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Notations

R, denotes the set of all positive real numbers and Ry =: Ry U {0,00}.
Given a,b,c € Ry we put a Vb =: max{a,b}, a Ab=: min{a,b} and for a < b
weput aVeAb=:aV(cAb)=(aVc)Ab.

For a random variable £ we define F¢(t) =: P({ <t), T¢(t) = P({ > 1),
M) =:{t: Fg(lt),Tf(t) > 1/2}.

gl = (El&p)7 for p# 0 and [|¢llo = exp{E1ng]}.

For each a > 0 and it is M (a&) = aM ().

|£]]p is a nondecreasing function of p and of |¢].

Subregularity and Hypercontractivity

Throughout this section & will be a fixed positive random variable. Here we
will abbreviate F¢, Tz and M(&) to F', T and M.

Definition 1. Let a,b > 0. We say that £ has (a,b)-subregular distribution,
with constants A,B (we will write then £ € VA(a, A;b, B)) if for each m € M
and 0 < s <t

(1.1) F(s) < A($)*F(t) whenever ¢ <m and
(1.2) T(t) < B(2)*T(s) whenever m < s

Let us observe that for each oo > 0

(1.3) ¢ € VA(a, A;b, B) if and only if af € VA(a, A;b, B)
and

(1.4) £ € VA(a, A;b, B) if and only if €1 € VA(b, B;a, A).

Definition 2 Let p < ¢ and o > 0. We say that ¢ is (p,q)-hypercontractive
with parameter o, which will be denoted by £ € HV A(p, q,0), if for all
0<s<t<ooit holds

(1.5) (BE(sV oé At))a < (E(sVEAL)P)T.

A simple consequence of the definition is the following fact
(1.6) £ € HVA(p,q,0) if and only if &1 € HVA(—q, —p, o).
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Theorem 1. If £ € VA(a, A;b, B) then for each —a <p<0<qg<b
¢ € HVA(p,q,0)  where w = (14 525 ))3/(1 A

o = wH{((m gty p (Wl d p (i),

1
» and

Proof. We check easily that for each nonnegatitive random variable 7,
O0<s<t,r#0itis
E(svnAt) =

1

t/s
s"(1+ 7‘/1 u" T (us)du) =" (1 — r// u 1 E, (ut)du).
s/t

Therefore to prove (1.3) it is enough to prove one of the inequalities

(1.7) (1+ qft/s w1 (L) du) /1 < (1 +pf1t/5 uP ™V (us)du) /P,
e 1

(1.8) (1— qfs/t wI= R (%) du)t/ 1 < (1 —pfs/t uP~ F (ut)du) /P,

Since the function (1 4 z)%/? for x > —1 is convex it fulfills
(14 2)9/? > 14 (¢/p)r. Hence the inequality (1.7) is implied by

(1.9) ft/s TIT (%) du < ft/ uP~ 1T (us)du

and the inequality (1.8) by

(1.10) fsl/t uPTIE (ut)du < fsl/t w1 F () du.

We will divide the proof into four cases. The first case is t/s > w,s > m/w.
Since “* > ws > m for u > 1 by (1.2) the left side of the inequality (1.9) is
estmated by flt/s B(wa)buq_l_bT(ws)du = %(Jw)bT(ws) and the right side
of (1.9) is estimated from below by T'(ws) [," uP~'du = T(ws)% Since
ow < (wpp Lo q) v the inequality (1.9) holds true and so (1.3) does.

Let z=[(1—w q)(“q+p)] Al

The second case is t < zm,t/s > w. It is treated similary. Since tu <
t/z < m for u <1 by (1.1) the left side of (1.10) is estimated from above

by Af uPte 120 F(L)du = <£=2F(L). The right side of (1.10) is estimated

from below by fl/ uwiF(L )du > 1= — —F(t/z), because cw < z. Thus the

inequality (1.10) is fulfilled and so (1.3) does.
The third case is t/s < w. Then the left side of the inequality (1.9) is esti-

mated from above by flt/s uwl1T(2)du = @)#T(g) and the right side of
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the inequality (1.9) is estimated from below by flt/s uP~ T (t)du = &T(t).

