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Notations

R+ denotes the set of all positive real numbers and R̄+ =: R+ ∪ {0,∞}.
Given a, b, c ∈ R̄+ we put a∨ b =: max{a, b}, a∧ b =: min{a, b} and for a ≤ b
we put a ∨ c ∧ b =: a ∨ (c ∧ b) = (a ∨ c) ∧ b.
For a random variable ξ we define Fξ(t) =: P (ξ ≤ t), Tξ(t) = P (ξ ≥ t) ,
M(ξ) =: {t : Fξ(t), T ξ(t) ≥ 1/2}.

||ξ||p =: (E|ξ|p)
1
p for p 6= 0 and ||ξ||0 =: exp{E ln |ξ|}.

For each α > 0 and it is M(αξ) = αM(ξ).
||ξ||p is a nondecreasing function of p and of |ξ|.

Subregularity and Hypercontractivity

Throughout this section ξ will be a fixed positive random variable. Here we
will abbreviate Fξ, Tξ and M(ξ) to F , T and M .

Definition 1. Let a, b > 0. We say that ξ has (a,b)-subregular distribution,
with constants A,B (we will write then ξ ∈ V Λ(a,A; b, B)) if for each m ∈ M
and 0 < s < t

(1.1) F (s) ≤ A( s
t )aF (t) whenever t ≤ m and

(1.2) T (t) ≤ B( s
t )bT (s) whenever m ≤ s

Let us observe that for each α > 0
(1.3) ξ ∈ V Λ(a,A; b, B) if and only if αξ ∈ V Λ(a,A; b, B)
and
(1.4) ξ ∈ V Λ(a,A; b, B) if and only if ξ−1 ∈ V Λ(b, B; a,A).

Definition 2 Let p < q and σ > 0. We say that ξ is (p,q)-hypercontractive
with parameter σ, which will be denoted by ξ ∈ HV Λ(p, q, σ), if for all
0 ≤ s ≤ t ≤ ∞ it holds

(1.5) (E(s ∨ σξ ∧ t)q)
1
q ≤ (E(s ∨ ξ ∧ t)p)

1
p .

A simple consequence of the definition is the following fact
(1.6) ξ ∈ HV Λ(p, q, σ) if and only if ξ−1 ∈ HV Λ(−q,−p, σ).
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Theorem 1. If ξ ∈ V Λ(a,A; b, B) then for each −a < p < 0 < q < b

ξ ∈ HV Λ(p, q, σ) where w = (1 + qB
2(b−q) )

1
q /(1 − pA

2(a+p) )
1
p and

σ = w−1{( (1−w−q)(p+a)
Aq )

1
a ∧ ( (wp−1)(b−q)

Bp )
1
b ∧ (wp−q

AB )
1

a∧b }.

Proof. We check easily that for each nonnegatitive random variable η,
0 < s < t , r 6= 0 it is

E(s ∨ η ∧ t)r =

sr(1 + r

∫ t/s

1

ur−1Tη(us)du) = tr(1 − r

∫ 1

s/t

ur−1Fη(ut)du).

Therefore to prove (1.3) it is enough to prove one of the inequalities

(1.7) (1 + q
∫ t/s

1
uq−1T (us

σ )du)1/q ≤ (1 + p
∫ t/s

1
up−1T (us)du)1/p,

(1.8) (1 − q
∫ 1

s/t
uq−1F (ut

σ )du)1/q ≤ (1 − p
∫ 1

s/t
up−1F (ut)du)1/p.

Since the function (1 + x)q/p for x > −1 is convex it fulfills
(1 + x)q/p ≥ 1 + (q/p)x. Hence the inequality (1.7) is implied by

(1.9)
∫ t/s

1
uq−1T (us

σ )du ≤
∫ t/s

1
up−1T (us)du

and the inequality (1.8) by

(1.10)
∫ 1

s/t
up−1F (ut)du ≤

∫ 1

s/t
uq−1F (ut

σ )du.

