Investigation of L^{2}-stability - a few examples

Michał Łasica

April 9, 2013

1 Diffusion vs autocatalysis

Let us first consider following (affine) problem for a function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ (with Ω - bounded domain in \mathbb{R}^{n}) satisfying, in every time instance $t \in[0, T]$,

$$
\begin{gather*}
u_{t}=\kappa \Delta u+a u \quad \text { in } \Omega, \tag{1}\\
u=f \quad \text { at } \partial \Omega . \tag{2}
\end{gather*}
$$

The function u may represent temperature of a (solid) medium filling a container whose walls coincide with $\partial \Omega$. Then $\kappa>0$ is thermal diffusivity. The medium undergoes an exothermal reaction whose speed depends on temperature in such a way that net change of temperature in a unit of time due to reaction is equal to au for some constant $a>0$. Further, the walls of container are kept at a constant distribution of temperature $f: \partial \Omega \rightarrow \mathbb{R}$.

We are interested in investigating stability of a stationary solution to (1, 2) u^{*} that satisfies

$$
\begin{gather*}
0=\kappa \Delta u^{*}+a u^{*} \quad \text { in } \Omega, \tag{3}\\
u^{*}=f \quad \text { at } \partial \Omega \tag{4}
\end{gather*}
$$

in a class of classical solutions to (1, 2) with any initial datum. ${ }^{1}$
To this purpose let us subtract (3), (4) from (1, 2) and denote $w=u-u^{*}$. Then w satisfies

$$
\begin{gather*}
w_{t}=\kappa \Delta w+a w \quad \text { in } \Omega, \tag{5}\\
u=0 \quad \text { at } \partial \Omega . \tag{6}
\end{gather*}
$$

We may notice that there is a competition in (5) between diffusion and autocatalysis. In the case $a=0, w$ would vanish exponentially due to "transport of thermal energy outside Ω " (diffusion + Dirichlet boundary condition). We would like to investigate the behaviour of perturbation w in time depending on the coefficients κ and a. To this point,

[^0]we introduce quantity $\|w\|_{2}=\left(\int_{\Omega}|w|^{2}\right)^{\frac{1}{2}}$ i. e. the norm of w in $L_{2}(\Omega) .^{2}$ which may be referred to as energy of the perturbation w. Multiplying (5) by w and integrating over Ω we obtain
$$
\frac{1}{2} \int_{\Omega}\left(w^{2}\right)_{t}=\kappa \int_{\Omega} w \Delta w+a \int_{\Omega} w^{2}
$$

Integrating by parts using (6) yields

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|w\|_{2}^{2}=-\kappa\|\nabla w\|_{2}^{2}+a\|w\|_{2}^{2} \tag{7}
\end{equation*}
$$

If we were able to show that

$$
\begin{equation*}
-\kappa\|\nabla w\|_{2}^{2}+a\|w\|_{2}^{2} \leq-\epsilon\|w\|_{2}^{2} \tag{8}
\end{equation*}
$$

for any w for some $\varepsilon>0$, we'd obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|w\|_{2}^{2} \leq-\varepsilon\|w\|_{2}^{2} \tag{9}
\end{equation*}
$$

which would lead to exponential decay of $\|w\|_{2}$, i. e. (exponential) asymptotic L^{2}-stability of u^{*}. Let's assume that we were able to show that there exists a constant λ_{L} such that

$$
\begin{equation*}
\frac{\|\nabla w\|_{2}^{2}}{\|w\|_{2}^{2}} \geq \lambda_{L} \tag{10}
\end{equation*}
$$

for any w. This would imply that (8) is satisfied whenever $\lambda_{L} \geq \frac{a+\varepsilon}{\kappa}$ and consequently that we have exponential stability whenever $\lambda_{L}>\frac{a}{\kappa}$. It turns out that we have

Proposition 1 (Poincaré inequality). Let Ω be a bounded domain in \mathbb{R}^{n}. For any $w \in$ $C_{0}^{2}(\Omega)$ there holds

$$
\frac{\|\nabla w\|_{2}^{2}}{\|w\|_{2}^{2}} \geq \lambda_{L}
$$

λ_{L}, the least eigenvalue of Laplace operator with Dirichlet boundary conditions in Ω, is strictly positive and is the optimal constant in this inequality.