P
q (£)P—
Thus (1.9) is fulfilled if T'(Z)/T'(t) < p(Hi1

In a similiar way we show that (1.10) holds true if F'(t)/F(2) < £ =)
Hence at least one of the inequalities (1.9), (1.10) is verified if
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(1.11)

» |+ |® |+

P-1pl—(3)* ¢t
J4—1gl—(3)p

E

Since 0 < w™! < s/t we get t < s/o. If t > m then by (1.2) the left

side of (1.11) is bounded from above by & < B(ct)" which implies the

inequality (1.11) because 0® < B~1wP~97t. Similary if s/o < m then the left

15((2) < A(oL)* which yields (1.11) because
0% < A7lwP=974, If t < m < s/o then the left side of (1.11) is estimated
from above by

bﬂ
/~
o
~—

Q|w

side is bounded from above by

N

(%) F(t) am a/\
T(m)mﬁB(?)bA(m) < AB(o S) ’.

Since o < w™ (L )art the inequality (1.11) holds in the third case and so
(1.3) does.

It remains to consider the case t > sw, sw < m, t > mz. By (1.1)

(B(s VEADP)F > BEA (mAD)? = ((tAm)? — ;"7 pur— F(u)du)» >
((t Am)? — A(t Am)="F(t A m) f“mpup+a—1du)% > (tAm)(1 — 5225)»
and by (1.2) we get (E(s Vo€ A)?)7 < (E((sV om)V of))s =
(svem)i+ [ qui— T (u)du) s <

((sVom)?+B(s vV om)"T(sVom) [ quq_b_ldu) < (sVom)(1+ (- q))
And (1.3) follows in this case because (s Vom)w < (t Am).

»Qll—-

The last estimations applied to s = 0, = oo, 0 = 1 yield the following
inequality valid for all 0 < ¢ < b and £ € VA(a, A; b, B)

(1.12) m(l - 2(q+a))q < ||§Hq < m(l + 2(b— q))_

Theorem 2. Let p<0<gq. If £ € HVA(p,q,0) then
€ e VA( p, P;q,Q), where

P=07(2"7 —2)(-2V1)and Q =079(2"7 —2)(-2 V1)
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Proof. As shown in the proof of Theorem 1 if £ € HV A(p, q,0) then (1.7)
and (1.8) hold true for all 0 < s < ¢t. The left side of the inequality (1.7)

is estimated from below by (1 + ((%)? — l)T(g))% and the right side of the

S

inequality (1.7) is estimated from above by (1 + ((£)? — 1)T(s))%.Thus the
inequality (1.7) implies the following one
1+ ((H)2-1)T(L) <A+ ((LH)r—-1)T(s ))¥. For r < 0 we have the inequality

(1—|—:1;) (2—2'"")z for z € [-1,0]
Since —3 < ((£)? — 1)T(s) < 0 for s > m = min M the inequality (1.9) gives
()2 — 1)T(i) < (27 =2)(1 = (L)P)T(s) for s > m,m € M. Applying the

A S . g S
inequality

1= y? < (~2V1)(1—y~9) for y > 1

we obtain T'(£) < 25" — 2)(=2 Vv 1)(5)79T(s) for s > m and hence for
s = m as well. This inequality can be written as T'(t) < Q(3)?T(s) for

Q=027 —2)1Vv —£)o? for all s < ¢ such that s > m for some m € M and

ot > s. Since B(3)? > 1 for ot < s the above inequality holds for all s < ¢
and s > m for some m € M. Thus the condition (1.2) is fullfilled. To prove
(1.1) we could proceed in a similar way however it is simpler to apply what
has been proven to £ 7! and use (1.4) as well to note that £ fullfils (1.1) if and
only if £71 fulfils (1.2) with B = A, b = a. As a result ¢ fullfils (1.2) with

g—p[A

a=-pand P=0""'(2"¢ —2)(-2V1).

The poperty given in the next Proposition steams aplications of hypercon-
tractivity. It is quite well know for p > 0. Since we need the case p < 0 < ¢
and its proof uses different arguments we provide its proof.

Proposition 1. Let p < 0 < g, h : R} — R, be a Borel map and let
(n1,&1), .., (M, &) be a sequence of independent random vectors in R2. If for
each 1 <7 <nand zy,..,%;—1,Ti+1,..,Tn, € R there holds
(th(.fljl, o Li—15 M Li415 - xn))% < (Ehp(l'l, oy Li—1, gia Lit1s -5 In))% then
1 1
(ERT(m,m2,s - smn)) @ < (ERP(&1,82,...,60)) 7.

Proof. The proof depends on the following statement :

If £, ¢ are two independent vectors in R and in R/, f: R x R/ — Rt i
Borel function and r < 0 then for f = f(&,() it is Eo(E1 f)" < (El EsfT) %
where E1 = E(:|¢) is the integration on the first variable & and Es, = E(-
on the variable (.

