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1 Diffusion vs autocatalysis
Let us first consider following (affine) problem for a function u : Ω × [0, T ] → R (with Ω
– bounded domain in Rn) satisfying, in every time instance t ∈ [0, T ],

ut = κ∆u+ au in Ω, (1)

u = f at ∂Ω. (2)

The function u may represent temperature of a (solid) medium filling a container
whose walls coincide with ∂Ω. Then κ > 0 is thermal diffusivity. The medium undergoes
an exothermal reaction whose speed depends on temperature in such a way that net
change of temperature in a unit of time due to reaction is equal to au for some constant
a > 0. Further, the walls of container are kept at a constant distribution of temperature
f : ∂Ω→ R.

We are interested in investigating stability of a stationary solution to (1, 2) u∗ that
satisfies

0 = κ∆u∗ + au∗ in Ω, (3)

u∗ = f at ∂Ω (4)

in a class of classical solutions to (1, 2) with any initial datum. 1

To this purpose let us subtract (3, 4) from (1, 2) and denote w = u − u∗. Then w
satisfies

wt = κ∆w + aw in Ω, (5)

u = 0 at ∂Ω. (6)

We may notice that there is a competition in (5) between diffusion and autocatalysis.
In the case a = 0, w would vanish exponentially due to “transport of thermal energy
outside Ω” (diffusion + Dirichlet boundary condition). We would like to investigate the
behaviour of perturbation w in time depending on the coefficients κ and a. To this point,

1A unique solution to the problem (3, 4) with any given smooth initial datum may be shown to exist
whenever κ, a satisfy the same condition as for stability (provided that f and ∂Ω are sufficiently smooth).
In other case a solution may or may not exist or be unique.
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we introduce quantity ‖w‖2 = (
∫

Ω |w|2) 1
2 i. e. the norm of w in L2(Ω).2 which may be

referred to as energy of the perturbation w. Multiplying (5) by w and integrating over Ω
we obtain

1
2

∫
Ω

(w2)t = κ
∫

Ω
w∆w + a

∫
Ω
w2.

Integrating by parts using (6) yields

1
2

d
dt‖w‖

2
2 = −κ‖∇w‖2

2 + a‖w‖2
2. (7)

If we were able to show that

− κ‖∇w‖2
2 + a‖w‖2

2 ≤ −ε‖w‖2
2 (8)

for any w for some ε > 0, we’d obtain

1
2

d
dt‖w‖

2
2 ≤ −ε‖w‖2

2 (9)

which would lead to exponential decay of ‖w‖2, i. e. (exponential) asymptotic L2-stability
of u∗. Let’s assume that we were able to show that there exists a constant λL such that

‖∇w‖2
2

‖w‖2
2
≥ λL (10)

for any w. This would imply that (8) is satisfied whenever λL ≥ a+ε
κ

and consequently
that we have exponential stability whenever λL > a

κ
. It turns out that we have

Proposition 1 (Poincaré inequality). Let Ω be a bounded domain in Rn. For any w ∈
C2

0(Ω) there holds
‖∇w‖2

2
‖w‖2

2
≥ λL.

λL, the least eigenvalue of Laplace operator with Dirichlet boundary conditions in Ω, is
strictly positive and is the optimal constant in this inequality.

Sketch of proof. Let’s consider a functional w 7→ ‖∇w‖2
2

‖w‖2
2
. For this functional to attain a

minimum at some w0, a function ε 7→ ‖∇(w0+εw)‖2
2

‖(w0+εw)‖2
2

should have a minimum at ε = 0 for
any given w. This condition leads to integral equation∫

Ω
∇w0 · ∇w = ‖∇w0‖2

2
‖w0‖2

2

∫
Ω
w0w (11)

satisfied by w0 for any w. Integrating by parts,∫
Ω

(−∆w0 −
‖∇w0‖2

2
‖w0‖2

2
w0)w = 0 (12)

2This quantity may be as well defined for vector (or tensor) valued functions. |w|2 then denotes the
sum of squares of all components of w (the Euclidean length squared).
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for any w. Due to fundamental lemma of calculus of variation,

−∆w0 = ‖∇w0‖2
2

‖w0‖2
2
w0 (13)

follows. This means that w0 is an eigenvector of−∆ with eigenvalue ‖∇w0‖2
2

‖w0‖2
2
. As it is known

that the eigenvalues of −∆ with Dirichlet boundary conditions form a monotone sequence
of positive numbers converging to ∞,3 denoting the least one by λL ends proof.

