Subregularity, Hypercontractivity and Reliability

Stanisław Kwapień (Warsaw), Carsten Schütt (Kiel)

Notations

 $\begin{aligned} R_+ \text{ denotes the set of all positive real numbers and } \bar{R}_+ &=: R_+ \cup \{0, \infty\}.\\ \text{Given } a, b, c \in \bar{R}_+ \text{ we put } a \lor b =: \max\{a, b\}, a \land b =: \min\{a, b\} \text{ and for } a \leq b\\ \text{we put } a \lor c \land b =: a \lor (c \land b) = (a \lor c) \land b.\\ \text{For a random variable } \xi \text{ we define } F_{\xi}(t) =: P(\xi \leq t), T_{\xi}(t) = P(\xi \geq t) \text{ ,}\\ M(\xi) &=: \{t : F_{\xi}(t), T\xi(t) \geq 1/2\}.\\ ||\xi||_p &=: (E|\xi|^p)^{\frac{1}{p}} \text{ for } p \neq 0 \text{ and } ||\xi||_0 =: \exp\{E \ln |\xi|\}.\\ \text{For each } \alpha > 0 \text{ and it is } M(\alpha\xi) = \alpha M(\xi).\\ ||\xi||_p \text{ is a nondecreasing function of } p \text{ and of } |\xi|.\end{aligned}$

Subregularity and Hypercontractivity

Throughout this section ξ will be a fixed positive random variable. Here we will abbreviate F_{ξ} , T_{ξ} and $M(\xi)$ to F, T and M.

Definition 1. Let a, b > 0. We say that ξ has (a,b)-subregular distribution, with constants A,B (we will write then $\xi \in V\Lambda(a, A; b, B)$) if for each $m \in M$ and 0 < s < t

(1.1) $F(s) \le A(\frac{s}{t})^a F(t)$ whenever $t \le m$ and

(1.2)
$$T(t) \le B(\frac{s}{t})^b T(s)$$
 whenever $m \le s$

Let us observe that for each $\alpha > 0$

(1.3) $\xi \in V\Lambda(a, A; b, B)$ if and only if $\alpha \xi \in V\Lambda(a, A; b, B)$ and (1.4) $\xi \in V\Lambda(a, A; b, B)$ if and only if $\xi \in V\Lambda(a, A; b, B)$

(1.4) $\xi \in V\Lambda(a, A; b, B)$ if and only if $\xi^{-1} \in V\Lambda(b, B; a, A)$.

Definition 2 Let p < q and $\sigma > 0$. We say that ξ is (p,q)-hypercontractive with parameter σ , which will be denoted by $\xi \in HV\Lambda(p,q,\sigma)$, if for all $0 \le s \le t \le \infty$ it holds

(1.5)
$$(E(s \vee \sigma \xi \wedge t)^q)^{\frac{1}{q}} \le (E(s \vee \xi \wedge t)^p)^{\frac{1}{p}}.$$

A simple consequence of the definition is the following fact (1.6) $\xi \in HV\Lambda(p,q,\sigma)$ if and only if $\xi^{-1} \in HV\Lambda(-q,-p,\sigma)$. **Theorem 1.** If $\xi \in V\Lambda(a, A; b, B)$ then for each -a $<math>\xi \in HV\Lambda(p, q, \sigma)$ where $w = (1 + \frac{qB}{2})^{\frac{1}{q}}/(1 - \frac{pA}{2})^{\frac{1}{2}}$ and

 $\xi \in HV\Lambda(p,q,\sigma) \quad \text{where } w = \left(1 + \frac{qB}{2(b-q)}\right)^{\frac{1}{q}} / \left(1 - \frac{pA}{2(a+p)}\right)^{\frac{1}{p}} \text{ and } \\ \sigma = w^{-1} \left\{ \left(\frac{(1-w^{-q})(p+a)}{Aq}\right)^{\frac{1}{a}} \wedge \left(\frac{(w^p-1)(b-q)}{Bp}\right)^{\frac{1}{b}} \wedge \left(\frac{w^{p-q}}{AB}\right)^{\frac{1}{a\wedge b}} \right\}.$

Proof. We check easily that for each nonnegativitie random variable η , 0 < s < t, $r \neq 0$ it is

$$E(s \lor \eta \land t)^r =$$

$$s^{r}(1+r\int_{1}^{t/s}u^{r-1}T_{\eta}(us)du) = t^{r}(1-r\int_{s/t}^{1}u^{r-1}F_{\eta}(ut)du).$$

