
1

Trace Specifications of Non-deterministic Multi-object
Modules

Michal Iglewskia, Marcin Kubicab, Jan Madeyb

a. Département d’informatique, Université du Québec à Hull, Hull, Québec, Canada J8X 3X7
E-mail: iglewski@uqah.uquebec.ca

b. Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
E-mail: kubica@mimuw.edu.pl, madey@mimuw.edu.pl,

Abstract

The trace assertion method (in short: TAM) is a formal method for abstract specification of interfaces of
software modules being designed according to the “information hiding” principle. A trace specification is a
“black-box” specification, i.e., it describes only those features of a module that areexternally observable.
The method was introduced by W. Bartussek and D.L. Parnas some 15 years ago and since then has under-
gone many modifications. In recent years there has been an increased interest in TAM. Software tools sup-
porting practical usage of TAM for software engineering projects are under development, the method is
being tested on different applications, its foundations are being studied.

Recent experiments with TAM have showed the need for further study in the case of non-deterministic
multi-object modules. In this paper we investigate the expressiveness of the method for such modules. We
present a formal model of a module and its TAM specification, show that the method requires some exten-
sions and propose solutions. Our considerations are illustrated on TAM but could also be generally applied
to modules with internal non-determinism.

The full version of our investigations, including all definitions, lemmas, proofs and examples, is presented in
university technical reports.

KEY WORDS: software module, interface specification, non-determinism, trace assertion method, infor-
mation hiding.

1 Introduction
Thetrace assertion method (in short: TAM) is a formal method for abstract specification of interfaces of software

modules being designed according to the “information hiding” principle [10]. A trace specification is a “black-box”
specification, i.e., it describes only those features of an object that areexternally observable and hides details of its in-
ternal structure. The form of internal non-determinism can be considered as a hidden detail for an external observer.
In many specification methods (like Z) this aspect is not hidden.

The trace assertion method was first formulated in [1], and since then has undergone many modifications [3, 4, 7,
9, 12, 13]. In recent years, there has been an increased interest in TAM, especially within the framework of the “func-
tional approach” [11]. Software tools supporting practical usage of TAM are under development (e.g. [5, 13]), the
method is being tested on different applications (e.g. [2]), and its foundations are being studied (e.g. [8, 13]).

A given module may be designed to implement either a single object or a number of objects. There is a distinct
difference in the complexity of TAM in these two cases. The present paper is a continuation of [8] where TAM re-
stricted to single-object modules was investigated and specifications were modelled with Mealy machines. Here we
are studying the foundations of TAM for multi-object modules. In particular, we are interested in its expressiveness in
the case of non-deterministic modules.

In Section 2 we present a formal model for multi-object modules. In Section 3, trace specifications for such mod-
ules are described. In Section 4 we show an example of a multi-object module that cannot be specified in the current
version of TAM. A modified simple model of trace specifications which covers a wider class of non-determinism in
multi-object modules is proposed in Section 5. Related changes in TAM and the expressiveness of a proposed version
of TAM are discussed in Section 6. Final conclusions and future plans are briefly presented in Section 7.

2

2 Formal model for multi-object modules
In this section we characterize some basic notions, notably those of objects and modules. We also define a simple

formal model of multi-object modules, fulfilling the given characteristic.

2.1 Introduction

We assume that time is discrete, linear, with an “initial” instant, and without a “final” one. Instants of time are
represented by natural numbers.

The notion of anobject can be characterized as follows. An object is any entity which hasstates, can be affected
by events, and satisfies the following properties:

• at every instant of time the object is in one of its states; initially, the object is in theinitial state,

• the object may change its state only as a result of an event; if the event occurs at the instant , the object is in a
new state at the instant .

Objects are grouped in modules: we say that amodule implements a number of homogeneous and independent
objects. If a module implements one object it is calledsingle-object. A multi-object module can implement a given
(including infinite) number of objects. In this paper we deal with multi-object modules.

Objects implemented by a given module are calleddomestic, while those implemented by other modules are
calledforeign. For each module there is a specific set of events that can affect its domestic objects.