We will divide the proof into four cases. The first case is t/s > w, s > m/w.
Since us

σ ≥ ws ≥ m for u ≥ 1 by (1.2) the left side of the inequality (1.9) is

estmated by
∫ t/s

1
B(wσ)buq−1−bT (ws)du = B

b−q (σw)bT (ws) and the right side

of (1.9) is estimated from below by T (ws)
∫ w

1
up−1du = T (ws)wp−1

p . Since

σw ≤ (wp−1
p

b−q
B )

1
b the inequality (1.9) holds true and so (1.3) does.

Let z = [(1 − w−q)(a+p
qA )]

1
a ∧ 1.

The second case is t ≤ zm, t/s > w. It is treated similary. Since tu ≤
t/z ≤ m for u ≤ 1 by (1.1) the left side of (1.10) is estimated from above

by A
∫ 1

0
up+a−1zaF ( t

z )du = A
p+az

aF ( t
z ). The right side of (1.10) is estimated

from below by
∫ 1

1/w
uq−1F ( t

σw )du ≥ 1−w−q

q F (t/z), because σw < z. Thus the

inequality (1.10) is fulfilled and so (1.3) does.
The third case is t/s ≤ w. Then the left side of the inequality (1.9) is esti-

mated from above by
∫ t/s

1
uq−1T ( s

σ )du =
( t
s
)q−1

q T ( s
σ ) and the right side of
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the inequality (1.9) is estimated from below by
∫ t/s

1
up−1T (t)du =

( t
s
)p−1

p T (t).

Thus (1.9) is fulfilled if T ( s
σ )/T (t) ≤ q

p

( t
s
)p−1

( t
s
)q−1

.

In a similiar way we show that (1.10) holds true if F (t)/F ( s
σ ) ≤ p

q

1−( s
t
)q

1−( s
t
)p .

Hence at least one of the inequalities (1.9), (1.10) is verified if

(1.11)
T ( s

σ )

T (t)

F (t)

F ( s
σ )

≤
q

p

( t
s )p − 1

( t
s )q − 1

p

q

1 − ( s
t )q

1 − ( s
t )p

= (
t

s
)p−q.

Since σ < w−1 < s/t we get t < s/σ. If t ≥ m then by (1.2) the left

side of (1.11) is bounded from above by
T ( s

σ
)

T (t) ≤ B(σ t
s )b which implies the

inequality (1.11) because σb ≤ B−1wp−q−b. Similary if s/σ < m then the left

side is bounded from above by F (t)
F ( s

σ
) ≤ A(σ t

s )a which yields (1.11) because

σa ≤ A−1wp−q−a. If t ≤ m ≤ s/σ then the left side of (1.11) is estimated
from above by

T ( s
σ )

T (m)

F (t)

F (m)
≤ B(

σm

s
)bA(

t

m
)a ≤ AB(σ

t

s
)a∧b.

Since σ ≤ w−1(wp−q

AB )
1

a∧b the inequality (1.11) holds in the third case and so
(1.3) does.
It remains to consider the case t ≥ sw, sw < m, t ≥ mz. By (1.1)

(E(s ∨ ξ ∧ t)p)
1
p ≥ E(ξ ∧ (m ∧ t))

1
p = ((t ∧ m)p −

∫ t∧m

0
pup−1F (u)du)

1
p ≥

((t ∧ m)p − A(t ∧ m)−aF (t ∧ m)
∫ t∧m

0
pup+a−1du)

1
p ≥ (t ∧m)(1 − Ap

2(p+a) )
1
p

and by (1.2) we get (E(s ∨ σξ ∧ t)q)
1
q ≤ (E((s ∨ σm) ∨ σξ)q)

1
q =

((s ∨ σm)q +
∫∞

s∨σm
quq−1T (u)du)

1
q ≤

((s∨σm)q+B(s ∨ σm)bT (s∨σm)
∫∞

s∨σm
quq−b−1du)

1
q ≤ (s∨σm)(1+ Bq

2(b−q) )
1
q .

