Subregularity, Hypercontractivity and Reliability

Stanisław Kwapień (Warsaw), Carsten Schütt (Kiel)

Notations

R_{+}denotes the set of all positive real numbers and $\bar{R}_{+}=: R_{+} \cup\{0, \infty\}$. Given $a, b, c \in \bar{R}_{+}$we put $a \vee b=: \max \{a, b\}, a \wedge b=: \min \{a, b\}$ and for $a \leq b$ we put $a \vee c \wedge b=: a \vee(c \wedge b)=(a \vee c) \wedge b$.
For a random variable ξ we define $F_{\xi}(t)=: P(\xi \leq t), T_{\xi}(t)=P(\xi \geq t)$,
$M(\xi)=:\left\{t: F_{\xi}(t), T \xi(t) \geq 1 / 2\right\}$.
$\|\xi\|_{p}=:\left(E|\xi|^{p}\right)^{\frac{1}{p}}$ for $p \neq 0$ and $\|\xi\|_{0}=: \exp \{E \ln |\xi|\}$.
For each $\alpha>0$ and it is $M(\alpha \xi)=\alpha M(\xi)$.
$\|\xi\|_{p}$ is a nondecreasing function of p and of $|\xi|$.

Subregularity and Hypercontractivity

Throughout this section ξ will be a fixed positive random variable. Here we will abbreviate F_{ξ}, T_{ξ} and $M(\xi)$ to F, T and M.

Definition 1. Let $a, b>0$. We say that ξ has (a,b)-subregular distribution, with constants A,B (we will write then $\xi \in V \Lambda(a, A ; b, B)$) if for each $m \in M$ and $0<s<t$

$$
\begin{align*}
& F(s) \leq A\left(\frac{s}{t}\right)^{a} F(t) \text { whenever } t \leq m \text { and } \tag{1.1}\\
& T(t) \leq B\left(\frac{s}{t}\right)^{b} T(s) \text { whenever } m \leq s \tag{1.2}
\end{align*}
$$

Let us observe that for each $\alpha>0$

$$
\begin{equation*}
\xi \in V \Lambda(a, A ; b, B) \text { if and only if } \alpha \xi \in V \Lambda(a, A ; b, B) \tag{1.3}
\end{equation*}
$$

and
$\zeta \in \operatorname{l}(a, A, b, B)$ if and only if $\xi \in V \Lambda(b, B ; a, A)$.
Definition 2 Let $p<q$ and $\sigma>0$. We say that ξ is (p, q)-hypercontractive with parameter σ, which will be denoted by $\xi \in H V \Lambda(p, q, \sigma)$, if for all $0 \leq s \leq t \leq \infty$ it holds

$$
\begin{equation*}
\left(E(s \vee \sigma \xi \wedge t)^{q}\right)^{\frac{1}{q}} \leq\left(E(s \vee \xi \wedge t)^{p}\right)^{\frac{1}{p}} \tag{1.5}
\end{equation*}
$$

A simple consequence of the definition is the following fact

$$
\begin{equation*}
\xi \in H V \Lambda(p, q, \sigma) \text { if and only if } \xi^{-1} \in H V \Lambda(-q,-p, \sigma) . \tag{1.6}
\end{equation*}
$$

Theorem 1. If $\xi \in V \Lambda(a, A ; b, B)$ then for each $-a<p<0<q<b$
$\xi \in H V \Lambda(p, q, \sigma) \quad$ where $w=\left(1+\frac{q B}{2(b-q)}\right)^{\frac{1}{q}} /\left(1-\frac{p A}{2(a+p)}\right)^{\frac{1}{p}}$ and $\sigma=w^{-1}\left\{\left(\frac{\left(1-w^{-q}\right)(p+a)}{A q}\right)^{\frac{1}{a}} \wedge\left(\frac{\left(w^{p}-1\right)(b-q)}{B p}\right)^{\frac{1}{b}} \wedge\left(\frac{w^{p-q}}{A B}\right)^{\frac{1}{a \wedge b}}\right\}$.
Proof. We check easily that for each nonnegatitive random variable η, $0<s<t, r \neq 0$ it is

$$
\begin{aligned}
E(s \vee \eta & \wedge t)^{r}= \\
s^{r}\left(1+r \int_{1}^{t / s} u^{r-1} T_{\eta}(u s) d u\right) & =t^{r}\left(1-r \int_{s / t}^{1} u^{r-1} F_{\eta}(u t) d u\right)
\end{aligned}
$$