Sketch of proof. Let's consider a functional $w \mapsto \frac{\|\nabla w\|_{2}^{2}}{\|w\|_{2}^{2}}$. For this functional to attain a minimum at some w_{0}, a function $\varepsilon \mapsto \frac{\left\|\nabla\left(w_{0}+\varepsilon w\right)\right\|_{2}^{2}}{\left\|\left(w_{0}+\varepsilon w\right)\right\|_{2}^{2}}$ should have a minimum at $\epsilon=0$ for any given w. This condition leads to integral equation

$$
\begin{equation*}
\int_{\Omega} \nabla w_{0} \cdot \nabla w=\frac{\left\|\nabla w_{0}\right\|_{2}^{2}}{\left\|w_{0}\right\|_{2}^{2}} \int_{\Omega} w_{0} w \tag{11}
\end{equation*}
$$

satisfied by w_{0} for any w. Integrating by parts,

$$
\begin{equation*}
\int_{\Omega}\left(-\Delta w_{0}-\frac{\left\|\nabla w_{0}\right\|_{2}^{2}}{\left\|w_{0}\right\|_{2}^{2}} w_{0}\right) w=0 \tag{12}
\end{equation*}
$$

[^1]for any w. Due to fundamental lemma of calculus of variation,
\[

$$
\begin{equation*}
-\Delta w_{0}=\frac{\left\|\nabla w_{0}\right\|_{2}^{2}}{\left\|w_{0}\right\|_{2}^{2}} w_{0} \tag{13}
\end{equation*}
$$

\]

follows. This means that w_{0} is an eigenvector of $-\Delta$ with eigenvalue $\frac{\left\|\nabla w_{0}\right\|_{2}^{2}}{\left\|w_{0}\right\|_{2}^{2}}$. As it is known that the eigenvalues of $-\Delta$ with Dirichlet boundary conditions form a monotone sequence of positive numbers converging to $\infty, 3^{3}$ denoting the least one by λ_{L} ends proof.

We have now proved the stability of any stationary solution to (1. 22) whenever $\lambda_{L}>\frac{a}{\kappa}$. On the other hand, consider a situation where $\frac{a}{\kappa}=\lambda$ for some $\lambda \geq \lambda_{L}$ - eigenvalue of $-\Delta$. Then for w, eigenvector of $-\Delta$ corresponding to λ, we have

$$
w_{t}=\kappa \Delta w+a w=-\kappa \lambda+a=0
$$

and so, asymptotic stability does not hold. This consideration and the above proof of Poincaré inequality show that for linear problems, "linear-anzac" and "energetic" methods of investigation of stability are more or less the same thing and it is therefore no surprise that they lead to the same results.

2 Navier-Stokes system - the role of constraints

Let's now consider the following problem for functions $\mathbf{v}: \Omega \times[0, T] \rightarrow \mathbb{R}^{n}$ and $p: \Omega \times$ $[0, T] \rightarrow \mathbb{R}$ on some domain Ω in $\mathbb{R}^{n}(n=2$ or 3$)$ representing velocity and pressure of incompressible flow

$$
\begin{gather*}
\mathbf{v}_{t}+\mathbf{v} \cdot \nabla \mathbf{v}=\mu \Delta \mathbf{v}-\nabla p+a \mathbf{v} \quad \text { in } \Omega, \tag{14}\\
\nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega, \tag{15}\\
\mathbf{v}=0 \quad \text { at } \partial \Omega \tag{16}
\end{gather*}
$$

in every time instance $t \in[0, T]$.
The differences from the previous example are:

- Vector character of this problem (which does not really introduce any additional difficulty).
- Nonlinearity of the convection term. We will deal with it easily, however, due to nonlinearity, it is not possible to reduce investigation of stability of this problem to the "linear-anzac" analysis.
- The incompressibility constraint (15). As we will see, its presence will allow us to obtain slightly better results than in unconstrained case.