And (1.3) follows in this case because (s ∨ σm)w ≤ (t ∧m).

The last estimations applied to s = 0, t = ∞, σ = 1 yield the following
inequality valid for all 0 < q < b and ξ ∈ V Λ(a,A; b, B)

(1.12) m(1 − Aq
2(q+a) )

1
q ≤ ||ξ||q ≤ m(1 + Bq

2(b−q) )
1
q

Theorem 2. Let p < 0 < q. If ξ ∈ HV Λ(p, q, σ) then
ξ ∈ V Λ(−p, P ; q,Q), where

P = σp(2
q−p

q − 2)(− q
p ∨ 1) and Q = σ−q(2

p−q

p − 2)(−p
q ∨ 1).
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Proof. As shown in the proof of Theorem 1 if ξ ∈ HV Λ(p, q, σ) then (1.7)
and (1.8) hold true for all 0 < s < t. The left side of the inequality (1.7)

is estimated from below by (1 + (( t
s )q − 1)T ( t

σ ))
1
q and the right side of the

inequality (1.7) is estimated from above by (1 + (( t
s )p − 1)T (s))

1
p .Thus the

inequality (1.7) implies the following one

1 + (( t
s )q − 1)T ( t

σ ) ≤ (1 + (( t
s )p − 1)T (s))

q

p . For r < 0 we have the inequality

(1 + x)r ≤ (2 − 21−r)x for x ∈ [− 1
2 , 0]

Since − 1
2 < (( t

s )p − 1)T (s) ≤ 0 for s > m = minM the inequality (1.9) gives

(( t
s )q − 1)T ( t

σ ) ≤ ((2
p−q

p − 2)(1− ( t
s )p)T (s) for s > m,m ∈ M . Applying the

inequality

1 − yp ≤ (−p
q ∨ 1)(1 − y−q) for y ≥ 1

we obtain T ( t
σ ) ≤ (2

p−q

p − 2)(−p
q ∨ 1)( t

s )−qT (s) for s > m and hence for

s = m as well. This inequality can be written as T (t) ≤ Q( s
t )qT (s) for

Q = (2
p−q

p − 2)(1∨−p
q )σq for all s < t such that s ≥ m for some m ∈ M and

σt > s. Since B( s
t )q > 1 for σt ≤ s the above inequality holds for all s < t

and s ≥ m for some m ∈ M . Thus the condition (1.2) is fullfilled. To prove
(1.1) we could proceed in a similar way however it is simpler to apply what
has been proven to ξ−1 and use (1.4) as well to note that ξ fullfils (1.1) if and
only if ξ−1 fulfils (1.2) with B = A, b = a. As a result ξ fullfils (1.2) with

a = −p and P = σ−1(2
q−p[A

q − 2)(− q
p ∨ 1).

The poperty given in the next Proposition steams aplications of hypercon-
tractivity. It is quite well know for p > 0. Since we need the case p < 0 < q
and its proof uses different arguments we provide its proof.

Proposition 1. Let p < 0 < q, h : Rn
+ → R+ be a Borel map and let

(η1, ξ1), .., (ηn, ξn) be a sequence of independent random vectors in R2. If for
each 1 ≤ i ≤ n and x1, .., xi−1, xi+1, .., xn ∈ R there holds

(Ehq(x1, ., xi−1, ηixi+1, ., xn))
1
q ≤ (Ehp(x1, ., xi−1, ξi, xi+1, ., xn))

1
p then

(Ehq(η1, η2, . . . , ηn))
1
q ≤ (Ehp(ξ1, ξ2, . . . , ξn))

1
p .