Therefore to prove (1.3) it is enough to prove one of the inequalities

$$
\begin{align*}
& \left(1+q \int_{1}^{t / s} u^{q-1} T\left(\frac{u s}{\sigma}\right) d u\right)^{1 / q} \leq\left(1+p \int_{1}^{t / s} u^{p-1} T(u s) d u\right)^{1 / p} \tag{1.7}\\
& \left(1-q \int_{s / t}^{1} u^{q-1} F\left(\frac{u t}{\sigma}\right) d u\right)^{1 / q} \leq\left(1-p \int_{s / t}^{1} u^{p-1} F(u t) d u\right)^{1 / p} \tag{1.8}
\end{align*}
$$

Since the function $(1+x)^{q / p}$ for $x>-1$ is convex it fulfills $(1+x)^{q / p} \geq 1+(q / p) x$. Hence the inequality (1.7) is implied by

$$
\begin{equation*}
\int_{1}^{t / s} u^{q-1} T\left(\frac{u s}{\sigma}\right) d u \leq \int_{1}^{t / s} u^{p-1} T(u s) d u \tag{1.9}
\end{equation*}
$$

and the inequality (1.8) by

$$
\begin{equation*}
\int_{s / t}^{1} u^{p-1} F(u t) d u \leq \int_{s / t}^{1} u^{q-1} F\left(\frac{u t}{\sigma}\right) d u \tag{1.10}
\end{equation*}
$$

We will divide the proof into four cases. The first case is $t / s>w, s>m / w$. Since $\frac{u s}{\sigma} \geq w s \geq m$ for $u \geq 1$ by (1.2) the left side of the inequality (1.9) is estmated by $\int_{1}^{t / s} B(w \sigma)^{b} u^{q-1-b} T(w s) d u=\frac{B}{b-q}(\sigma w)^{b} T(w s)$ and the right side of (1.9) is estimated from below by $T(w s) \int_{1}^{w} u^{p-1} d u=T(w s) \frac{w^{p}-1}{p}$. Since $\sigma w \leq\left(\frac{w^{p}-1}{p} \frac{b-q}{B}\right)^{\frac{1}{b}}$ the inequality (1.9) holds true and so (1.3) does. Let $z=\left[\left(1-w^{-q}\right)\left(\frac{a+p}{q A}\right)\right]^{\frac{1}{a}} \wedge 1$.
The second case is $t \leq z m, t / s>w$. It is treated similary. Since $t u \leq$ $t / z \leq m$ for $u \leq 1$ by (1.1) the left side of (1.10) is estimated from above by $A \int_{0}^{1} u^{p+a-1} z^{a} F\left(\frac{t}{z}\right) d u=\frac{A}{p+a} z^{a} F\left(\frac{t}{z}\right)$. The right side of (1.10) is estimated from below by $\int_{1 / w}^{1} u^{q-1} F\left(\frac{t}{\sigma w}\right) d u \geq \frac{1-w^{-q}}{q} F(t / z)$, because $\sigma w<z$. Thus the inequality (1.10) is fulfilled and so (1.3) does.
The third case is $t / s \leq w$. Then the left side of the inequality (1.9) is estimated from above by $\int_{1}^{t / s} u^{q-1} T\left(\frac{s}{\sigma}\right) d u=\frac{\left(\frac{t}{s}\right)^{q}-1}{q} T\left(\frac{s}{\sigma}\right)$ and the right side of
the inequality (1.9) is estimated from below by $\int_{1}^{t / s} u^{p-1} T(t) d u=\frac{\left(\frac{t}{s}\right)^{p}-1}{p} T(t)$. Thus (1.9) is fulfilled if $T\left(\frac{s}{\sigma}\right) / T(t) \leq \frac{q}{p} \frac{\left(\frac{t}{s}\right)^{p}-1}{\left(\frac{t}{s}\right)^{q}-1}$.
In a similiar way we show that (1.10) holds true if $F(t) / F\left(\frac{s}{\sigma}\right) \leq \frac{p}{q} \frac{1-\left(\frac{s}{t}\right)^{q}}{1-\left(\frac{s}{t}\right)^{p}}$. Hence at least one of the inequalities $(1.9),(1.10)$ is verified if

