope of dim = d and P ∩ Zd = {ai,a2, ...,an}

Write A(P ) ⊂ Z(d+1)×n for the configuration matrix A(P ) =

[
a1 a2 ... an

1 1 ... 1

]
∈ Z(d+1)×n since

dimP = d one have rank A(P ) = d+ 1

Example 3.2. for two tetrahedrons with common base


0 1 1 0 1
0 1 0 1 1
0 0 1 1 1
1 1 1 1 1


Definition 3.3. A simplex belonging to P of a dimension s− 1 is a subset F = {ai1 , ..., ais} ⊂ P ∩ Zd

for which
[
ai1
1

] [
ai2
1

]
...

[
ais
1

]
are linearly independent over Q

In particular ∅ is a simplex belonging to P of dimension −1
A maximal simplex = {ai1 , ..., aid+1

} belonging to P is a simplex of dimension d. A maximal simplex
is called fundamental if

ZA(P ) = ZA(F ), where ZA(F ) := Z
[
ai1
1

]
+Z

[
ai2
1

]
+ ...+Z

[
aid+1

1

]
and ZA(P ) := Z

[
a1
1

]
+Z

[
a2
1

]
+

...+ Z
[
an
1

]
⊂ Zd+1

Definition 3.4. A collection ∆ of simplices belonging to P is called a triangulation of P if the following
conditions are satisfied::

1. If F ∈ ∆ and F ′ ⊂ F , then F ′ ∈ ∆

2. If F,G ∈ ∆, then conv(F ) ∩ conv(G) = conv(F ∩G)

3. P =
∪

F∈∆ conv(F ) (convex hull of F in Rd)

Definition 3.5. A triangulation ∆of P is called unimodular if every maximal simplex F ∈ ∆ is funda-
mental.
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b) Regular triangulations

P ⊂ Rd lattice polytope of dimension d, P ∩Zd = {a1, ..., , an}, A(P ) =

[
a1 a2 ... an
1 1 ... 1

]
∈ Z(d+1)×n

K[A(P )] = K[ta1s, ..., tans] ⊂ K[t, t−1, ..., td, t
−1
d , s] toric ring, π : S = K[x1, ..., xn] → K[A(P )]

π(xi) = tais, IA(P ) = ker(π) toric ideal
Fix monomial order on S and let in<(IA(P )) denote initial ideal
Recall that the radical of in<(IA(P )) is the ideal of S generated by those polynomials f ∈ S with

fN ∈ in<(IA(P )) for some N = Nf > 0

Example 3.6. if in<(IA(P )) = (x3
1x2x

5
3x4, x

3
2x5x

2
6), then

√
in<(IA(P )) = (x1x2x3x4, x2x5x6) generated

by square free monomials

Lemma 3.7 (3.1). A subset F ⊂ P ∩ Zd is a simplex belonging to P if
∏

aj∈F xj ̸∈
√
in<(IA(P ))

Sketch of proof. Let F = {ai1 , ..., ais}. Suppose that F satisfies the inclusion. We show that
[
ai1
1

] [
ai2
1

]
...

[
aid+1

1

]
are linear independent. If not, then ∃(0, ..., 0) ̸= (ai1 , ..., ais) ∈ Zs such that: ai1

[
ai1
1

]
+ ai2

[
ai2
1

]
... +

ais

[
ais
1

]
= 0. Then one can easily show that 0 ̸=

∏
qk>0 x

qn
jk

−
∏

qn<0 x
−qn
jk

=: u − v ∈ IA(P ) Thus

u or v ∈ in<(IA(P )). Hence
∏

qk>0 xjk ∈
√

in<(IA(P )) or
∏

qk<0 xjk ∈
√
in<(IA(P )). This contradicts∏

aj∈F xj ̸∈
√

in<(IA(P )). ■

Definition 3.8. Let ∆(in<(IA(P ))) := {F ⊂ P ∩ Zd :
∏

aj∈F xj ̸∈
√
in<(IA(P ))}

Theorem 3.9 (3.2 Strumfels). ∆(in<(IA(P ))) is a triangulation of P .