We have now proved the stability of any stationary solution to (1, 2) whenever λL > a
κ
.

On the other hand, consider a situation where a
κ

= λ for some λ ≥ λL – eigenvalue of
−∆. Then for w, eigenvector of −∆ corresponding to λ, we have

wt = κ∆w + aw = −κλ+ a = 0

and so, asymptotic stability does not hold. This consideration and the above proof of
Poincaré inequality show that for linear problems, “linear-anzac” and “energetic” methods
of investigation of stability are more or less the same thing and it is therefore no surprise
that they lead to the same results.

2 Navier-Stokes system – the role of constraints
Let’s now consider the following problem for functions v : Ω × [0, T ] → Rn and p : Ω ×
[0, T ] → R on some domain Ω in Rn (n = 2 or 3) representing velocity and pressure of
incompressible flow

vt + v · ∇v = µ∆v−∇p+ av in Ω, (14)

∇ · v = 0 in Ω, (15)

v = 0 at ∂Ω (16)

in every time instance t ∈ [0, T ].
The differences from the previous example are:

• Vector character of this problem (which does not really introduce any additional
difficulty).

• Nonlinearity of the convection term. We will deal with it easily, however, due to
nonlinearity, it is not possible to reduce investigation of stability of this problem to
the “linear-anzac” analysis.

• The incompressibility constraint (15). As we will see, its presence will allow us to
obtain slightly better results than in unconstrained case.

3This follows from the fact that (−∆)−1 : L2(Ω)→ L2(Ω) is a positive compact operator.
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To avoid technical difficulties (and to disregard the matters of existence) we now chose
homogeneous boundary condition (16) and we will only investigate stability of the solution
v∗ = 0, p∗ = 0. To this purpose we take a scalar product of (14) with v and integrate
over Ω. We have, due to (15) and (16),∫

Ω
(v · ∇v) · v = 1

2

∫
Ω

v · ∇v2 = −1
2

∫
Ω

(∇ · v)v2 = 0,

∫
∇p · v =

∫
p∇ · v = 0

and therefore
1
2

d
dt‖v‖

2
2 = −µ‖∇v‖2

2 + a‖v‖2
2. (17)

This is basically the same equation as (7), so we could follow the same analysis as before
and obtain stability whenever λL > a

µ
. However, due to (15) we may do better. Let’s,

as before, consider a functional v 7→ ‖∇v‖2
2

‖v‖2
2
. However, this time we restrict ourselves to

functions v such that ∇ · v = 0. For a function v0 to be a minimizer in this class, it is
necessary that ∫

Ω
(−∆v0 −

‖∇v0‖2
2

‖v0‖2
2

v0) · v = 0 (18)

for every v such that ∇ · v = 0. As the set of such vector fields is substantially smaller
than the set of all differentiable vector fields vanishing on ∂Ω, we may not simply pass
to a differential equation from (18). However, we may take as v any vector field of form
∇×w. Then, denoting h = −∆v0 − ‖∇v0‖2

2
‖v0‖2

2
v0 and integrating by parts in (18) by virtue

of equality
∇ · (h×w) = −h · (∇×w) + (∇× h) ·w

leads to ∫
Ω

(∇× h) ·w = 0. (19)

This implies that∇×h = 0 and, consequently, that h = −∇p for some function p : Ω→ R.
Denoting λ = ‖∇v0‖2

2
‖v0‖2

2
we obtain that (v, p) satisfies system

−∆v +∇p = λv in Ω, (20)

∇ · v = 0 in Ω, (21)

v = 0 at ∂Ω (22)

i. e. v is an eigenvector of Stokes operator with eigenvalue λ. 4 The Stokes operator
with Dirichlet boundary conditions is, similarly as −∆, a positive unbounded operator.
Therefore, we obtain, similarly as in the first example, that 0 is a stable solution to the
system (14-16) whenever λS > a

µ
where λS is the least eigenvalue of the Stokes operator.