$$
\begin{equation*}
\frac{T\left(\frac{s}{\sigma}\right)}{T(t)} \frac{F(t)}{F\left(\frac{s}{\sigma}\right)} \leq \frac{q}{p} \frac{\left(\frac{t}{s}\right)^{p}-1}{\left(\frac{t}{s}\right)^{q}-1} \frac{p}{q} \frac{1-\left(\frac{s}{t}\right)^{q}}{1-\left(\frac{s}{t}\right)^{p}}=\left(\frac{t}{s}\right)^{p-q} \tag{1.11}
\end{equation*}
$$

Since $\sigma<w^{-1}<s / t$ we get $t<s / \sigma$. If $t \geq m$ then by (1.2) the left side of (1.11) is bounded from above by $\frac{T\left(\frac{s}{\sigma}\right)}{T(t)} \leq B\left(\sigma \frac{t}{s}\right)^{b}$ which implies the inequality (1.11) because $\sigma^{b} \leq B^{-1} w^{p-q-b}$. Similary if $s / \sigma<m$ then the left side is bounded from above by $\frac{F(t)}{F\left(\frac{s}{\sigma}\right)} \leq A\left(\sigma \frac{t}{s}\right)^{a}$ which yields (1.11) because $\sigma^{a} \leq A^{-1} w^{p-q-a}$. If $t \leq m \leq s / \sigma$ then the left side of (1.11) is estimated from above by

$$
\frac{T\left(\frac{s}{\sigma}\right)}{T(m)} \frac{F(t)}{F(m)} \leq B\left(\frac{\sigma m}{s}\right)^{b} A\left(\frac{t}{m}\right)^{a} \leq A B\left(\sigma \frac{t}{s}\right)^{a \wedge b}
$$

Since $\sigma \leq w^{-1}\left(\frac{w^{p-q}}{A B}\right)^{\frac{1}{a \wedge b}}$ the inequality (1.11) holds in the third case and so (1.3) does.

It remains to consider the case $t \geq s w, s w<m, t \geq m z$. By (1.1)
$\left(E(s \vee \xi \wedge t)^{p}\right)^{\frac{1}{p}} \geq E(\xi \wedge(m \wedge t))^{\frac{1}{p}}=\left((t \wedge m)^{p}-\int_{0}^{t \wedge m} p u^{p-1} F(u) d u\right)^{\frac{1}{p}} \geq$ $\left((t \wedge m)^{p}-A(t \wedge m)^{-a} F(t \wedge m) \int_{0}^{t \wedge m} p u^{p+a-1} d u\right)^{\frac{1}{p}} \geq(t \wedge m)\left(1-\frac{A p}{2(p+a)}\right)^{\frac{1}{p}}$ and by (1.2) we get $\left(E(s \vee \sigma \xi \wedge t)^{q}\right)^{\frac{1}{q}} \leq\left(E((s \vee \sigma m) \vee \sigma \xi)^{q}\right)^{\frac{1}{q}}=$ $\left((s \vee \sigma m)^{q}+\int_{s \vee \sigma m}^{\infty} q u^{q-1} T(u) d u\right)^{\frac{1}{q}} \leq$
$\left((s \vee \sigma m)^{q}+B(s \vee \sigma m)^{b} T(s \vee \sigma m) \int_{s \vee \sigma m}^{\infty} q u^{q-b-1} d u\right)^{\frac{1}{q}} \leq(s \vee \sigma m)\left(1+\frac{B q}{2(b-q)}\right)^{\frac{1}{q}}$. And (1.3) follows in this case because $(s \vee \sigma m) w \leq(t \wedge m)$.

The last estimations applied to $s=0, t=\infty, \sigma=1$ yield the following inequality valid for all $0<q<b$ and $\xi \in V \Lambda(a, A ; b, B)$

$$
\begin{equation*}
m\left(1-\frac{A q}{2(q+a)}\right)^{\frac{1}{q}} \leq\|\xi\|_{q} \leq m\left(1+\frac{B q}{2(b-q)}\right)^{\frac{1}{q}} \tag{1.12}
\end{equation*}
$$

Theorem 2. Let $p<0<q$. If $\xi \in H V \Lambda(p, q, \sigma)$ then
$\xi \in V \Lambda(-p, P ; q, Q)$, where
$P=\sigma^{p}\left(2^{\frac{q-p}{q}}-2\right)\left(-\frac{q}{p} \vee 1\right)$ and $Q=\sigma^{-q}\left(2^{\frac{p-q}{p}}-2\right)\left(-\frac{p}{q} \vee 1\right)$.