There are two kinds of event that can affect an object:

• access-program invocations (calls of programs exported by the module),

• input variable events (changes of values of the module’s input variables).

We assume that at most one event can occur at a given instant of time and that objects in the module can be af-
fected only by a finite sequence of events.

In this paper we deal only with the first kind of event. However, we do not lose the generality of discussion since
an input variable event can be expressed in terms of an access-program invocation. Input variables are described in
detail in [2, 3, 12].

For each module there is a finite number of access-programs. Each access-program operates on at least one do-
mestic object and possibly on foreign objects. As a result of an access-program invocation, the arguments can change
their states, possibly non-deterministically. For the sake of simplicity, we will treat values returned by functions as ar-
guments which can change their states but with irrelevant initial values. For each access-program invocation, the next
state of each argument depends only on the previous states of the arguments of this invocation. We assume that all ar-
guments of access-programs are different objects. In practice, however, one object can be passed through several ar-
guments of an access-program. This does not cause any loss of generality because we can model an access-program
whose arguments might possibly represent the same objects by several access-programs whose arguments are always
different objects. For example, an access-program with two domestic arguments, which can represent the same ob-
ject, can be modeled by two access programs:

• one with two domestic arguments (representing different objects passed as arguments of), and

• one with only one domestic argument (representing one object passed through both arguments of).

2.2 Module

In this sub-section we define a formal model of multi-object modules and give some basic definitions used in the
latter part of the article.

Def. 1 A module is the following tuple: , where:

• is a non-empty set; its elements are calledstates of domestic objects,

• and it is called theinitial state of domestic objects,

t
t 1+

P

P

P

Q q0 O F I E, , , , ,()

Q

q0 Q∈

3

• is a non-empty set; its elements are callednames of domestic objects,

• is a non-empty set; its elements are calledstates of foreign objects,

• is a non-empty finite set; its elements are callednames of access-programs,

• is a sequence of relations such that (natural numbers),

, and

For each , is a relation specifying changes of states of arguments of the access-program .

 means that if an invocation of the access-program operates on certain domestic objects being in
states and certain foreign objects being in states , then the states of these objects after the invocation can be,
and respectively.

This definition can be seen as an extension of Mealy machines. (Mealy machines have been used as a model for
single-object modules in [8].) Instead of a single state of an automaton we have many states of many objects.

Def. 2 A state of a module is a function . It represents the states of all objects implemented by this mod-
ule.

Def. 3 A history of a module is a function (by we denote the power set of)
such that , where for all . It represents sets of possible states of this mod-
ule at all instants of time. At the initial instant, all objects are in the initial state.

Def. 4 An event (i.e. access-program invocation) is a tuple where:

• ,

• is a vector of different names of domestic objects; its elements identify domestic arguments of
the event,

• is a vector; its elements represent states of foreign arguments of the event.

Def. 5 An output of an event is a vector ; its elements represent new states of foreign arguments of
the event.

Def. 6 A step of computation is a pair where is an event and is an output of .

A step of computation represents externally observable (observable outside the module) aspects of an access-
program invocation, i.e.:

• which access-program is invoked,

• on which domestic objects the access-program operates,

• what are the states of passed foreign arguments, and

• what are the states of foreign arguments after the invocation.

Def. 7 A state of a module isreachable from a state of the module in a step of computation
iff:

We denote it by .

For a given , means that if a module is in a state , an event takes place and new states of

its foreign arguments are equal to then a new state of the module can be .

Def. 8 A computation is a finite sequence of steps of computation, , where ,

is an event, and is an output of .

A computation denotes externally observable aspects of a sequence of invocations of access-programs.