Proof. The proof depends on the following statement :
If ξ, ζ are two independent vectors in Ri and in Rj , f : Ri × Rj → R+ is a
Borel function and r < 0 then for f = f(ξ, ζ) it is E2(E1f)r ≤

(

E1(E2f
r)

1
r

)r
,

where E1 = E(·|ζ) is the integration on the first variable ξ and E2 = E(·|ξ)
on the variable ζ.
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Indeed, by homogenity we can assume that E1(E2f
r)

1
r = 1. So we have

to show that E2(E1f)r ≤ 1. Since the function xr is a convex on R+ we

get by the Jensen Ineqauality E2(E1f)r = E2

(

E1((E2f
r)

1
r f/(E2f

r)
1
r

)r
≤

E2(E1((E2f
r)

1
r (fr/(E2f

r))
)

= 1.
We prove by induction that for i = 1, .., n and each xi+1, .., xn ∈ R+ it is

(Ehq(η1, .., ηi, xi+1, .., xn)))
1
q ≤ (Ehp(ξ1, .., ξi, xi+1, .., xn))

1
p .

For i = 1 it is obvious. Assume it holds true for some i < n. For fixed
xi+2, .., xn let f(x1, ..., xi+1) = hp(x1, .., xi+1, xi+2, .., xn) . Let ξ = (ξ1, .., ξi),
η = (η1, .., ηi) and r = q

p . To complete the induction we have to prove that

Efr(η, ηi+1) ≤
(

Ef(ξ, ξi+1)
)r

. We have Efr(η, ηi+1) = E2(E1f(η, ηi+1))r ≤

(E1(E2(fr(ξ, ηi+1))
1
r

)r
≤

(

Ef(ξ, ξi+1)
)r

, where the first inequality follows
from the induction assumption, the second one by the statement given at
the begining specified to ζ = ξi+1 and the last one since by the proposition
assumptions E2f

r(ξ, ηi+1) ≤ (E2f(ξ, ξi+1))r.

Corollary 1 Let g : Rn
+ → R+ be a Borel function such that in each variable

separately it is of the form s∨x∧ t for some 0 ≤ s ≤ t ≤ ∞. Moreover assume
that g is 1-homogeneous function, i.e. rg(x1, . . . , xn) = g(rx1, . . . , rxn) for all
r > 0, x1, . . . , xn ≥ 0.
Let ξ1, ξ2, . . . , ξn be independent positive random variables.
If ξi ∈ HV Λ(p, q, σ), i = 1, ., n then g(ξ1, .., ξn) ∈ HV Λ(p, q, σ).
If ξi ∈ V Λ(a,A; b, B), i = 1, .., n then g(ξ1, .., ξn) ∈ V Λ(p, P ; q,Q), for each
−a < p < 0 < q < b and P , Q are as in Theorem 1 and σ as in Theorem 2.

Proof. We apply Proposition 1 to the sequence ηi = σξi, i = 1, .., n and the
function h = s ∨ g ∧ t. It gives the first statement since then

(E(s ∨ σg(ξ1, ..., ξn) ∧ t)q)
1
q = (E(s ∨ g(σξ1, ..., σξn) ∧ t)q)

1
q ≤

(E(s ∨ g(ξ1, ..., ξn) ∧ t)p)
1
p . The second statement is a direct consequence of

the first one and Theorems 1,2.

Reliability

For u, t ∈ R+ let h(u, t) = 1 if u ≤ t and 0 otherwise, i.e. h(u, t) = I[0,t](t),
where ID is the indicator of function of the set D. Let Nn =: {1, . . . , n}.
For S ⊂ Nn and x = (x1, . . . , xn) ∈ Rn

+ let hS(x, t) =:
∏

i∈S h(xi, t),
(h∅(x, t) ≡ 1 for the empty set ∅).
Let kS , S ⊂ Nn be a system of integer numbers such that
µ(A) =:

∑

S⊂A kS is a nondecreasing function of A ⊂ Nn,
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i.e. µ(A) ≤ µ(B) for each A ⊂ B ⊂ In. The last condition is equivalent to
∑

i∈S⊂A kS ≥ 0 for each A ⊂ Nn and i ∈ A.