Proof. As shown in the proof of Theorem 1 if $\xi \in H V \Lambda(p, q, \sigma)$ then (1.7) and (1.8) hold true for all $0<s<t$. The left side of the inequality (1.7) is estimated from below by $\left(1+\left(\left(\frac{t}{s}\right)^{q}-1\right) T\left(\frac{t}{\sigma}\right)\right)^{\frac{1}{q}}$ and the right side of the inequality (1.7) is estimated from above by $\left(1+\left(\left(\frac{t}{s}\right)^{p}-1\right) T(s)\right)^{\frac{1}{p}}$.Thus the inequality (1.7) implies the following one $1+\left(\left(\frac{t}{s}\right)^{q}-1\right) T\left(\frac{t}{\sigma}\right) \leq\left(1+\left(\left(\frac{t}{s}\right)^{p}-1\right) T(s)\right)^{\frac{q}{p}}$. For $r<0$ we have the inequality

$$
(1+x)^{r} \leq\left(2-2^{1-r}\right) x \text { for } x \in\left[-\frac{1}{2}, 0\right]
$$

Since $-\frac{1}{2}<\left(\left(\frac{t}{s}\right)^{p}-1\right) T(s) \leq 0$ for $s>m=\min M$ the inequality (1.9) gives $\left(\left(\frac{t}{s}\right)^{q}-1\right) T\left(\frac{t}{\sigma}\right) \leq\left(\left(2^{\frac{p-q}{p}}-2\right)\left(1-\left(\frac{t}{s}\right)^{p}\right) T(s)\right.$ for $s>m, m \in M$. Applying the inequality

$$
1-y^{p} \leq\left(-\frac{p}{q} \vee 1\right)\left(1-y^{-q}\right) \text { for } y \geq 1
$$

we obtain $T\left(\frac{t}{\sigma}\right) \leq\left(2^{\frac{p-q}{p}}-2\right)\left(-\frac{p}{q} \vee 1\right)\left(\frac{t}{s}\right)^{-q} T(s)$ for $s>m$ and hence for $s=m$ as well. This inequality can be written as $T(t) \leq Q\left(\frac{s}{t}\right)^{q} T(s)$ for $Q=\left(2^{\frac{p-q}{p}}-2\right)\left(1 \vee-\frac{p}{q}\right) \sigma^{q}$ for all $s<t$ such that $s \geq m$ for some $m \in M$ and $\sigma t>s$. Since $B\left(\frac{s}{t}\right)^{q}>1$ for $\sigma t \leq s$ the above inequality holds for all $s<t$ and $s \geq m$ for some $m \in M$. Thus the condition (1.2) is fullfilled. To prove (1.1) we could proceed in a similar way however it is simpler to apply what has been proven to ξ^{-1} and use (1.4) as well to note that ξ fullfils (1.1) if and only if ξ^{-1} fulfils (1.2) with $B=A, b=a$. As a result ξ fullfils (1.2) with $a=-p$ and $P=\sigma^{-1}\left(2^{\frac{q-p[A}{q}}-2\right)\left(-\frac{q}{p} \vee 1\right)$.
The poperty given in the next Proposition steams aplications of hypercontractivity. It is quite well know for $p>0$. Since we need the case $p<0<q$ and its proof uses different arguments we provide its proof.
Proposition 1. Let $p<0<q, h: R_{+}^{n} \rightarrow R_{+}$be a Borel map and let $\left(\eta_{1}, \xi_{1}\right), . .,\left(\eta_{n}, \xi_{n}\right)$ be a sequence of independent random vectors in R^{2}. If for each $1 \leq i \leq n$ and $x_{1}, . ., x_{i-1}, x_{i+1}, . ., x_{n} \in R$ there holds $\left(E h^{q}\left(x_{1}, ., x_{i-1}, \eta_{i} x_{i+1}, ., x_{n}\right)\right)^{\frac{1}{q}} \leq\left(E h^{p}\left(x_{1}, ., x_{i-1}, \xi_{i}, x_{i+1}, ., x_{n}\right)\right)^{\frac{1}{p}}$ then $\left(E h^{q}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)\right)^{\frac{1}{q}} \leq\left(E h^{p}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)\right)^{\frac{1}{p}}$.
Proof. The proof depends on the following statement :
If ξ, ζ are two independent vectors in R^{i} and in $R^{j}, f: R^{i} \times R^{j} \rightarrow R^{+}$is a Borel function and $r<0$ then for $f=f(\xi, \zeta)$ it is $E_{2}\left(E_{1} f\right)^{r} \leq\left(E_{1}\left(E_{2} f^{r}\right)^{\frac{1}{r}}\right)^{r}$, where $E_{1}=E(\cdot \mid \zeta)$ is the integration on the first variable ξ and $E_{2}=E(\cdot \mid \xi)$ on the variable ζ.