Therefore to prove (1.3) it is enough to prove one of the inequalities

(1.7)
$$(1+q\int_1^{t/s} u^{q-1}T(\frac{us}{\sigma})du)^{1/q} \le (1+p\int_1^{t/s} u^{p-1}T(us)du)^{1/p},$$

(1.8)
$$(1 - q \int_{s/t}^{1} u^{q-1} F(\frac{ut}{\sigma}) du)^{1/q} \le (1 - p \int_{s/t}^{1} u^{p-1} F(ut) du)^{1/p}.$$

Since the function $(1+x)^{q/p}$ for x > -1 is convex it fulfills $(1+x)^{q/p} \ge 1 + (q/p)x$. Hence the inequality (1.7) is implied by

(1.9)
$$\int_{1}^{t/s} u^{q-1} T(\frac{us}{\sigma}) du \leq \int_{1}^{t/s} u^{p-1} T(us) du$$

and the inequality (1.8) by

(1.10)
$$\int_{s/t}^{1} u^{p-1} F(ut) du \leq \int_{s/t}^{1} u^{q-1} F(\frac{ut}{\sigma}) du.$$

We will divide the proof into four cases. The first case is t/s > w, s > m/w. Since $\frac{us}{\sigma} \ge ws \ge m$ for $u \ge 1$ by (1.2) the left side of the inequality (1.9) is estimated by $\int_1^{t/s} B(w\sigma)^b u^{q-1-b} T(ws) du = \frac{B}{b-q} (\sigma w)^b T(ws)$ and the right side of (1.9) is estimated from below by $T(ws) \int_1^w u^{p-1} du = T(ws) \frac{w^p-1}{p}$. Since $\sigma w \le (\frac{w^p-1}{p} \frac{b-q}{B})^{\frac{1}{b}}$ the inequality (1.9) holds true and so (1.3) does. Let $z = [(1-w^{-q})(\frac{a+p}{qA})]^{\frac{1}{a}} \land 1$.

The second case is $t \leq zm, t/s > w$. It is treated similary. Since $tu \leq t/z \leq m$ for $u \leq 1$ by (1.1) the left side of (1.10) is estimated from above by $A \int_0^1 u^{p+a-1} z^a F(\frac{t}{z}) du = \frac{A}{p+a} z^a F(\frac{t}{z})$. The right side of (1.10) is estimated from below by $\int_{1/w}^1 u^{q-1} F(\frac{t}{\sigma w}) du \geq \frac{1-w^{-q}}{q} F(t/z)$, because $\sigma w < z$. Thus the inequality (1.10) is fulfilled and so (1.3) does.

The third case is $t/s \leq w$. Then the left side of the inequality (1.9) is estimated from above by $\int_1^{t/s} u^{q-1}T(\frac{s}{\sigma}) du = \frac{(\frac{t}{s})^q - 1}{q}T(\frac{s}{\sigma})$ and the right side of

the inequality (1.9) is estimated from below by $\int_{1}^{t/s} u^{p-1}T(t)du = \frac{(\frac{t}{s})^{p}-1}{p}T(t)$. Thus (1.9) is fulfilled if $T(\frac{s}{\sigma})/T(t) \leq \frac{q}{p} \frac{(\frac{t}{s})^{p}-1}{(\frac{t}{s})^{q}-1}$. In a similiar way we show that (1.10) holds true if $F(t)/F(\frac{s}{\sigma}) \leq \frac{p}{q} \frac{1-(\frac{s}{t})^{q}}{1-(\frac{s}{t})^{p}}$. Hence at least one of the inequalities (1.9), (1.10) is verified if

(1.11)
$$\frac{T(\frac{s}{\sigma})}{T(t)}\frac{F(t)}{F(\frac{s}{\sigma})} \le \frac{q}{p}\frac{(\frac{t}{s})^p - 1}{(\frac{t}{s})^q - 1}\frac{p}{q}\frac{1 - (\frac{s}{t})^q}{1 - (\frac{s}{t})^p} = (\frac{t}{s})^{p-q}.$$