[^2]To avoid technical difficulties (and to disregard the matters of existence) we now chose homogeneous boundary condition (16) and we will only investigate stability of the solution $\mathbf{v}^{*}=0, p^{*}=0$. To this purpose we take a scalar product of (14) with \mathbf{v} and integrate over Ω. We have, due to (15) and (16),

$$
\begin{gathered}
\int_{\Omega}(\mathbf{v} \cdot \nabla \mathbf{v}) \cdot \mathbf{v}=\frac{1}{2} \int_{\Omega} \mathbf{v} \cdot \nabla \mathbf{v}^{2}=-\frac{1}{2} \int_{\Omega}(\nabla \cdot \mathbf{v}) \mathbf{v}^{2}=0 \\
\int \nabla p \cdot \mathbf{v}=\int p \nabla \cdot \mathbf{v}=0
\end{gathered}
$$

and therefore

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\mathbf{v}\|_{2}^{2}=-\mu\|\nabla \mathbf{v}\|_{2}^{2}+a\|\mathbf{v}\|_{2}^{2} \tag{17}
\end{equation*}
$$

This is basically the same equation as (7), so we could follow the same analysis as before and obtain stability whenever $\lambda_{L}>\frac{a}{\mu}$. However, due to (15) we may do better. Let's, as before, consider a functional $\mathbf{v} \mapsto \frac{\|\nabla \mathbf{v}\|_{2}^{2}}{\|\mathbf{v}\|_{2}^{2}}$. However, this time we restrict ourselves to functions \mathbf{v} such that $\nabla \cdot \mathbf{v}=0$. For a function \mathbf{v}_{0} to be a minimizer in this class, it is necessary that

$$
\begin{equation*}
\int_{\Omega}\left(-\Delta \mathbf{v}_{0}-\frac{\left\|\nabla \mathbf{v}_{0}\right\|_{2}^{2}}{\left\|\mathbf{v}_{0}\right\|_{2}^{2}} \mathbf{v}_{0}\right) \cdot \mathbf{v}=0 \tag{18}
\end{equation*}
$$

for every \mathbf{v} such that $\nabla \cdot \mathbf{v}=0$. As the set of such vector fields is substantially smaller than the set of all differentiable vector fields vanishing on $\partial \Omega$, we may not simply pass to a differential equation from (18). However, we may take as \mathbf{v} any vector field of form $\nabla \times \mathbf{w}$. Then, denoting $\mathbf{h}=-\Delta \mathbf{v}_{0}-\frac{\left\|\nabla \mathbf{v}_{0}\right\|_{2}^{2}}{\| \mathbf{v}_{\|_{2}^{2}} \mathbf{v}_{2}}$ and integrating by parts in (18) by virtue of equality

$$
\nabla \cdot(\mathbf{h} \times \mathbf{w})=-\mathbf{h} \cdot(\nabla \times \mathbf{w})+(\nabla \times \mathbf{h}) \cdot \mathbf{w}
$$

leads to

$$
\begin{equation*}
\int_{\Omega}(\nabla \times \mathbf{h}) \cdot \mathbf{w}=0 \tag{19}
\end{equation*}
$$

This implies that $\nabla \times \mathbf{h}=0$ and, consequently, that $\mathbf{h}=-\nabla p$ for some function $p: \Omega \rightarrow \mathbb{R}$. Denoting $\lambda=\frac{\left\|\nabla \mathbf{v}_{0}\right\|_{2}^{2}}{\left\|\mathbf{v}_{0}\right\|_{2}^{2}}$ we obtain that (\mathbf{v}, p) satisfies system

$$
\begin{gather*}
-\Delta \mathbf{v}+\nabla p=\lambda \mathbf{v} \quad \text { in } \Omega \tag{20}\\
\nabla \cdot \mathbf{v}=0 \quad \text { in } \Omega \tag{21}\\
\mathbf{v}=0 \quad \text { at } \partial \Omega \tag{22}
\end{gather*}
$$