Indeed, by homogenity we can assume that $E_{1}\left(E_{2} f^{r}\right)^{\frac{1}{r}}=1$. So we have to show that $E_{2}\left(E_{1} f\right)^{r} \leq 1$. Since the function x^{r} is a convex on R^{+}we get by the Jensen Ineqauality $E_{2}\left(E_{1} f\right)^{r}=E_{2}\left(E_{1}\left(\left(E_{2} f^{r}\right)^{\frac{1}{r}} f /\left(E_{2} f^{r}\right)^{\frac{1}{r}}\right)^{r} \leq\right.$ $E_{2}\left(E_{1}\left(\left(E_{2} f^{r}\right)^{\frac{1}{r}}\left(f^{r} /\left(E_{2} f^{r}\right)\right)\right)=1\right.$ 。
We prove by induction that for $i=1, . ., n$ and each $x_{i+1}, . ., x_{n} \in R_{+}$it is

$$
\left.\left(E h^{q}\left(\eta_{1}, . ., \eta_{i}, x_{i+1}, . ., x_{n}\right)\right)\right)^{\frac{1}{q}} \leq\left(E h^{p}\left(\xi_{1}, . ., \xi_{i}, x_{i+1}, . ., x_{n}\right)\right)^{\frac{1}{p}}
$$

For $i=1$ it is obvious. Assume it holds true for some $i<n$. For fixed $x_{i+2}, . ., x_{n}$ let $f\left(x_{1}, \ldots, x_{i+1}\right)=h^{p}\left(x_{1}, . ., x_{i+1}, x_{i+2}, . ., x_{n}\right)$. Let $\xi=\left(\xi_{1}, . ., \xi_{i}\right)$, $\eta=\left(\eta_{1}, . ., \eta_{i}\right)$ and $r=\frac{q}{p}$. To complete the induction we have to prove that $E f^{r}\left(\eta, \eta_{i+1}\right) \leq\left(E f\left(\xi, \xi_{i+1}\right)\right)^{r}$. We have $E f^{r}\left(\eta, \eta_{i+1}\right)=E_{2}\left(E_{1} f\left(\eta, \eta_{i+1}\right)\right)^{r} \leq$ $\left(E_{1}\left(E_{2}\left(f^{r}\left(\xi, \eta_{i+1}\right)\right)^{\frac{1}{r}}\right)^{r} \leq\left(E f\left(\xi, \xi_{i+1}\right)\right)^{r}\right.$, where the first inequality follows from the induction assumption, the second one by the statement given at the begining specified to $\zeta=\xi_{i+1}$ and the last one since by the proposition assumptions $E_{2} f^{r}\left(\xi, \eta_{i+1}\right) \leq\left(E_{2} f\left(\xi, \xi_{i+1}\right)\right)^{r}$.
Corollary 1 Let $g: R_{+}^{n} \rightarrow R_{+}$be a Borel function such that in each variable separately it is of the form $s \vee x \wedge t$ for some $0 \leq s \leq t \leq \infty$. Moreover assume that g is 1-homogeneous function, i.e. $r g\left(x_{1}, \ldots, x_{n}\right)=g\left(r x_{1}, \ldots, r x_{n}\right)$ for all $r>0, x_{1}, \ldots, x_{n} \geq 0$.
Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be independent positive random variables.
If $\xi_{i} \in H V \Lambda(p, q, \sigma), \quad i=1, ., n$ then $g\left(\xi_{1}, . ., \xi_{n}\right) \in H V \Lambda(p, q, \sigma)$.
If $\xi_{i} \in V \Lambda(a, A ; b, B), i=1, . ., n$ then $g\left(\xi_{1}, . ., \xi_{n}\right) \in V \Lambda(p, P ; q, Q)$, for each $-a<p<0<q<b$ and P, Q are as in Theorem 1 and σ as in Theorem 2.