We omit the proof

Example 3.10. in the example of tetrahedrons with common base: IA(P ) = (x2x3x4−x1x
2
5), in<(IA(P )) =

(x1x
2
5),

√
(in<(IA(P ))) = (x1x5)

Definition 3.11. A triangulation ∆ of P is called regular if ∆ = ∆(in<(IA(P ))) for some monomial
order <

Theorem 3.12. ∆(in<(IA(P ))) is unimodular ⇔ in<(IA(P )) =
√

in<(IA(P )) ( ⇔ in<(IA(P )) is
generated by square free monoids)

Commutative Algebra
∃ unimodular triangulation ⇒ toric ring K[A(P )] is normal and Cohen - Macaulay.

4 The join-meet ideals of finite lattice
a) Review on classical lattice theory
Definition 4.1. A lattice is a poset L in which any two elements a and b of L has a meet a ∧ b and a
join a ∨ b. In particular, a finite lattice has both the minimal element 0̂ and the maximal element 1̂

A finite lattice L is called distributive if a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c)
A finite L is called modular if a ≤ c ⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c
Every distributive lattice L is modular. In fact if L is distributive lattice and a ≤ c, then a∨ (b∧ c) =

(a ∨ b) ∧ (a ∨ c) = (a ∨ b) ∧ c

Problem 4.2. Let G be a finite group and L(G) the set of normal subgroups of G. We can regard L(G)
as a poset ordered by inclusion. Show that:

1. L(G) is a lattice

2. L(G) is a modular lattice
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3. For G a finite abelian group: L(G) is a distributive lattice ⇔ G is a cyclic group
Solution:

[for 1.c) ] If G ≃ Z/nZ. Subgroups are Z/kZ for k|n Z/k1Z∩Z/k2Z = Z/lcm(k1, k2)Z,Z/k1Z+Z/k2Z =
Z/gcd(k1, k2)Z. Enough to check gcd, lcm satisfies distributive laws.

G not cycle ⇒ F = Z/n1Z × Z/n2Z × ... such that n1|n2|.... Let’s take 3 subgroups isomorphic to
Z/n1Z

H1 := ⟨(1, 0, 0, ...)⟩,H1 := ⟨(0, n2

n1
, 0, ...)⟩,H1 := ⟨(1, n2

n1
, 0, ...)⟩ so we obtain a sublattice of “diamond”

type, so it’s not distributive.
■

Definition 4.3. N5 pentagon lattice
M5 the diamond lattice (quadrangle with a diagonal and a vertex on a diagonal)

Fact 4.4. N5 is not modular (in fact, even though a < c, one has a∨(b∧c) = a∨0 = a, (a∨b)∧c = 1∧c = c)
M5 modular, but not distributive (In fact a ∧ (b ∨ c) = a ∧ 1 = a, (a∧) ∨ (a ∧ c) = 0 ∨ 0 = 0)

Theorem 4.5 ((4.1.) Dedekind).
1. a finite lattice L is modular ⇔ no sublattice of L is N5

2. a modular lattice L is distributive ⇔ no sublattice of L is M5

3. a finite lattice L is distributive ⇔ neither N5 nor M5 is a sublattice of L.
Definition 4.6. Let P = {p1, .., pn} be a finite poset with a partial order <. A poset ideal of P is a
subset α ⊂ P such that if pi ∈ α, pj ≤ pi,then pj ∈ α.

Let J(P ) denote the set of poset ideals of P .
Fact 4.7. If α and β are poset ideals, α ∪ β and α ∩ β are also poset ideals of P . Hence J(P ) can be a
finite lattice, ordered by inclusion. It is distributive.
Theorem 4.8 (4.2 Birkhoff). Give a finite distributive lattice L, there is a unique poset P such that
L = J(P ).
Definition 4.9. Join irreducible element of a lattice is an element which has only one arrow going
down.

b) Join-meet ideals of finite lattices
Let L be a finite lattice and K[L] := K[{xa : a ∈ L}] the polynomial ring in |L| - variables over a

field K.
Given a, b ∈ L, define the binomial fa,b by setting fa,b = xaxb − xa∧bxa∨b

In particular fa,b = 0 ⇔ a and b are comparable (either a ≤ b or b ≤ a)
Definition 4.10. The join-meet ideal of L is finite binomial ideal IL := ({fa,b : a and b are incomparable})
Example 4.11. IN5 = (xaxb − x0x1, xbxc − x0x1)