)
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Indeed, by homogenity we can assume that Fj(FEs f”)% = 1. So we have
to show that Fy(F1f)" < 1. Since the function z" is a convex on Rt we

get by the Jensen Ineqauality Es(E:f)" = Eo (El((ngT)%f/(Ezfr)%)r <

By (By (B2 f7)7 (f7/(E2fT))) = 1.

We prove by induction that for ¢ = 1,..,n and each z;1,..,z, € Ry it is
(th(nla <oy Miy Ti4-1, "73;71)))5 < (Ehp(£17 "752’7 Lit1y ey mn>)5,

For ¢ = 1 it is obvious. Assume it holds true for some 7 < n. For fixed

Lit2y.e5Tp let f(acl, ...,IH_l) = hp(ZL‘l, ey i1y Li4-2, ..,$n> . Let f = (51, ..,&),

n = (m,.,n;) and r = %. To complete the induction we have to prove that

Efr(n,mi41) < (Ef(§&i41)) . We have Ef7(n,mi41) = B2 (B f (0, mi41))" <
(El(EQ(fr(f,mH))%)r < (Ef(€,£i+1))r, where the first inequality follows
from the induction assumption, the second one by the statement given at
the begining specified to ( = £;11 and the last one since by the proposition

assumptions o f7(§,mi11) < (B2 f(€,8i+1))"

Corollary 1 Let g : R — R, be a Borel function such that in each variable
separately it is of the form sV x At for some 0 < s <t < co. Moreover assume

that g is 1-homogeneous function, i.e. rg(z1,...,x,) = g(rzy,...,rx,) for all
r>0,r1,...,x, > 0.
Let &1,&o,...,&, be independent positive random variables.

If €’L E HVA(p7 Q7 0-)7 Z = 17 ‘7n then 9(517 “7577/) E HVA(p7 q? U)'
If & € VA(a, A;b,B), i = 1,..,n then g(&1,..,&,) € VA(p, P;q,Q), for each
—a<p<0<g<band P, Q are as in Theorem 1 and ¢ as in Theorem 2.

Proof. We apply Proposition 1 to the sequence n; = d§;, © = 1,..,n and the
function h = sV g A t. It gives the first statement since then
1 1
(E(sVog(&y,...&n) AN))d = (E(sV g(c&1,...,08,) ANt)T)a <
1
(E(sV g(&1,..-,€n) AN )P)P. The second statement is a direct consequence of
the first one and Theorems 1,2.

Reliability

For u,t € Ry let h(u,t) = 1 if u <t and O otherwise, i.e. h(u,t) = Ijp (%),
where Ip is the indicator of function of the set D. Let N,, =: {1,...,n}.

For S C N, and x = (z1,...,2,) € R} let hg(z,t) = [[,cg h(zs,1),

(hg(z,t) = 1 for the empty set ).

Let kg, S C N,, be a system of integer numbers such that

p(A) =: > g4 ks is a nondecreasing function of A C Ny,
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ie. u(A) < u(B) for each A C B C I,,. The last condition is equivalent to
ZieScA kg > 0 for each A C N,, and 7 € A.
Given such a system kg, S C N,, we define the function f : R} x R, — R by

t)= Y  kshs(x,t) = p({i € Ny : z; < t}).
SCNnp

The function f(z,t) is right continuous and nondecreasing in t for each x.

Definition 3. We call g(z) =: inf{t > 0: f(x,t) > 0} reliability function of
the system {ks,S C N, }.

Since f(x,t) is a right continuous and nondecreasing function we obtain
(2.1) g(x) <t if and only if f(z,t) >0

The reliability function fullfils both assumptions of Corollary 1, Indeed since
f(rxz,rt) = f(z,t) for all x € R}, t,r € Ry the function g is 1-homogenous.
For fixed i € N,, and fixed all coordinates other then the i-th one f(z,t) as
the funciton of x;,t can be written as

fiO) e, <y + f2(t) [z, 51y, where fi(t) = pu({j € I, : j #i,7; <t}U{i}) and
o) =p({j € Ln:j#iz; <t} \{i}).

The functions f;(t), f2(t) are right contninuous and nondecreasing.

Let w = inf{t : f1(t) > 0} and v = inf{t : f2(¢) > 0}. By the monotonicity of u
we get f1(t) > fo(t) and hence u < v. If 1 < u then for ¢ < u, f1(t), f2(t) <0
and therefore f(t,x) < 0 and for t = v f(x,u) = f1(u) > 0. Thus g(x) =
for x; < u. If u < x; < v then for any ¢t < x; it is f(x,t) = f2(t) < 0. For
t =x; we get f(t,z) = fi(z;) > fi(u) > 0. Hence g(x) = x; for u < z; < v.
In the case x; > v we get f1(t), fo(t) > 0 for ¢ > v and thus f(x,t) > 0. For
t <v <z weget f(t,z) = fa(t) < 0. These prove that g(z) = v for t > v.
Altogether we proved that g(x) as a function of the variable x; coincides with
the function u A z; Vv for some 0 < u < v < oco. Thus the reliability function
satisfies the first assumpion from Corollary 1 as well.