To appreciate this result we may notice that for Ω = [0, 1]2, λS ≈ 5, 3π2 [3] while λL = 2π2.
4To understand the meaning of this phrase better, we might act on (20) with the Helmholtz projection

P onto the subspace of divergenceless functions in L2(Ω) to obtain −P∆v = λv.
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3 Nonlinear forcing – conditional stability
Now, let’s consider following problem for u : Ω× [0, T ]→ R:

ut = κ∆u+ au2 in Ω, (23)

u = 0 at ∂Ω. (24)

This time we restrict ourselves to Ω ⊂ R3 and investigate stability of stationary solution
u∗ = 0, which as before, leads to the same system (23, 24). Multiplying by u and
integrating over Ω as usual we obtain

1
2

d
dt‖u‖

2
2 = −κ‖∇u‖2

2 + a
∫
u3. (25)

To deal with the expression
∫
u3 we use a simple case of Sobolev inequality

Proposition 2 (Sobolev inequality). Let Ω be a bounded domain in R3. Let u ∈ C1
0(Ω).

Then
(
∫

Ω
|u|

3
2 ) 2

3 ≤
∫

Ω
|∇u|.

Proof. Let us extend u by 0 to whole R3. Due to fundamental theorem of calculus,

u(x, y, z) =
∫ x

−∞
ux(r, y, z)dr

and consequently
|u| ≤

∫ ∞
−∞
|ux|dx.

Analogous inequalities may be written for uy and uz. Multiplying the three inequalities
obtained this way and taking square root of both sides yields

|u|
3
2 ≤

(∫ ∞
−∞
|ux|dx

) 1
2
(∫ ∞
−∞
|uy|dy

) 1
2
(∫ ∞
−∞
|uz|dz

) 1
2
.

Integrating both sides of this inequality with respect to x over ]−∞,∞[ leads to

∫ ∞
−∞
|u|

3
2 dx ≤

(∫ ∞
−∞
|ux|dx

) 1
2
∫ ∞
−∞

((∫ ∞
−∞
|uy|dy

) 1
2
(∫ ∞
−∞
|uz|dz

) 1
2
)

dx

≤
(∫ ∞
−∞
|ux|dx

) 1
2
(∫ ∞
−∞

∫ ∞
−∞
|uy|dydx

) 1
2
(∫ ∞
−∞

∫ ∞
−∞
|uz|dzdx

) 1
2

using Schwarz inequality. Integrating this inequality with respect to y and z likewise
yields ∫

R3
|u|

3
2 ≤

(∫
R3
|ux|

) 1
2
(∫

R3
|uy|

) 1
2
(∫

R3
|uz|

) 1
2
.

Estimating |ux|, |uy|, |uz| by |∇u| finishes the proof.
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The constant 1 appearing in proven inequality is not optimal. According to [2], the
optimal constant in this case is CS =

(
1

36π

) 1
3 ≈ 0, 21. Whatever the exact value of the

constant, it is remarkable that it does not depend on (the size of) Ω (unlike the constant
in the Poincaré inequality).

Using Sobolev inequality we may estimate
∫
u3 ≤

∫
(u2) 3

2 ≤
(∫
|∇u2|

) 3
2
≤
(∫
|∇u||u|

) 3
2
≤ 2 3

2‖∇u‖
3
2
2 ‖u‖

3
2
2 . (26)

The last estimate is Schwarz inequality. Due to (25), we obtain stability if

− κ‖∇u‖2
2 + a2 3

2‖∇u‖
3
2
2 ‖u‖

3
2
2 < 0. (27)

Dividing by ‖∇u‖2
2 and using Poincaré inequality yields following condition for stability

− κ+ a2 3
2λ
− 1

4
L ‖u‖2 < 0. (28)

If this condition is satisfied in t = 0 then, due to (25), it is satisfied in any positive time.
Thus, it is a sufficient condition for stability that

‖u0‖2 < 2− 3
2λ

1
4
L

κ

a
(29)

where u0 is the initial perturbation. Note that we did not show anything about the
case when this inequality is not satisfied. However it is known that there is no stability
whenever ∫

Ω
u0wL > λL

κ

a
(30)

for some perturbation u0 ≥ 0, where wL is the eigenvector of −∆ corresponding to λL
normalized so that

∫
Ω wL = 1. 5 In fact, the L2 norm of any perturbation u0 ≥ 0 satisfying

(30) grows to ∞ in finite time. [1]
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