i. e. \mathbf{v} is an eigenvector of Stokes operator with eigenvalue $\lambda .{ }^{4}$ The Stokes operator with Dirichlet boundary conditions is, similarly as $-\Delta$, a positive unbounded operator. Therefore, we obtain, similarly as in the first example, that 0 is a stable solution to the system (14 16) whenever $\lambda_{S}>\frac{a}{\mu}$ where λ_{S} is the least eigenvalue of the Stokes operator. To appreciate this result we may notice that for $\Omega=[0,1]^{2}, \lambda_{S} \approx 5,3 \pi^{2}[3]$ while $\lambda_{L}=2 \pi^{2}$.

[^3]
3 Nonlinear forcing - conditional stability

Now, let's consider following problem for $u: \Omega \times[0, T] \rightarrow \mathbb{R}$:

$$
\begin{gather*}
u_{t}=\kappa \Delta u+a u^{2} \quad \text { in } \Omega, \tag{23}\\
u=0 \quad \text { at } \partial \Omega . \tag{24}
\end{gather*}
$$

This time we restrict ourselves to $\Omega \subset \mathbb{R}^{3}$ and investigate stability of stationary solution $u^{*}=0$, which as before, leads to the same system (23, 24). Multiplying by u and integrating over Ω as usual we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u\|_{2}^{2}=-\kappa\|\nabla u\|_{2}^{2}+a \int u^{3} \tag{25}
\end{equation*}
$$

To deal with the expression $\int u^{3}$ we use a simple case of Sobolev inequality
Proposition 2 (Sobolev inequality). Let Ω be a bounded domain in \mathbb{R}^{3}. Let $u \in C_{0}^{1}(\Omega)$. Then

$$
\left(\int_{\Omega}|u|^{\frac{3}{2}}\right)^{\frac{2}{3}} \leq \int_{\Omega}|\nabla u| .
$$

Proof. Let us extend u by 0 to whole \mathbb{R}^{3}. Due to fundamental theorem of calculus,

$$
u(x, y, z)=\int_{-\infty}^{x} u_{x}(r, y, z) \mathrm{d} r
$$

and consequently

$$
|u| \leq \int_{-\infty}^{\infty}\left|u_{x}\right| \mathrm{d} x .
$$

Analogous inequalities may be written for u_{y} and u_{z}. Multiplying the three inequalities obtained this way and taking square root of both sides yields

$$
|u|^{\frac{3}{2}} \leq\left(\int_{-\infty}^{\infty}\left|u_{x}\right| \mathrm{d} x\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|u_{y}\right| \mathrm{d} y\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|u_{z}\right| \mathrm{d} z\right)^{\frac{1}{2}}
$$

Integrating both sides of this inequality with respect to x over $]-\infty, \infty[$ leads to

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|u|^{\frac{3}{2}} \mathrm{~d} x \leq\left(\int_{-\infty}^{\infty}\left|u_{x}\right| \mathrm{d} x\right)^{\frac{1}{2}} \int_{-\infty}^{\infty}\left(\left(\int_{-\infty}^{\infty}\left|u_{y}\right| \mathrm{d} y\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|u_{z}\right| \mathrm{d} z\right)^{\frac{1}{2}}\right) \mathrm{d} x \\
& \leq\left(\int_{-\infty}^{\infty}\left|u_{x}\right| \mathrm{d} x\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|u_{y}\right| \mathrm{d} y \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|u_{z}\right| \mathrm{d} z \mathrm{~d} x\right)^{\frac{1}{2}}
\end{aligned}
$$

using Schwarz inequality. Integrating this inequality with respect to y and z likewise yields

$$
\int_{\mathbb{R}^{3}}|u|^{\frac{3}{2}} \leq\left(\int_{\mathbb{R}^{3}}\left|u_{x}\right|\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left|u_{y}\right|\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left|u_{z}\right|\right)^{\frac{1}{2}} .
$$

Estimating $\left|u_{x}\right|,\left|u_{y}\right|,\left|u_{z}\right|$ by $|\nabla u|$ finishes the proof.