O

F

I

E Ei()
i I∈= Ei Q

ki F
l i× Q

ki F
l i××⊆ ki N∈

1 ki O≤ ≤

q Q
ki∈ r F

l i∈, q' Q
ki∈ r ' F

l i Ei q r q' r ', , ,()[]∈,∃∀

i I∈ Ei i

Ei q r q' r ', , ,() i
q r q'

r '

s: O Q→

H: N ℘ O Q→() \ ∅{ }→ ℘ X() X
H 0() s{ }= s o() q0= o O∈

e i o r, ,()=

i I∈

o O
ki∈

r F
l i∈

i o r, ,() r ' F
l i∈

c e r',()= e r ' e

s' s c i o r, ,() r ',()=

Ei s o1() … s oki
(), ,() r s' o1() … s' oki

(), ,() r ', , ,() j O \ o1 … oki
, ,{ } s j() s' j()=[]∈∀∧

s s'
c

→

c e r',()= s s'
c

→ s e

r ' s'

ej r ' j,()()
j 0=
m m 1−≥ ej i j oj r j, ,()=

r ' j F
l i j∈ ej

4

Def. 9 We say that a history satisfies a computation iff for all :

.

A history represents possible states of domestic objects during the computation. Notice that if there exists a his-
tory satisfying a given computation then there is only one such history.

Def. 10 We say that a computation isfeasible if there exists a history satisfying this computation.

One should recall that the value of a history at a given moment in time is a non-empty set of possible states of the
module. Hence, there can be (and usually are) histories that are not feasible.

The set of feasible computations fully characterizes an externally observable behavior of a module. According to
the information hiding principle, we are interested only in externally observable aspects of a module, i.e., we are not
interested in the concrete states of domestic objects  we observe only the identity of domestic arguments and the
values of foreign arguments of events. Hence, there can be several modules that cannot be externally distinguished.

Def. 11 We say that two modules areobservationally equivalent iff they have the same sets of feasible computations.

Sometimes we are interested in reduction of a module to a simpler, observationally equivalent module. A simple
reduction can be done by removing states which can never appear.

Def. 12 The set ofreachable states of objects of a module is the subset of of all states
appearing in histories satisfying feasible computations:

Notice that always . Non-reachable states of a module do not appear in any history satisfying any feasible
computation. Hence they are irrelevant to the behavior of the module.

Def. 13 Let be a module, be the set of reachable states of objects of , be a module

, where , , .

 is thereachable reduction of .

Notice that if is the reachable reduction of a module , then every computation is feasible for iff it is feasible
for . Hence and are observationally equivalent.

3 Trace specifications of multi-object modules
In this section we focus on trace specifications of multi-object modules, their form and their model. In Section

3.1 we define a sub-class of modules, called trace-modules, which we use later as models of trace specifications. In
Section 3.2 we briefly describe the form of trace specifications of multi-object modules, and we show how trace spec-
ifications can be modelled by trace-modules and vice versa, i.e., how trace-modules can be specified.

3.1 Trace-modules

Def. 14 A trace-moduleis a module such that for each there exist:

• a relation ,

• a function ,

such that .

 is called areturn relation (between values of arguments of an access-program invocation and its output);

 is called anextension functionand describes the values of domestic arguments after this invocation, de-

pending on the values of arguments and the output of the invocation.

Intuitively, a module is a trace-module iff (for each) the relation can be viewed as a com-

position of a relation () denoting new states of foreign arguments and a function () denoting new states of do-

H C cj()
j 0=
m= t N∈

t m≤ H t 1+() s' :O Q→ s H t() s s'
ct→[]∈∃{ }=⇒() t m> H t 1+() H t()=⇒()∧

A M Q q0 O F I E, , , , ,()= Q

A q Q∈ C- feasible H- satisfyingC t N∈ s H t()∈ o O∈, , , ,∃ q s o()=[]{ }=

q0 A∈

M Q q0 O F I E, , , , ,()= A M M

M A q0 O F I E, , , , ,()= E Ei()
i I∈= Ei Q

ki F
l i Q

ki F
l i×××⊆ Ei Ei A

ki F
l i A

ki F
l i×××=

M M

M M M
M M M

Q q0 O F I E, , , , ,() i I∈

Ri Q
ki F

l i F
l i××⊆

Xi : r i Q
ki→

q q', Q
ki r r ' F

l i Ei q r q' r ', , ,() Ri q r r ', ,() Xi q r r ', ,() q'=∧⇔[]∈, ,∈∀

Ri
Xi

Q q0 O F I E, , , , ,() i I∈ Ei
Ri Xi

5

mestic arguments. Generally, states of trace-modules have simpler forms than states of modules  for each feasible

computation and a moment in time, there is only one possible state of a trace-module.