Since $\sigma < w^{-1} < s/t$ we get $t < s/\sigma$. If $t \ge m$ then by (1.2) the left side of (1.11) is bounded from above by $\frac{T(\frac{s}{\sigma})}{T(t)} \le B(\sigma \frac{t}{s})^b$ which implies the inequality (1.11) because $\sigma^b \le B^{-1}w^{p-q-b}$. Similarly if $s/\sigma < m$ then the left side is bounded from above by $\frac{F(t)}{F(\frac{s}{\sigma})} \le A(\sigma \frac{t}{s})^a$ which yields (1.11) because $\sigma^a \le A^{-1}w^{p-q-a}$. If $t \le m \le s/\sigma$ then the left side of (1.11) is estimated from above by

$$\frac{T(\frac{s}{\sigma})}{T(m)}\frac{F(t)}{F(m)} \le B(\frac{\sigma m}{s})^b A(\frac{t}{m})^a \le AB(\sigma\frac{t}{s})^{a \wedge b}.$$

Since $\sigma \leq w^{-1} \left(\frac{w^{p-q}}{AB}\right)^{\frac{1}{a \wedge b}}$ the inequality (1.11) holds in the third case and so (1.3) does.

It remains to consider the case $t \geq sw$, sw < m, $t \geq mz$. By (1.1) $(E(s \lor \xi \land t)^p)^{\frac{1}{p}} \geq E(\xi \land (m \land t))^{\frac{1}{p}} = ((t \land m)^p - \int_0^{t \land m} pu^{p-1}F(u)du)^{\frac{1}{p}} \geq ((t \land m)^p - A(t \land m)^{-a}F(t \land m)\int_0^{t \land m} pu^{p+a-1}du)^{\frac{1}{p}} \geq (t \land m)(1 - \frac{Ap}{2(p+a)})^{\frac{1}{p}}$ and by (1.2) we get $(E(s \lor \sigma \xi \land t)^q)^{\frac{1}{q}} \leq (E((s \lor \sigma m) \lor \sigma \xi)^q)^{\frac{1}{q}} = ((s \lor \sigma m)^q + \int_{s \lor \sigma m}^{\infty} qu^{q-1}T(u)du)^{\frac{1}{q}} \leq (E((s \lor \sigma m) \lor \sigma \xi)^q)^{\frac{1}{q}} = ((s \lor \sigma m)^q + B(s \lor \sigma m)^b T(s \lor \sigma m)\int_{s \lor \sigma m}^{\infty} qu^{q-b-1}du)^{\frac{1}{q}} \leq (s \lor \sigma m)(1 + \frac{Bq}{2(b-q)})^{\frac{1}{q}}.$ And (1.3) follows in this case because $(s \lor \sigma m)w \leq (t \land m)$.

The last estimations applied to $s = 0, t = \infty, \sigma = 1$ yield the following inequality valid for all 0 < q < b and $\xi \in V\Lambda(a, A; b, B)$

(1.12)
$$m(1 - \frac{Aq}{2(q+a)})^{\frac{1}{q}} \le ||\xi||_q \le m(1 + \frac{Bq}{2(b-q)})^{\frac{1}{q}}$$

Theorem 2. Let p < 0 < q. If $\xi \in HV\Lambda(p,q,\sigma)$ then $\xi \in V\Lambda(-p,P;q,Q)$, where $P = \sigma^p (2^{\frac{q-p}{q}} - 2)(-\frac{q}{p} \vee 1)$ and $Q = \sigma^{-q} (2^{\frac{p-q}{p}} - 2)(-\frac{p}{q} \vee 1).$

Proof. As shown in the proof of Theorem 1 if $\xi \in HV\Lambda(p,q,\sigma)$ then (1.7) and (1.8) hold true for all 0 < s < t. The left side of the inequality (1.7) is estimated from below by $(1 + ((\frac{t}{s})^q - 1)T(\frac{t}{\sigma}))^{\frac{1}{q}}$ and the right side of the inequality (1.7) is estimated from above by $(1 + ((\frac{t}{s})^p - 1)T(s))^{\frac{1}{p}}$. Thus the inequality (1.7) implies the following one

 $1 + \left(\left(\frac{t}{s}\right)^{q} - 1\right)T\left(\frac{t}{\sigma}\right) \le \left(1 + \left(\left(\frac{t}{s}\right)^{p} - 1\right)T(s)\right)^{\frac{q}{p}}.$ For r < 0 we have the inequality $(1+x)^{r} \le (2-2^{1-r})x$ for $x \in [-\frac{1}{2}, 0]$