Given such a system kS , S ⊂ Nn we define the function f : Rn
+ ×R+ → R by

f(x, t) =
∑

S⊂Nn

kShS(x, t) = µ({i ∈ Nn : xi ≤ t}).

The function f(x, t) is right continuous and nondecreasing in t for each x.

Definition 3. We call g(x) =: inf{t ≥ 0 : f(x, t) ≥ 0} reliability function of
the system {kS , S ⊂ Nn}.

Since f(x, t) is a right continuous and nondecreasing function we obtain

(2.1) g(x) ≤ t if and only if f(x, t) ≥ 0

The reliability function fullfils both assumptions of Corollary 1, Indeed since
f(rx, rt) = f(x, t) for all x ∈ Rn

+, t, r ∈ R+ the function g is 1-homogenous.

For fixed i ∈ Nn and fixed all coordinates other then the i-th one f(x, t) as
the funciton of xi, t can be written as

f1(t)I{xi≤t} + f2(t)I{xi>t}, where f1(t) = µ({j ∈ In : j 6= i, xj ≤ t}∪ {i}) and
f2(t) = µ({j ∈ In : j 6= i, xj ≤ t} \ {i}).

The functions f1(t), f2(t) are right contninuous and nondecreasing.

Let u = inf{t : f1(t) ≥ 0} and v = inf{t : f2(t) ≥ 0}. By the monotonicity of µ
we get f1(t) ≥ f2(t) and hence u ≤ v. If x1 < u then for t < u, f1(t), f2(t) < 0
and therefore f(t, x) < 0 and for t = u f(x, u) = f1(u) ≥ 0. Thus g(x) = u
for xi < u. If u ≤ xi < v then for any t < xi it is f(x, t) = f2(t) < 0. For
t = xi we get f(t, x) = f1(xi) ≥ f1(u) ≥ 0. Hence g(x) = xi for u ≤ xi < v.
In the case xi ≥ v we get f1(t), f2(t) ≥ 0 for t ≥ v and thus f(x, t) ≥ 0. For
t < v ≤ x1 we get f(t, x) = f2(t) < 0. These prove that g(x) = v for t ≥ v.
Altogether we proved that g(x) as a function of the variable xi coincides with
the function u∧ xi ∨ v for some 0 ≤ u ≤ v ≤ ∞. Thus the reliability function
satisfies the first assumpion from Corollary 1 as well.

As a consequence of the above considerations and Corollary 1, ii. we obtain

Corollary 2. Let ξ = (ξ1, . . . , ξn) be a sequence of independent positive
random variables such that ξi ∈ V Λ(a,A;B, b) for each i = 1, .., n and let
g : Rn

+ → R+ be a reliability function of a system as above. Then

g(ξ) ∈ V Λ(−p, P ; q,Q) if −a < p < 0 < q < b and P,Q are as in Corollary 1.
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In the sequel ξ = (ξ1, . . . , ξn) is a sequence of independent positive random
variables such that their distribution functions Fi(t) = P (ξi ≤ t) are contin-
uous. The reliability function g : Rn

+ → R+ of a system kS , S ⊂ Nn is as
in Definition 3. We assume additionally that k∅ < 0. For S ⊂ In we put
FS(t) =

∏

i∈S Fi(t), (F∅(t) ≡ 1) and E(t) = Ef(ξ, t) =
∑

S⊂Nn
kSFS(t).

Moreover let

R = inf{t > 0 : E(t) > −1/2}.

E(t) is a nondecreasing and continuous function. Hence E(R) = −1/2.