IM5 = (xaxb − x0x1, xaxc − x0x1, xbxc − x0x1, )

Definition 4.12. A monomial order < on K[L] is called compatible if for any a and b of L for which
a and b are incomparable, one has in<(fa,b) = xaxb

Example 4.13. L = {x1, x2, ..., xn}, xi < xj in L ⇒ i > j. Then <rev induced by x1 > ... > xn. Then
<rev is a compatible monomial order on K[L]. We called it rank reversed lexicographic order.
Theorem 4.14 ((4.4)). Let L be a finite lattice and fix a compatible monomial order < on K[L]. Let
GL := {fa,b : a, b ∈ L are incomparable} Then the following are equivalent:

1. GL is a Grobner basis with respect to <

2. L is distributive
Theorem 4.15 (4.5). Give a finite lattice L. The following conditions are equivalent:

1. IL is a prime ideal

2. L is distributive
In both upper theorems implication from top to bottom is easy - exercise
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c) Toric ring RK [L] with L = J(P ) distributive lattice
Let P = {p1, p2, ..., pn} be a finite poset and L = J(P ) the distributive lattice consisting of all

poset ideals of P , ordered by the inclusion. Let S = K[x1, x2, ..., xn, t] denote the polynomial ring in
(n + 1) variables over a field K. Give a poset ideal α ∈ L = J(P ). We introduce the monomial uα by
setting uα = (

∏
pi∈α xi)t ∈ S. In particular u∅ = t, uP = x1 · · ·xnt. Let RK [L] denote the toric ring

RK [L] := K[{uα : α ∈ L = J(P )}].

Example 4.16. rysunki

Define the surjective ring homomorphism π : K[L] = K[{xα : α ∈ L = J(P )}] → Rk[L] by setting
π(xα) = uα for all α ∈ L = J(P ).

Lemma 4.17 (4.6). IL ⊂ ker(π)

Proof. α, β ∈ L = J(P ), α∨β = α∪β, α∧β = α∩β, π(xα∩βxα∪β) = (
∏

pi∈α∩β xi)(
∏

pi∈α∪β xi)t
2, π(xαxβ) =

uαuβ = (
∏

pi∈α xi)(
∏

piβ
xi)t

2 Hence uαuβ = uα∩βuα∪β in RK [L]. Thus xαxβ − xα∧βxα∨β ∈ ker(π) ■

Theorem 4.18 (4.7). Let L = J(L) and fix compatible monomial order < on K[L]. Then GL :=
{fα,β : α, β ∈ L = J(P ) are incomparable} is a Grobner basis of ker(π) with respect to <. In particular
IL = ker(π), so 2 ⇒ 1 in Theorems 4.4 and 4.5.

Proof. the technique of corollary of Macaulay’s theorem in paragraph 1. can be applied. Let In<(GL) :=
{in<(fα,β) : fα,β ∈ GL}. In other words in<(GL) is the set of monomials xαxβ ∈ K[L] for which α and β
are incomparable. Lemma (4.6) says that in<(GL) ⊂ in<(kerπ). Let B denote the set of those monomials
w ∈ K[L] such that ∀xαxβ∈in<(GL) xαxβ ∤ w and B′ those monomials w ∈ K[L] with ω ̸∈ in<(kerπ).
Recall that, Macaulay’s theorem ⇒ B′ is a K−basis of RK [L] = K[L]/ kerπ. Since B′ ⊂ B, in order to
show that B′ = B, our work is to show that B is linearly independent in RK [L] = K[L]/ kerπ. Now, we
prove, for w,w′ ∈ B with w ̸= w′ one has π(w) ̸= π(w′):

Let w = xα1xα2 · · ·xαp , w
′ = xβ1xβ2 · · ·xβq and α1 ≤ α2 ≤ ... ≤ αp, β1 ≤ β2 ≤ ... ≤ βq. π(w) =

(monomials in xi)t
p, π(w′) = (monomials in xi)t

q. We may assume that p = q. Induction on degw
(= degw′) one can assume that ∀i,jαi ̸= βj . Thus α1 ̸⊂ β1. Take pi0 ∈ α1 \ β1. As subsets of P
one has α1 ⊆ α2 ⊆ ... ⊆ αp, β1 ⊆ β2 ⊆ ... ⊆ βp. Since ∀1≤i≤ppi0 ∈ αi, π(xi0)

p appears in π(w) =
π(xα1)π(xα2) · · ·π(xαp) . However, since pi0 ̸∈ β1, the power r of xi0 for which π(xi0)

r appears in π(w′)
is at most p− 1 ⇒ α1 = β1. Contradiction. ■

Problem 4.19.