Proof. We apply Proposition 1 to the sequence $\eta_{i}=\sigma \xi_{i}, i=1, . ., n$ and the function $h=s \vee g \wedge t$. It gives the first statement since then $\left(E\left(s \vee \sigma g\left(\xi_{1}, \ldots, \xi_{n}\right) \wedge t\right)^{q}\right)^{\frac{1}{q}}=\left(E\left(s \vee g\left(\sigma \xi_{1}, \ldots, \sigma \xi_{n}\right) \wedge t\right)^{q}\right)^{\frac{1}{q}} \leq$ $\left(E\left(s \vee g\left(\xi_{1}, \ldots, \xi_{n}\right) \wedge t\right)^{p}\right)^{\frac{1}{p}}$. The second statement is a direct consequence of the first one and Theorems 1,2.

Reliability

For $u, t \in R_{+}$let $h(u, t)=1$ if $u \leq t$ and 0 otherwise, i.e. $h(u, t)=I_{[0, t]}(t)$, where I_{D} is the indicator of function of the set D. Let $N_{n}=:\{1, \ldots, n\}$.
For $S \subset N_{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in R_{+}^{n}$ let $h_{S}(x, t)=: \prod_{i \in S} h\left(x_{i}, t\right)$, ($h_{\emptyset}(x, t) \equiv 1$ for the empty set \emptyset).
Let $k_{S}, S \subset N_{n}$ be a system of integer numbers such that $\mu(A)=: \sum_{S \subset A} k_{S}$ is a nondecreasing function of $A \subset N_{n}$,
i.e. $\mu(A) \leq \mu(B)$ for each $A \subset B \subset I_{n}$. The last condition is equivalent to $\sum_{i \in S \subset A} k_{S} \geq 0$ for each $A \subset N_{n}$ and $i \in A$.
Given such a system $k_{S}, S \subset N_{n}$ we define the function $f: R_{+}^{n} \times R_{+} \rightarrow R$ by

$$
f(x, t)=\sum_{S \subset N_{n}} k_{S} h_{S}(x, t)=\mu\left(\left\{i \in N_{n}: x_{i} \leq t\right\}\right) .
$$

The function $f(x, t)$ is right continuous and nondecreasing in t for each x.
Definition 3. We call $g(x)=: \inf \{t \geq 0: f(x, t) \geq 0\}$ reliability function of the system $\left\{k_{S}, S \subset N_{n}\right\}$.

Since $f(x, t)$ is a right continuous and nondecreasing function we obtain

$$
\begin{equation*}
g(x) \leq t \text { if and only if } f(x, t) \geq 0 \tag{2.1}
\end{equation*}
$$