Assume that for some c > 0 we have estimates

(2.2) 1 − c ≥ P (f(ξ,R) + 1/2 ≥ 0) ≥ c

Since f(ξ, t) is integer valued f(ξ,R) + 1/2 ≥ 0 if and only if f(ξ,R) ≥ 0 and
hence by (2.1) if and only if g(ξ) ≤ R. Thus (2.2) implies P (g(ξ) ≤ R) ≥ c.
Similary f(ξ,R) + 1/2 < 0 if and only if g(ξ) > R. Hence P (g(ξ) > R) ≥ c.
By Corollary 2 g(ξ)) ∈ V Λ(−p, P ; q,Q). Therefore for each m ∈ M(g(ξ))
these inequalities imply

(2.3). m ≤ R(
2c

P
)

1
p , m ≥ R(

2c

Q
)

1
q

For each random variable ζ easy consequences of the Hölder Inequality are:

P (ζ − Eζ > 0) ≥

(

E|ζ−Eζ|
)2

4E(ζ−Eζ)2 ≥

(

E(ζ−Eζ)2
)2

4E(ζ−Eζ)4 .

Taking ζ = f(ξ,R), −f(ξ,R) in view of |f(ξ,R) + 1/2| ≥ 1/2 we get

(2.4) c =: max{ 1
16E(f(ξ,R)−E(R))2 ,

(

E(f(ξ,R)−E(R))2
)2

4E(f(ξ,R)−E(R))4 } fullfils (2.2).

Theorem 3. Under the above assumption for any −a < p < 0 < q < b

R(
2c

Q
)

1
q ≤ M(g(ξ)) ≤ R(

2c

P
)

1
p .

Additionally if b > 1 then for any −a < p < 0 and 1 < q < b it is

R(
2c

Q
)

1
q

(

(1 −
P

2(1 − p)
) ∨

1

2

)

≤ Eg(ξ) ≤ R(
2c

P
)

1
p (1 +

Q

2(q − 1)
).

were P,Q are as in Corollary 1 and c as in (2.2) or (2.4).
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Proof. The proof is a quick consquence of (2.3) and (1.12) applied to q = 1
beside a trivial inequality M(g(ξ))/2 ≤ Eg(ξ).

Example

Let {kS , S ⊂ Nn} be the system such that kS = 1 if S consists of a
single element in Nn, k∅ = −k, where k ∈ Nn is a fixed integer and kS = 0
for all other S ⊂ Nn. Then the raliability function gk(x) of this system
coincides with the k − th smallest value among the numbers x1, . . . , xn, i.e.
gk(x) = minS⊂Nn,|S|=k maxi∈S xi. If ξ = (ξ1, . . . , ξn) is a sequence of positive
random variables then gk(ξ) we call the k-th oder statisitcs of the sequence ξ.
To estimate the constant c in (2.4) let us observe that in this case f(ξ,R) =
∑n

i=1 ηi, where ηi = I[0, R](ξi) − Fi(R). Then Eηi = 0 and Eη2i = ρi, where
ρi = Fi(R)(1 − Fi(R). Hence ρ =: E(f(ξ) − E(R))2 =

∑n
i=1 Eη2i =

∑n
i=1 ρ

2
i ,

and E(f(ξ) − E(R))4 =
∑n

i=1 ρi(1 − 6ρi) + 3(
∑n

i=1 ρ
2
i )2 ≤ ρ + 3ρ2.

By (2.4) we get c−1 ≤ 4 min{4ρ, 3 + ρ−1} ≤ 16.

Computing A,B.

1. If ξ uniformly distributed in an interval [0, r] then for each b ≥ 1

ξ ∈ V Λ(1, 1; b,
( 2b

b + 1

)b+1 1

b
).

2. If ξ has the exponential distribution , W (λ), then for each b ≥ 1

ξ ∈ V Λ(1, 2 ln 2; b, 2
( b

e ln 2

)b
).

3. Similary for any distribution with logarithmicaly concave tails there is a
way to give optimal bounds for the constants A,B.

Computing R.
In the case of (ξi) uniformly distributed R is a zero of some polynomial of
degree max{|S| : kS 6= 0}.

When each ξi has the distribution W (ri) then x = e−R satisfies
∑

S⊂In
kSx

κS = 0 where κS =
∑

i∈S λi.
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