Lemma 1: If is a trace-module, is a computation, is a history satisfying , and , then is a sin-
gleton.

Proof of this lemma can be found in [5]. Note that if the given module is deterministic then it is also a trace-module,
since for each , is a function.

3.2 Trace specifications

One of the basic notions in TAM is the notion of traces. Intuitively, atrace is a term describing a fragment of a feasi-
ble computation of a trace-module, containing all steps that can influence the current state of a given object. Each
reachable state is represented by one or more traces. A trace specification defines a subset of traces calledcanonical
traces  one canonical trace for each reachable state. States of objects are represented in specifications by canonical
traces. Detailed descriptions of traces can be found in [5, 7, 12].

A trace specification (i.e., a specification in TAM) of a module is a document consisting of the following five
parts: Characteristics Section, Syntax Section, Canonical Section, Equivalence Section, Return Values Section.

Precise descriptions of trace specifications can be found in [7, 12]. Here, we only briefly summarize the contents of
trace specifications.

The Characteristics Section contains information about:

• the name of the module specified by the given specification,

• foreign modules used by this module; they implicitly define the set of states of foreign objects,

• the set of names of objects implemented by the module, and

• features of the module (whether it is deterministic or non-deterministic, single-object or multi-object, and
parameterized or not parameterized).

Usually, the set of names of objects implemented by the module is the set of canonical traces of another module.

In this paper we deal only with non-parameterized specifications of multi-object modules. As non-deterministic
modules are more general than deterministic ones, we focus on the specifications of non-deterministic modules.

The Syntax Section defines the set of access-programs and the types of their arguments (i.e. modules in which
they are implemented). In particular, for each access-program, it defines the number of domestic and foreign argu-
ments. The Syntax Section provides some information that is not expressed in our model, e.g., the order of domestic
and foreign arguments for each access-program. In our model this order is fixed. Nor does our model distinguish
types of foreign arguments.

The Canonical Section defines the characteristic predicate (canonical) of the set of canonical traces, and distin-
guishes a canonical trace representing the initial state. The set of canonical traces depends on the particular specifica-
tion. The set of states of domestic objects is the set of canonical traces. This section of the specification can also
define some auxiliary functions and/or relations used in the rest of the specification.

For each access-program, the Equivalence Section contains a definition of theextension function. The domain of
this function contains states of all arguments of the access-program before the invocation and new states of all of its
foreign arguments after the invocation. The range of this function contains new states of all domestic arguments of
the access-program, and a sort of a marker (calleda token) describing the correctness of the invocation. This marker
is not expressed in our model. The value of the token has no effect on the behavior of the module. In a later part of
this paper we assume that every invocation is specified as a correct one.

The Return Values Section for each access-program defines a relation called thereturn relation. This is a relation
between states of all arguments of the access-program before the invocation, and new states of all of its foreign argu-
ments. This relation determines possible new states of foreign arguments of the access-program.

A trace specification can be modelled by a trace-module as follows:

M C H C t N∈ H t()

i I∈ Ei

6

• is the set of canonical traces,

• is the canonical trace representing the initial state,

• is the set of names of objects implemented by the module,

• is the union of sets of canonical traces of foreign modules,

• is the set of names of access-programs,

• is a return relation for an access-program ,

• is an extension function for an access-program ,

• is such that: .

A trace-module thus defined is called thetrace-module obtained from a trace specification.

Def. 15 We say that amodule satisfies a trace specification iff it is observationally equivalent to the trace-module ob-
tained from the trace specification. In this case we also say that thespecification specifies the module.

We are not only able to represent trace specifications by trace-modules but we can specify every trace-module,
which is more interesting.

Theorem: For each trace-module there exists a trace specification satisfied by this module.

Proof of this theorem can be found in [5].

This theorem proves that the class of modules that can be specified in TAM is equal to the class of modules ob-
servationally equivalent to certain trace-modules. One should also note that since every deterministic module is a
trace-module, every deterministic module can be specified in TAM.