The reliability function fullfils both assumptions of Corollary 1, Indeed since $f(r x, r t)=f(x, t)$ for all $x \in R_{+}^{n}, t, r \in R_{+}$the function g is 1-homogenous.
For fixed $i \in N_{n}$ and fixed all coordinates other then the i-th one $f(x, t)$ as the funciton of x_{i}, t can be written as
$f_{1}(t) I_{\left\{x_{i} \leq t\right\}}+f_{2}(t) I_{\left\{x_{i}>t\right\}}$, where $f_{1}(t)=\mu\left(\left\{j \in I_{n}: j \neq i, x_{j} \leq t\right\} \cup\{i\}\right)$ and $f_{2}(t)=\mu\left(\left\{j \in I_{n}: j \neq i, x_{j} \leq t\right\} \backslash\{i\}\right)$.
The functions $f_{1}(t), f_{2}(t)$ are right contninuous and nondecreasing.
Let $u=\inf \left\{t: f_{1}(t) \geq 0\right\}$ and $v=\inf \left\{t: f_{2}(t) \geq 0\right\}$. By the monotonicity of μ we get $f_{1}(t) \geq f_{2}(t)$ and hence $u \leq v$. If $x_{1}<u$ then for $t<u, f_{1}(t), f_{2}(t)<0$ and therefore $f(t, x)<0$ and for $t=u f(x, u)=f_{1}(u) \geq 0$. Thus $g(x)=u$ for $x_{i}<u$. If $u \leq x_{i}<v$ then for any $t<x_{i}$ it is $f(x, t)=f_{2}(t)<0$. For $t=x_{i}$ we get $f(t, x)=f_{1}\left(x_{i}\right) \geq f_{1}(u) \geq 0$. Hence $g(x)=x_{i}$ for $u \leq x_{i}<v$. In the case $x_{i} \geq v$ we get $f_{1}(t), f_{2}(t) \geq 0$ for $t \geq v$ and thus $f(x, t) \geq 0$. For $t<v \leq x_{1}$ we get $f(t, x)=f_{2}(t)<0$. These prove that $g(x)=v$ for $t \geq v$. Altogether we proved that $g(x)$ as a function of the variable x_{i} coincides with the function $u \wedge x_{i} \vee v$ for some $0 \leq u \leq v \leq \infty$. Thus the reliability function satisfies the first assumpion from Corollary 1 as well.
As a consequence of the above considerations and Corollary 1, ii. we obtain
Corollary 2. Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ be a sequence of independent positive random variables such that $\xi_{i} \in V \Lambda(a, A ; B, b)$ for each $i=1, . ., n$ and let $g: R_{+}^{n} \rightarrow R_{+}$be a reliability function of a system as above. Then $g(\xi) \in V \Lambda(-p, P ; q, Q)$ if $-a<p<0<q<b$ and P, Q are as in Corollary 1.

In the sequel $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a sequence of independent positive random variables such that their distribution functions $F_{i}(t)=P\left(\xi_{i} \leq t\right)$ are continuous. The reliability function $g: R_{+}^{n} \rightarrow R_{+}$of a system $k_{S}, S \subset N_{n}$ is as in Definition 3. We assume additionally that $k_{\emptyset}<0$. For $S \subset I_{n}$ we put $F_{S}(t)=\prod_{i \in S} F_{i}(t),\left(F_{\emptyset}(t) \equiv 1\right) \quad$ and $\quad E(t)=E f(\xi, t)=\sum_{S \subset N_{n}} k_{S} F_{S}(t)$. Moreover let

$$
R=\inf \{t>0: E(t)>-1 / 2\} .
$$

$E(t)$ is a nondecreasing and continuous function. Hence $E(R)=-1 / 2$.
Assume that for some $c>0$ we have estimates

$$
\begin{equation*}
1-c \geq P(f(\xi, R)+1 / 2 \geq 0) \geq c \tag{2.2}
\end{equation*}
$$

Since $f(\xi, t)$ is integer valued $f(\xi, R)+1 / 2 \geq 0$ if and only if $f(\xi, R) \geq 0$ and hence by (2.1) if and only if $g(\xi) \leq R$. Thus (2.2) implies $P(g(\xi) \leq R) \geq c$. Similary $f(\xi, R)+1 / 2<0$ if and only if $g(\xi)>R$. Hence $P(g(\xi)>R) \geq c$. By Corollary $2 g(\xi)) \in V \Lambda(-p, P ; q, Q)$. Therefore for each $m \in M(g(\xi))$ these inequalities imply

$$
\begin{equation*}
m \leq R\left(\frac{2 c}{P}\right)^{\frac{1}{p}}, m \geq R\left(\frac{2 c}{Q}\right)^{\frac{1}{q}} \tag{2.3}
\end{equation*}
$$

For each random variable ζ easy consequences of the Hölder Inequality are:

$$
P(\zeta-E \zeta>0) \geq \frac{(E|\zeta-E \zeta|)^{2}}{4 E(\zeta-E \zeta)^{2}} \geq \frac{\left(E(\zeta-E \zeta)^{2}\right)^{2}}{4 E(\zeta-E \zeta)^{4}}
$$