Since $-\frac{1}{2} < ((\frac{t}{s})^p - 1)T(s) \le 0$ for $s > m = \min M$ the inequality (1.9) gives $((\frac{t}{s})^q - 1)T(\frac{t}{\sigma}) \le ((2^{\frac{p-q}{p}} - 2)(1 - (\frac{t}{s})^p)T(s)$ for $s > m, m \in M$. Applying the inequality

$$1 - y^p \le (-\frac{p}{q} \lor 1)(1 - y^{-q})$$
 for $y \ge 1$

we obtain $T(\frac{t}{\sigma}) \leq (2^{\frac{p-q}{p}} - 2)(-\frac{p}{q} \vee 1)(\frac{t}{s})^{-q}T(s)$ for s > m and hence for s = m as well. This inequality can be written as $T(t) \leq Q(\frac{s}{t})^{q}T(s)$ for $Q = (2^{\frac{p-q}{p}} - 2)(1 \vee -\frac{p}{q})\sigma^{q}$ for all s < t such that $s \geq m$ for some $m \in M$ and $\sigma t > s$. Since $B(\frac{s}{t})^{q} > 1$ for $\sigma t \leq s$ the above inequality holds for all s < t and $s \geq m$ for some $m \in M$. Thus the condition (1.2) is fulfilled. To prove (1.1) we could proceed in a similar way however it is simpler to apply what has been proven to ξ^{-1} and use (1.4) as well to note that ξ fulfills (1.1) if and only if ξ^{-1} fulfils (1.2) with B = A, b = a. As a result ξ fulfills (1.2) with a = -p and $P = \sigma^{-1}(2^{\frac{q-p}{q}} - 2)(-\frac{q}{p} \vee 1)$.

The poperty given in the next Proposition steams aplications of hypercontractivity. It is quite well know for p > 0. Since we need the case p < 0 < qand its proof uses different arguments we provide its proof.

Proposition 1. Let p < 0 < q, $h : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a Borel map and let $(\eta_1, \xi_1), ..., (\eta_n, \xi_n)$ be a sequence of independent random vectors in \mathbb{R}^2 . If for each $1 \le i \le n$ and $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n \in \mathbb{R}$ there holds

$$(Eh^{q}(x_{1},.,x_{i-1},\eta_{i}x_{i+1},.,x_{n}))^{\frac{1}{q}} \leq (Eh^{p}(x_{1},.,x_{i-1},\xi_{i},x_{i+1},.,x_{n}))^{\frac{1}{p}} \text{ then } (Eh^{q}(\eta_{1},\eta_{2},\ldots,\eta_{n}))^{\frac{1}{q}} \leq (Eh^{p}(\xi_{1},\xi_{2},\ldots,\xi_{n}))^{\frac{1}{p}}.$$

Proof. The proof depends on the following statement : If ξ, ζ are two independent vectors in R^i and in R^j , $f: R^i \times R^j \to R^+$ is a Borel function and r < 0 then for $f = f(\xi, \zeta)$ it is $E_2(E_1 f)^r \leq (E_1(E_2 f^r)^{\frac{1}{r}})^r$, where $E_1 = E(\cdot|\zeta)$ is the integration on the first variable ξ and $E_2 = E(\cdot|\xi)$ on the variable ζ . Indeed, by homogenity we can assume that $E_1(E_2f^r)^{\frac{1}{r}} = 1$. So we have to show that $E_2(E_1f)^r \leq 1$. Since the function x^r is a convex on R^+ we get by the Jensen Inequality $E_2(E_1f)^r = E_2(E_1((E_2f^r)^{\frac{1}{r}}f/(E_2f^r)^{\frac{1}{r}})^r \leq E_2(E_1((E_2f^r)^{\frac{1}{r}}(f^r/(E_2f^r)))) = 1$.