4 Non-determinism non-expressible in the trace assertion method
In this section we prove that not every module can be specified in TAM. The counter-example we construct is a

non-deterministic multi-object module.

Theorem: There exists a module that does not satisfy any trace specification.

Proof: Let be a module, where:

• ,

• ,

• ,

• ,

• ,

• , ,

• , ,

• , .

The module implements two sets that both can contain two elements, 0 and 1, with the following opera-
tions:

• Ins inserts an element into a set,

• In checks if an element is in a set,

• Cross takes two sets and divides non-deterministically their union into two disjoint sets.

We will show that there does not exist a trace specification satisfied by . The proof is by contradiction. Let
us assume that such a trace specification exists. Let be a trace-module obtained
from . Let us consider the following computations:

Q

q0 Q∈

O

F

I

Ri i

Xi i

Ei q q', Q
ki r r ' F

l i Ei q r q' r ', , ,() Ri q r r ', ,() Xi q r r ', ,() q'=∧⇔[]∈, ,∈∀

M Q q0 O F I E, , , , ,()=

Q ℘ 0 1,{ }()=

q0 ∅=

O a b,{ }=

F 0 1 true false, , ,{ }=

I Ins In Cross, ,{ }=

EIns Q F Q F×××⊆ EIns q r q' r ', , ,() r '≡ r= q'∧ q r{ } 0 1,{ }∩()∪=

EIn Q F Q F×××⊆ EIn q r q' r ', , ,() q≡ q' r '∧ r q∈()= =

ECross Q2 Q2×⊆ ECross q1 q2 q'1 q'2, , ,() q1 q2∪≡ q'1 q'2 q'1 q'2∩∧∪ ∅= =

M

M
X M Q q0 F I E, , , ,()=

X

7

,

,

.

 and are feasible computations for and hence also for but is not feasible for . This means
that when we insert 1 into set , and then apply the access-programCross to sets and , 1 is in one of
these sets but not in both.

We will obtain the contradiction by proving that the computation is feasible for module .

Let , be two histories of a trace-module satisfying, respectively, computations and . and

 have the same first two elements and hence, . From lemma 1 on page 5, and

 are singletons (for each). Let , , and

.

Notice that because cannot change the state of object

, and because cannot change the state of object . To prove

that is feasible for we show that for there exists a state of a trace-mod-

ule such that . Notice that cannot change the value of object , so . On the

other hand, because and . Hence state

 can be defined as follows:

Notice that for also .

A history satisfying computation is defined as follows:

Thus, computation is feasible for but not feasible for . Module is not observationally equivalent

to , and does not satisfy .

■

5 “New” trace-module
In this section we will redefine the notion of trace-modules and show that for every module there exists an obser-

vationally equivalent new trace-module. This reduces the problem of specification of multi-object modules in TAM to

C1 Ins a 1, ,() 1,() Cross a b, ,()() In a 1, ,() true,() In b 1, ,() false,(), , ,()=

C2 Ins a 1, ,() 1,() Cross a b, ,()() In b 1, ,() true,() In a 1, ,() false,(), , ,()=

C3 Ins a 1, ,() 1,() Cross a b, ,()() In a 1, ,() true,() In b 1, ,() true,(), , ,()=

C1 C2 M M C3 M
a a b

C3 M

H1 H2 M C1 C2 H1
H2 H1 2() H2 2()= H1 t()
H2 t() t N∈ H1 2() H2 2() s1{ }= = H1 3() s2{ }=
H2 3() s3{ }=

In a 1, ,() true,()

Ins a 1, ,() 1,() Cross a b, ,()()

In b 1, ,() true,()

In b 1, ,() true,()

In a 1, ,() false,()

In b 1, ,() false,() C1

C3

C2

s1

s2

s3

s4

s1 b() s2 b()= C1 2, C3 2, In a 1, ,() true,()= =
b s1 a() s3 a()= C2 2, In b 1, ,() true,()= a

C3 M C3 3, In b 1, ,() true,()= s4

M s2 s4

C3 3,→ C3 3, a s4 a() s2 a()=
s4 b() s3 b()= s2 b() s1 b()= C3 3, C2 2, In b 1, ,() true,()= =

s4

s4 j()
s2 a() if j a=
s3 b() if j b=




=

z In a 1, ,() true,()= s3 s4
z→

s1

In a 1, ,() true,() s2

In b 1, ,() true,() s3

In b 1, ,() true,()

s4

In a 1, ,() true,()

H3 C3

H3 t()
H1 t() if t 3≤

s4{ } if t 3>



=

C3 M M M

M M X

8

that of specification of new trace-modules.