The constant 1 appearing in proven inequality is not optimal. According to [2], the optimal constant in this case is $C_{S}=\left(\frac{1}{36 \pi}\right)^{\frac{1}{3}} \approx 0,21$. Whatever the exact value of the constant, it is remarkable that it does not depend on (the size of) Ω (unlike the constant in the Poincaré inequality).

Using Sobolev inequality we may estimate

$$
\begin{equation*}
\int u^{3} \leq \int\left(u^{2}\right)^{\frac{3}{2}} \leq\left(\int\left|\nabla u^{2}\right|\right)^{\frac{3}{2}} \leq\left(\int|\nabla u||u|\right)^{\frac{3}{2}} \leq 2^{\frac{3}{2}}\|\nabla u\|_{2}^{\frac{3}{2}}\|u\|_{2}^{\frac{3}{2}} \tag{26}
\end{equation*}
$$

The last estimate is Schwarz inequality. Due to (25), we obtain stability if

$$
\begin{equation*}
-\kappa\|\nabla u\|_{2}^{2}+a 2^{\frac{3}{2}}\|\nabla u\|_{2}^{\frac{3}{2}}\|u\|_{2}^{\frac{3}{2}}<0 . \tag{27}
\end{equation*}
$$

Dividing by $\|\nabla u\|_{2}^{2}$ and using Poincaré inequality yields following condition for stability

$$
\begin{equation*}
-\kappa+a 2^{\frac{3}{2}} \lambda_{L}^{-\frac{1}{4}}\|u\|_{2}<0 \tag{28}
\end{equation*}
$$

If this condition is satisfied in $t=0$ then, due to (25), it is satisfied in any positive time. Thus, it is a sufficient condition for stability that

$$
\begin{equation*}
\left\|u_{0}\right\|_{2}<2^{-\frac{3}{2}} \lambda_{L}^{\frac{1}{4}} \frac{\kappa}{a} \tag{29}
\end{equation*}
$$

where u_{0} is the initial perturbation. Note that we did not show anything about the case when this inequality is not satisfied. However it is known that there is no stability whenever

$$
\begin{equation*}
\int_{\Omega} u_{0} w_{L}>\lambda_{L} \frac{\kappa}{a} \tag{30}
\end{equation*}
$$

for some perturbation $u_{0} \geq 0$, where w_{L} is the eigenvector of $-\Delta$ corresponding to λ_{L} normalized so that $\int_{\Omega} w_{L}=1$. 5 In fact, the L^{2} norm of any perturbation $u_{0} \geq 0$ satisfying (30) grows to ∞ in finite time. [1]

References

[1] L.C. Evans. Partial differential equations. Graduate Studies in Mathematics Series. American Mathematical Society, 2010.
[2] Giorgio Talenti. Best constant in sobolev inequality. Annali di Matematica pura ed Applicata, 110(1):353-372, 1976.
[3] G. I. Taylor. The buckling load for a rectangular plate with four clamped edges. Zeitschrift für Angewandte Mathematik und Mechanik, 13(2):147-152, 1933.

[^4]
[^0]: ${ }^{1}$ A unique solution to the problem (3) with any given smooth initial datum may be shown to exist whenever κ, a satisfy the same condition as for stability (provided that f and $\partial \Omega$ are sufficiently smooth). In other case a solution may or may not exist or be unique.

[^1]: ${ }^{2}$ This quantity may be as well defined for vector (or tensor) valued functions. $|w|^{2}$ then denotes the sum of squares of all components of w (the Euclidean length squared).

[^2]: ${ }^{3}$ This follows from the fact that $(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a positive compact operator.

[^3]: ${ }^{4}$ To understand the meaning of this phrase better, we might act on 20 with the Helmholtz projection P onto the subspace of divergenceless functions in $L^{2}(\Omega)$ to obtain $-P \Delta \mathbf{v}=\lambda \mathbf{v}$.

[^4]: ${ }^{5}$ Due to this normalization the powers of λ_{L} in (29) and (30) are consistent.