We prove by induction that for i = 1, ..., n and each $x_{i+1}, ..., x_n \in R_+$ it is $(Eh^q(\eta_1, ..., \eta_i, x_{i+1}, ..., x_n)))^{\frac{1}{q}} \leq (Eh^p(\xi_1, ..., \xi_i, x_{i+1}, ..., x_n))^{\frac{1}{p}}.$

For i = 1 it is obvious. Assume it holds true for some i < n. For fixed $x_{i+2}, ..., x_n$ let $f(x_1, ..., x_{i+1}) = h^p(x_1, ..., x_{i+1}, x_{i+2}, ..., x_n)$. Let $\xi = (\xi_1, ..., \xi_i)$, $\eta = (\eta_1, ..., \eta_i)$ and $r = \frac{q}{p}$. To complete the induction we have to prove that $Ef^r(\eta, \eta_{i+1}) \leq (Ef(\xi, \xi_{i+1}))^r$. We have $Ef^r(\eta, \eta_{i+1}) = E_2(E_1f(\eta, \eta_{i+1}))^r \leq (E_1(E_2(f^r(\xi, \eta_{i+1}))^{\frac{1}{r}})^r) \leq (Ef(\xi, \xi_{i+1}))^r$, where the first inequality follows from the induction assumption, the second one by the statement given at the beginning specified to $\zeta = \xi_{i+1}$ and the last one since by the proposition assumptions $E_2f^r(\xi, \eta_{i+1}) \leq (E_2f(\xi, \xi_{i+1}))^r$.

Corollary 1 Let $g: \mathbb{R}^n_+ \to \mathbb{R}_+$ be a Borel function such that in each variable separately it is of the form $s \lor x \land t$ for some $0 \le s \le t \le \infty$. Moreover assume that g is 1-homogeneous function, i.e. $rg(x_1, \ldots, x_n) = g(rx_1, \ldots, rx_n)$ for all $r > 0, x_1, \ldots, x_n \ge 0$.

Let $\xi_1, \xi_2, \ldots, \xi_n$ be independent positive random variables. If $\xi_i \in HV\Lambda(p, q, \sigma)$, i = 1, .., n then $g(\xi_1, .., \xi_n) \in HV\Lambda(p, q, \sigma)$. If $\xi_i \in V\Lambda(a, A; b, B)$, i = 1, .., n then $g(\xi_1, .., \xi_n) \in V\Lambda(p, P; q, Q)$, for each -a and <math>P, Q are as in Theorem 1 and σ as in Theorem 2.

Proof. We apply Proposition 1 to the sequence $\eta_i = \sigma \xi_i$, i = 1, ..., n and the function $h = s \vee g \wedge t$. It gives the first statement since then $(E(s \vee \sigma g(\xi_1, ..., \xi_n) \wedge t)^q)^{\frac{1}{q}} = (E(s \vee g(\sigma \xi_1, ..., \sigma \xi_n) \wedge t)^q)^{\frac{1}{q}} \leq (E(s \vee g(\xi_1, ..., \xi_n) \wedge t)^p)^{\frac{1}{p}}$. The second statement is a direct consequence of

Reliability

the first one and Theorems 1,2.

For $u, t \in R_+$ let h(u, t) = 1 if $u \leq t$ and 0 otherwise, i.e. $h(u, t) = I_{[0,t]}(t)$, where I_D is the indicator of function of the set D. Let $N_n =: \{1, \ldots, n\}$. For $S \subset N_n$ and $x = (x_1, \ldots, x_n) \in R_+^n$ let $h_S(x, t) =: \prod_{i \in S} h(x_i, t)$, $(h_{\emptyset}(x, t) \equiv 1$ for the empty set \emptyset). Let k_S , $S \subset N_n$ be a system of integer numbers such that

 $\mu(A) =: \sum_{S \subset A} k_S$ is a nondecreasing function of $A \subset N_n$,

i.e. $\mu(A) \leq \mu(B)$ for each $A \subset B \subset I_n$. The last condition is equivalent to $\sum_{i \in S \subset A} k_S \geq 0$ for each $A \subset N_n$ and $i \in A$.

Given such a system $k_S, S \subset N_n$ we define the function $f: \mathbb{R}^n_+ \times \mathbb{R}_+ \to \mathbb{R}$ by

$$f(x,t) = \sum_{S \subset N_n} k_S h_S(x,t) = \mu(\{i \in N_n : x_i \le t\}).$$

The function f(x,t) is right continuous and nondecreasing in t for each x.

Definition 3. We call $g(x) =: \inf\{t \ge 0 : f(x,t) \ge 0\}$ reliability function of the system $\{k_S, S \subset N_n\}$.