Def. 16 A new trace-module is such a module that for each there exist:

• a number ,

• a relation ,

• a function ,

such that , and

 is called areturn relation, is called anextension function and is called anumber of primary domes-

tic arguments of access-program . The largest is called themaximum number of primary domestic argu-

ments of access-program .

Intuitively, in new trace-modules we allow new states of some domestic arguments to be specified by the return
relation. One should note that for a given new trace-module and the numbers of primary domestic arguments, for each
access-program there exist exactly one return relation and one extension function.

Each trace-module is also a new trace-module (for); however, the class of new trace-modules is wider
than the class of trace-modules.

Theorem: For each module , there exists a new trace-module observationally equivalent to .

Proof: For a given module () we will construct a new trace-

module such that will be observationally equivalent to and each access-pro-

gram of will have one primary domestic argument (). Let: , , and

.

For this construction we define the inclusion relation on states of modules and .

Def. 17 For each state of module and state of module we say that iff .

Our proof is based on the two lemmas given below. Their proofs can be found in [5].

Lemma 2: For modules and as defined above, each , and a step of computa-

tion , if then there exists such that and .

Lemma 3: For modules and as defined above, let be the history of module

satisfying a feasible computation . There exists a history of satisfy-

ing such that: .

Let us assume that and are not observationally equivalent. Then there exists such a computation that it

is feasible for one and only one of these modules. Let , be one of the shortest such com-

putations. Hence is feasible for both modules. Let and be the histories of, respectively,

 and satisfying the computation . Let us consider two cases:

1. is feasible for . This implies that .

Applying lemma 3 to for we obtain that

Q q0 O F I E, , , , ,() Ei

1 pi ki≤ ≤

Ri Q
ki F

l i Q
ki pi−

F
l i×××⊆

Xi : r i Q
pi→

q Q
ki r F

l i∈,∈ q' Q
ki pi−

r ' F
l i r i q r q' r ', , ,()[]∈,∈∃∀

q q', Q
ki r r ' Q

l i Ei q r q' r ', , ,() Ri q r q'pi 1+ … q'ki
, ,() r ', , ,() ∧⇔[∈, ,∈∀

Xi q r q'pi 1+ … q'ki
, ,() r ', , ,() q'1 … q'pi

, ,()]=

Ri Xi pi
i pi

i

pi ki=

M M M

M Q q0 O F I E, , , , ,()= Ei Q
ki F

l i× Q
ki F

l i××⊆
M Q q0 O F I E, , , , ,()= M M

M pi 1= Q ℘ Q() \ ∅{ }= q0 q0{ }=

Ri q r q'2 … q'ki
, ,() r ', , ,() q q1 …× qki

×∈ q' Q
ki∈, j 2 … ki, ,{ } q'j q' j{ }=[]∈∀ Ei q r q' r ', , ,()∧[]∃≡

Xi q r q'2 … q'ki
, ,() r ', , ,() q'1 Q∈ q q1 …× qki

×∈ q'2 q'2∈ … q'ki
q'ki

∈, ,, Ei q r q' r ', , ,()[]∃{ }=

M M

s M s M s s« j O∈ s j() s j()∈[]∀

M M s s', : O Q→ s: O Q→
c s s'

c
→ s s«∧ s' : O Q→ s s'

c
→ s' s'«

M M H: N ℘ O Q→()→ M

C H: N ℘ O Q→()→ M

C t N H t() s:O Q→ s H t()∈ s s«[]∃{ }=[]∈∀

M M

C cj()
j 0=
α= α 0≥

C' cj()
j 0=
α 1−= H H

M M C'

C M s H α()∈ s' : O Q→, s s'
cα
→[]∃

C' t α= H α() s: O Q→ s H α()∈ s s«[]∃{ }=

9

From the above two formulae it follows that .