Taking $\zeta=f(\xi, R),-f(\xi, R)$ in view of $|f(\xi, R)+1 / 2| \geq 1 / 2$ we get

$$
\begin{equation*}
c=: \max \left\{\frac{1}{16 E(f(\xi, R)-E(R))^{2}}, \frac{\left(E(f(\xi, R)-E(R))^{2}\right)^{2}}{4 E(f(\xi, R)-E(R))^{4}}\right\} \quad \text { fullfils (2.2). } \tag{2.4}
\end{equation*}
$$

Theorem 3. Under the above assumption for any $-a<p<0<q<b$

$$
R\left(\frac{2 c}{Q}\right)^{\frac{1}{q}} \leq M(g(\xi)) \leq R\left(\frac{2 c}{P}\right)^{\frac{1}{p}}
$$

Additionally if $b>1$ then for any $-a<p<0$ and $1<q<b$ it is

$$
R\left(\frac{2 c}{Q}\right)^{\frac{1}{q}}\left(\left(1-\frac{P}{2(1-p)}\right) \vee \frac{1}{2}\right) \leq E g(\xi) \leq R\left(\frac{2 c}{P}\right)^{\frac{1}{p}}\left(1+\frac{Q}{2(q-1)}\right) .
$$

were P, Q are as in Corollary 1 and c as in (2.2) or (2.4).

Proof. The proof is a quick consquence of (2.3) and (1.12) applied to $q=1$ beside a trivial inequality $M(g(\xi)) / 2 \leq E g(\xi)$.

Example

Let $\left\{k_{S}, S \subset N_{n}\right\}$ be the system such that $k_{S}=1$ if S consists of a single element in $N_{n}, k_{\emptyset}=-k$, where $k \in N_{n}$ is a fixed integer and $k_{S}=0$ for all other $S \subset N_{n}$. Then the raliability function $g_{k}(x)$ of this system coincides with the $k-t h$ smallest value among the numbers x_{1}, \ldots, x_{n}, i.e. $g_{k}(x)=\min _{S \subset N_{n},|S|=k} \max _{i \in S} x_{i}$. If $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a sequence of positive random variables then $g_{k}(\xi)$ we call the k-th oder statisitcs of the sequence ξ. To estimate the constant c in (2.4) let us observe that in this case $f(\xi, R)=$ $\sum_{i=1}^{n} \eta_{i}$, where $\left.\eta_{i}=I_{[} 0, R\right]\left(\xi_{i}\right)-F_{i}(R)$. Then $E \eta_{i}=0$ and $E \eta_{i}^{2}=\rho_{i}$, where $\rho_{i}=F_{i}(R)\left(1-F_{i}(R)\right.$. Hence $\rho=: E(f(\xi)-E(R))^{2}=\sum_{i=1}^{n} E \eta_{i}^{2}=\sum_{i=1}^{n} \rho_{i}^{2}$, and $E(f(\xi)-E(R))^{4}=\sum_{i=1}^{n} \rho_{i}\left(1-6 \rho_{i}\right)+3\left(\sum_{i=1}^{n} \rho_{i}^{2}\right)^{2} \leq \rho+3 \rho^{2}$. By (2.4) we get $c^{-1} \leq 4 \min \left\{4 \rho, 3+\rho^{-1}\right\} \leq 16$.

Computing A, B.

1. If ξ uniformly distributed in an interval $[0, r]$ then for each $b \geq 1$

$$
\xi \in V \Lambda\left(1,1 ; b,\left(\frac{2 b}{b+1}\right)^{b+1} \frac{1}{b}\right)
$$

2. If ξ has the exponential distribution,$W(\lambda)$, then for each $b \geq 1$

$$
\xi \in V \Lambda\left(1,2 \ln 2 ; b, 2\left(\frac{b}{e \ln 2}\right)^{b}\right)
$$

3. Similary for any distribution with logarithmicaly concave tails there is a way to give optimal bounds for the constants A, B.

Computing R.
In the case of $\left(\xi_{i}\right)$ uniformly distributed R is a zero of some polynomial of degree $\max \left\{|S|: k_{S} \neq 0\right\}$.

When each ξ_{i} has the distribution $W\left(r_{i}\right)$ then $x=e^{-R}$ satisfies
$\sum_{S \subset I_{n}} k_{S} x^{\kappa_{S}}=0$ where $\kappa_{S}=\sum_{i \in S} \lambda_{i}$.