1. Find a configuration matrix A with IL = IA where lattice L = tree squares connected to look like a
sign “>”.

2. Find a finite poset P with L = J(P ) where L = two cubes with common edge.

Solution:
1)

x∅ 7→ t, x1 7→ x1t, x1,2 7→ x1x2t, x1,3 7→ x1x2t, x2,3 7→ x2x3t, x1,2,3 7→ x1x2x3t, x1,2,4 7→ x1x2x4t, x1,2,3,4 7→

x1x2x3x4t so the matrix should be :


0 1 1 1 0 1 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1
0 0 0 0 1 0 1
1 1 1 1 1 1 1


lattice of ideals are always distributive, so from theorem (4.7) IL = kerπ

■

Problem 4.20. By using Dedekind theorem, prove 1 ⇒ 2 of theorem (4.4) and 1 ⇒ 2 of theorem (4.5)
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5 Order polytopes of finite posets
a) Order polytopes

P = {p1, p2, ..., pn} finite poset, e1 = [1, 0, ...0]T , e2 = [0, 1, 0, ..., 0]T , ..., en = [0, ..., 0, 1]T ∈ Rn.
α ∈ J(P ), P (α) :=

∑
pi∈α ei ∈ Rn. In particular P (∅) = [0, ..., 0]T ∈ Rn, P (P ) = [1, ..., 1]T ∈ Rn

Definition 5.1. The order polytope of P is the convex polytope O(P ) ⊂ Rn which is the convex hull
of {P (α) : α ∈ J(P )} ∈ Rn

Example 5.2. rysunek

b) Linear extensions
Definition 5.3. A permutation i1i2...in of [n] = {1, ..., n} is called a linear extension of poset P if
pik < pil in poset P , then k < l

Definition 5.4. e(P ) := the number of linear extension of P

Example 5.5. rysunek

Lemma 5.6 (5.2).

1. Suppose that i1, i2, ..., in is a linear extension of P . Then αj = {pi1 , pi2 , ..., pij} ⊂ P is a poset ideal
for all 1 ≤ j ≤ n. Moreover, ∅ = α0 < α1 < α2 < ... < αn = P is a maximal chain of L = J(P )

2. If ∅ = α0 < α1 < α2 < ... < αn = P is a maximal chain of L = J(P ) then i1, i2, ..., in is a linear
extension of P . where pij ∈ αj ∖ αj−1

Proof.

1. If pik < pil ∈ αj , then k < l ≤ j. Hence pik ∈ αj

2. Let pik < pil . Since αl = {pi1 , pi2 , ..., pil} and αl is a poset ideal of P , one has pik ∈ αl. Hence
k < l.

■

Example 5.7. rysunek

Corrolary 5.8 (5.3). {linear extensions of P} ↔1:1 {maximal chains of L = J(P )}. In particular, e(P )
is equal to the number of maximal chains of L = J(P ).

Book: R.Stanley, “Enumerative combinatorics, vol1”, chapter 3.
Let i1, i2, ..., in be a linear extension of P and αj ⊂ {pi1 , pi2 , ..., pij} ∈ L = J(P ). Since P (αj) =

ei1 + ei2 + ...eij ∈ O(P ) and convex hull conv({P (∅), P (α1), ..., P (αn)}) ⊂ O(P ) is a standard lattice
simplex in Rn. Standard means volume = 1

n!

Example 5.9. rysunek

Proposition 5.10 (5.4). dimO(P ) = n

Proposition 5.11 (5.5). The set of vertices of O(P ) is V (O(P )) = {P (α) : α ∈ J(P )}. In particular
O(P ) is a lattice polytope.