Since f(x,t) is a right continuous and nondecreasing function we obtain

(2.1)
$$g(x) \le t$$
 if and only if $f(x,t) \ge 0$

The reliability function fulfils both assumptions of Corollary 1, Indeed since f(rx, rt) = f(x, t) for all $x \in \mathbb{R}^n_+, t, r \in \mathbb{R}_+$ the function g is 1-homogenous. For fixed $i \in \mathbb{N}_n$ and fixed all coordinates other then the i-th one f(x, t) as the function of x_i, t can be written as

 $f_1(t)I_{\{x_i \le t\}} + f_2(t)I_{\{x_i > t\}}, \text{ where } f_1(t) = \mu(\{j \in I_n : j \ne i, x_j \le t\} \cup \{i\}) \text{ and } f_2(t) = \mu(\{j \in I_n : j \ne i, x_j \le t\} \setminus \{i\}).$

The functions $f_1(t)$, $f_2(t)$ are right continuous and nondecreasing.

Let $u = \inf\{t : f_1(t) \ge 0\}$ and $v = \inf\{t : f_2(t) \ge 0\}$. By the monotonicity of μ we get $f_1(t) \ge f_2(t)$ and hence $u \le v$. If $x_1 < u$ then for t < u, $f_1(t)$, $f_2(t) < 0$ and therefore f(t,x) < 0 and for t = u $f(x,u) = f_1(u) \ge 0$. Thus g(x) = ufor $x_i < u$. If $u \le x_i < v$ then for any $t < x_i$ it is $f(x,t) = f_2(t) < 0$. For $t = x_i$ we get $f(t,x) = f_1(x_i) \ge f_1(u) \ge 0$. Hence $g(x) = x_i$ for $u \le x_i < v$. In the case $x_i \ge v$ we get $f_1(t), f_2(t) \ge 0$ for $t \ge v$ and thus $f(x,t) \ge 0$. For $t < v \le x_1$ we get $f(t,x) = f_2(t) < 0$. These prove that g(x) = v for $t \ge v$. Altogether we proved that g(x) as a function of the variable x_i coincides with the function $u \land x_i \lor v$ for some $0 \le u \le v \le \infty$. Thus the reliability function satisfies the first assumption from Corollary 1 as well.

As a consequence of the above considerations and Corollary 1, ii. we obtain

Corollary 2. Let $\xi = (\xi_1, \ldots, \xi_n)$ be a sequence of independent positive random variables such that $\xi_i \in V\Lambda(a, A; B, b)$ for each i = 1, ..., n and let $g: R_+^n \to R_+$ be a reliability function of a system as above. Then $g(\xi) \in V\Lambda(-p, P; q, Q)$ if -a and <math>P, Q are as in Corollary 1. In the sequel $\xi = (\xi_1, \ldots, \xi_n)$ is a sequence of independent positive random variables such that their distribution functions $F_i(t) = P(\xi_i \leq t)$ are continuous. The reliability function $g : \mathbb{R}^n_+ \to \mathbb{R}_+$ of a system $k_S, S \subset N_n$ is as in Definition 3. We assume additionally that $k_{\emptyset} < 0$. For $S \subset I_n$ we put $F_S(t) = \prod_{i \in S} F_i(t), \ (F_{\emptyset}(t) \equiv 1)$ and $E(t) = Ef(\xi, t) = \sum_{S \subset N_n} k_S F_S(t)$. Moreover let

$$R = \inf\{t > 0 : E(t) > -1/2\}.$$

E(t) is a nondecreasing and continuous function. Hence E(R) = -1/2.

Assume that for some c > 0 we have estimates

(2.2)
$$1-c \ge P(f(\xi, R) + 1/2 \ge 0) \ge c$$

Since $f(\xi, t)$ is integer valued $f(\xi, R) + 1/2 \ge 0$ if and only if $f(\xi, R) \ge 0$ and hence by (2.1) if and only if $g(\xi) \le R$. Thus (2.2) implies $P(g(\xi) \le R) \ge c$. Similary $f(\xi, R) + 1/2 < 0$ if and only if $g(\xi) > R$. Hence $P(g(\xi) > R) \ge c$. By Corollary 2 $g(\xi) \in V\Lambda(-p, P; q, Q)$. Therefore for each $m \in M(g(\xi))$ these inequalities imply