As a consequence of the above considerations and Corollary 1, ii. we obtain

Corollary 2. Let & = (&1,...,&,) be a sequence of independent positive
random variables such that & € VA(a, A; B,b) for each i = 1,..,n and let
g: R} — R, be a reliability function of a system as above. Then

g(&) e VA(—p, P;q,Q) if —a<p <0< qg<band P,Q are as in Corollary 1.
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In the sequel £ = (&1,...,&,) is a sequence of independent positive random
variables such that their distribution functions F;(t) = P(&; < t) are contin-
uous. The reliability function g : R? — R4 of a system kg, S C N, is as
in Definition 3. We assume additionally that ky < 0. For S C I,, we put
Fs(t) = [Lies Fi(t), (Fp(t) = 1) and E(t) = Ef(§1) = Ygcn, ksEs(t).
Moreover let

=inf{t > 0: E(t) > —1/2}.

E(t) is a nondecreasing and continuous function. Hence EF(R) = —1/2.
Assume that for some ¢ > 0 we have estimates
(2.2) l1—c>P(f(¢&,R)+1/2>0) >c

Since f(&,t) is integer valued f(&, R) 4+ 1/2 > 0 if and only if f(£, R) > 0 and
hence by (2.1) if and only if g(§) < R. Thus (2.2) implies P(g({) < R) > ¢
Similary f(&, R) +1/2 < 0 if and only if g(§) > R. Hence P(g(§{) > R) > ¢
By Corollary 2 g(§)) € VA(—p, P;q,Q). Therefore for each m € M(g(&))
these inequalities imply

2c
R(ZE
Q

Q=

(2.3). m < R(~ )

For each random variable ( easy consequences of the Holder Inequality are:

P - B¢ > 0) > LEED) s (BeE0y)
Taking ¢ = f(&, R), —f(&, R) in view of |f(&, R) + 1/2\ > 1/2 we get

. | (B(f(6.R)-B(R)?)’
24)  e=mad{ mrrrEm—Eme “ErEen-smy s (2.2)

Theorem 3. Under the above assumption for any —a <p<0<qg<b

R(g)" < M(g(€) < R(p)P.

Additionally if b > 1 then for any —a < p < 0and 1 < ¢ < b it is

2c. 1 P

)a ((1—

R( )SEm©<R(

v 1
2
were P, () are as in Corollary 1 and c as in (2.2) or (2.4).
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Proof. The proof is a quick consquence of (2.3) and (1.12) applied to ¢ =1
beside a trivial inequality M (g(&))/2 < Eg(€).

Example

Let {ks,S C N,} be the system such that kg = 1 if S consists of a
single element in N,,, kg = —k, where k € N,, is a fixed integer and kg = 0
for all other S C N,. Then the raliability function gx(z) of this system
coincides with the k — th smallest value among the numbers zq,...,z,, i.e.
gr(x) = mingcn, 5=k MaX;es ;. If £ = (&1,...,&,) is a sequence of positive
random variables then g (&) we call the k-th oder statisitcs of the sequence &.
To estimate the constant ¢ in (2.4) let us observe that in this case f(£, R) =
> mi, where n; = 10, R](§;) — F3(R). Then En; = 0 and En? = p;, where
pi = Fi(R)(1 — F;(R). Hence p =: E(f(§) — E(R))* = >21_, En; =32, i,
and E(f(§) — E(R))* = Y7, pi(1—6p;) + 331, p7)* < p+ 3p°.

By (2.4) we get ¢! < 4min{dp,3 + p~ 1} < 16.

Computing A,B.

1. If € uniformly distributed in an interval [0, r| then for each b > 1

€€ VA(1,1;0b, (Q—b)

b+11>
b+ 1

7):
2. If € has the exponential distribution , W (), then for each b > 1

¢ e VA(1,21n2;b,2(61%)b).

3. Similary for any distribution with logarithmicaly concave tails there is a
way to give optimal bounds for the constants A, B.

Computing R.
In the case of (&;) uniformly distributed R is a zero of some polynomial of
degree max{|S| : ks # 0}.

When each &; has the distribution W (r;) then x = e~ satisfies
> oscr, ksx™s =0 where kg = ;o Ai.