Lemma 5.12 (5.6). O(P ) ∩ Zn = V (O(P )) extension
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c) Toric rings of order polytopes
Recall that, in general, given a lattice polytope P ⊂ Rn of dimension n, the toric ring of P is

the toric ring K[A(P )] of the configuration matrix A(P ) =

[
a1 a2 ... an
1 1 ... 1

]
∈ Z(n+1)×N where

P ∩ Zn = {a1, a2, .., aN}. In other words, K[A(P )] = K[xa1t, ..., xaN t] ⊂ K[x1, x
−1
1 , ..., xn, x

−1
n ], xaj =

x
a1j

1 x
a2j

2 · · ·xanj
n

Now we discuss the toric ring of O(P ). O(P ) ∩ Zn = V (O(P )) = {P (α) : α ∈ L = J(P )}. One has
xP (α) = x

∑
pi∈α ei =

∏
pi∈α xi. Hence toric ring of O(P ), K[{xP (α)t : α ∈ J(P )}] = K[{(

∏
pi∈α xit : α ∈

J(P )}] ⊂ K[x1, ..., xn, t]
Recalling section 4: L = J(P ), RK [L] = K[{uαt : α ∈ J(P )}] where uα =

∏
pi∈α xi.

Example 5.13. rysunek

d) Regular triangulation of O(P)
π : K[{xP (α) : α ∈ J(P )] → K[A(O(P ))] toric ring xP (α) 7→ xP (α)t = (

∏
pi∈α xi)t.

IA(O(P )) = kerπ, toric ideal of O(P ). Since K[A(O(P ))] = RK [L] with L = J(P ) it follows that
IA(O(P )) = ({xP (α)xP (β) − xP (α∧β)xP (α∨β) : α, β ∈ L = J(P ) are incomparable in L } =: GL)

Fix a compatible monomial order < on K[{xP (α) : α ∈ J(P )}] Then we notice GL is a Grobner base
of IA(O(P )) with respect to <.

In<(IA(O(P ))) = ({xP (α)xP (β) : α, β ∈ L = J(P ) are compatible }. Now we discuss the regular
(unimodular) triangulation ∆ = ∆(In<(IA(O(P )))).

F ⊂ V (O(P )) = O(P )∩Zn belongs to ∆ (see section 3) ⇔(definition)

∏
P (δ)∈F xP (δ) ̸∈

√
in<(IA(O(P ))) =

in<(IA(O(P ))) ⇔ xP (α)xP (β) ∤ xP (δ)∈F for all α, β ∈ L = J(P ) which are incomparable in L ⇔ if
F = {P (αi1), P (αi2), ..., P (αis)} then αi1 < αi2 < ..., αis in L = J(P ).

Thus in particular

Proposition 5.14 (5.8). F = {P (α0), P (α1), .., P (αn)} is a maximal simplex of ∆ ⇔ ∅ = α0 <
α1, ...., αn = P is a maximal chain of L = J(P ). Furthermore conv(F ) is a standard lattice simplex in
Rn.

Theorem 5.15 (5.9). The volume of O(P ) is e(P )
n! , where e(P ) is the number of linear extensions of P .

Proof. Since ∆ is a triangulation of O(P ), one has volume of O(P ) =
∑

F∈∆maximal (volume of conv(F )) =

( the number of maximal simplex of ∆)/n! = (the number of maximal chains of L)/n! = e(P )
n! (because

of corollary 5.3). ■

Problem 5.16. Let V ⊂ Rn be a set of (0, 1) vectors of Rn and P ⊂ Rn the convex polytope which is
the convex hull of V in Rn. Show that:

1. The set of vertices of P coincides with V (⇒ (5.5) )

2. P ∩ Zn = V (⇒ (5.6) )

Proof. Let w be a (0, 1) vector with w ̸∈ V . Then w ̸∈ conv(V ), V = {v1, ..., vn}. If w ∈ conv(V ), w =
λ1v1 + ...+ λsvs, λ1 + λ2 + ...λs = 1, λi ≥ 0.... ■

Definition 5.17. v ∈ P vertex ⇔ (If v = u+w
2 , u, w ∈ P ⇒ v = u = w )

Lemma 5.18. If P = conv(V ), then each vertex belongs to V . Moreover, if V (P ) is the set of vertices
of P , then P = conv(V (P )).
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