(2.3).
$$m \le R(\frac{2c}{P})^{\frac{1}{p}}, \ m \ge R(\frac{2c}{Q})^{\frac{1}{q}}$$

For each random variable ζ easy consequences of the Hölder Inequality are:

$$P(\zeta - E\zeta > 0) \ge \frac{\left(E|\zeta - E\zeta|\right)^2}{4E(\zeta - E\zeta)^2} \ge \frac{\left(E(\zeta - E\zeta)^2\right)^2}{4E(\zeta - E\zeta)^4}.$$

Taking $\zeta = f(\xi, R), -f(\xi, R)$ in view of $|f(\xi, R) + 1/2| \ge 1/2$ we get (2.4) $c =: \max\{\frac{1}{16E(f(\xi, R) - E(R))^2}, \frac{\left(E(f(\xi, R) - E(R))^2\right)^2}{4E(f(\xi, R) - E(R))^4}\}$ fullfils (2.2).

Theorem 3. Under the above assumption for any $-a <math display="block">R(\frac{2c}{Q})^{\frac{1}{q}} \leq M(g(\xi)) \leq R(\frac{2c}{P})^{\frac{1}{p}}.$

Additionally if b > 1 then for any -a and <math>1 < q < b it is

$$R(\frac{2c}{Q})^{\frac{1}{q}}\left(\left(1-\frac{P}{2(1-p)}\right)\vee\frac{1}{2}\right) \le Eg(\xi) \le R(\frac{2c}{P})^{\frac{1}{p}}\left(1+\frac{Q}{2(q-1)}\right).$$

were P, Q are as in Corollary 1 and c as in (2.2) or (2.4).

Proof. The proof is a quick consquence of (2.3) and (1.12) applied to q = 1 beside a trivial inequality $M(g(\xi))/2 \leq Eg(\xi)$.

Example

Let $\{k_S, S \subset N_n\}$ be the system such that $k_S = 1$ if S consists of a single element in N_n , $k_{\emptyset} = -k$, where $k \in N_n$ is a fixed integer and $k_S = 0$ for all other $S \subset N_n$. Then the raliability function $g_k(x)$ of this system coincides with the k - th smallest value among the numbers x_1, \ldots, x_n , i.e. $g_k(x) = \min_{S \subset N_n, |S|=k} \max_{i \in S} x_i$. If $\xi = (\xi_1, \ldots, \xi_n)$ is a sequence of positive random variables then $g_k(\xi)$ we call the k-th oder statisitcs of the sequence ξ . To estimate the constant c in (2.4) let us observe that in this case $f(\xi, R) = \sum_{i=1}^n \eta_i$, where $\eta_i = I_[0, R](\xi_i) - F_i(R)$. Then $E\eta_i = 0$ and $E\eta_i^2 = \rho_i$, where $\rho_i = F_i(R)(1 - F_i(R))$. Hence $\rho =: E(f(\xi) - E(R))^2 = \sum_{i=1}^n E\eta_i^2 = \sum_{i=1}^n \rho_i^2$, and $E(f(\xi) - E(R))^4 = \sum_{i=1}^n \rho_i(1 - 6\rho_i) + 3(\sum_{i=1}^n \rho_i^2)^2 \le \rho + 3\rho^2$. By (2.4) we get $c^{-1} \le 4 \min\{4\rho, 3 + \rho^{-1}\} \le 16$.

Computing A,B.

1. If ξ uniformly distributed in an interval [0, r] then for each $b \ge 1$

$$\xi \in V\Lambda(1,1;b, \left(\frac{2b}{b+1}\right)^{b+1}\frac{1}{b})$$

2. If ξ has the exponential distribution , $W(\lambda)$, then for each $b \ge 1$

$$\xi \in V\Lambda(1, 2\ln 2; b, 2\left(\frac{b}{e\ln 2}\right)^b).$$

3. Similarly for any distribution with logarithmically concave tails there is a way to give optimal bounds for the constants A, B.

Computing R.

In the case of (ξ_i) uniformly distributed R is a zero of some polynomial of degree max $\{|S|: k_S \neq 0\}$.

When each ξ_i has the distribution $W(r_i)$ then $x = e^{-R}$ satisfies $\sum_{S \subset I_n} k_S x^{\kappa_S} = 0$ where $\kappa_S = \sum_{i \in S} \lambda_i$.