From lemma 2, . Hence, is feasible for .

2. is feasible for . This implies that there exists a history of satisfying . From lemma 3, there ex-
ists a history of satisfying , so is feasible for .

We have obtained a contradiction. Hence the assumption that and are not observationally equivalent is
false.

■

Example: A new trace-module with the “Cross” access-program (see Section 4) can be defined
as follows:

• ,

• ,

• ,

• ,

• ,

• , ,

• ,

• , ,

• ,

• , ,

• , .

6 “New” trace specifications
In this section we discuss the form of traces and trace specifications used to describe new trace-modules. We also

investigate which new trace-modules can be specified in the proposed version of TAM, and how this can be done.

The basic difference between new trace-modules and trace-modules is that:

• in trace-modules, an extension function determines new states of all domestic arguments of an access-program,

• in new trace-modules, an extension function defines only new values of some (at least one) domestic arguments,
calledthe primary (domestic) arguments; possible new values of the rest of domestic arguments, calledthe sec-
ondary (domestic) arguments, are defined by the return relation. For simplicity, in our model primary arguments
precede secondary ones, however in general they can be in any order.

This difference is reflected in the form and the interpretation of traces. A proposal of a new form of traces can be
found in [5]. A trace represents a new value of one of the primary domestic arguments of its last invocation. It can
happen that some reachable states are not represented by any traces. States that are represented by one or more traces
are calledtrace-expressible.

The form of a new trace specification is similar to the form of a trace specification. The form of the Characteris-
tics Section is the same. The Syntax Section defines also numbers of primary arguments of access-programs. The Ca-
nonical Section defines a set of canonical new traces, and a canonical trace representing the initial state. The
Equivalence Section defines an extension function for each access program. The range of this function contains only
canonical traces, representing new states of the primary arguments. The Return Values Section defines a return rela-
tion for each access program. However this relation is defined on states of all arguments passed to the access-pro-
gram, and new states of all secondary domestic arguments and all foreign arguments of the access-program.

A new trace specification can be modelled as a new trace-module in the following way:

• is the set of canonical new traces,

s H α()∈ s H α()∈ s' : O Q→, , s s« s s'
cα
→∧[]∃

s H α()∈ s' : O Q→, s s'
cα
→[]∃ C M

C M M C
M C C M

M M

Q q0 O F I E, , , , ,()

Q ℘ 0 1,{ }()=

q0 ∅=

O a b,{ }=

F 0 1 true false, , ,{ }=

I Ins In Cross, ,{ }=

RIns Q F F××⊆ RIns q r r ', ,() r '≡ r=

XIns: RIns Q→ XIns q r r ', ,() q r{ } 0 1,{ }∩()∪=

RIn Q F F××⊆ RIn q r r ', ,() r '≡ r q∈()=

XIn : RIn Q→ XIns q r r ', ,() q=

RCross Q2 Q×⊆ RCross q1 q2 q'2, ,() q'2 q1 q2∪⊆≡

XCross: RCross Q→ XCross q1 q2 q'2, ,() q1 q2∪() \ q'2=

Q q0 O F I E, , , , ,()

Q

10

• is the canonical new trace representing the initial state,

• is the set of names of objects implemented by the module,

• is the union of sets of canonical traces of all foreign modules,

• is the set of names of access programs,

• for each , is a relation defined as follows:

It turns out that not all new trace-modules can be specified in the proposed version of TAM. It can happen that
some of the reachable states are not trace-expressible. In such a case we are simply unable to represent these states in
the specification. But if all reachable states of a new trace-module are trace-expressible then we can specify such a
module in the proposed version of TAM.

Theorem: Let be a new trace-module. If all reachable states of are trace-expressible
then there exists a new trace specification satisfied by .

Proof of this theorem can be found in [5].

A class of modules which can be specified in the proposed version of TAM is the class of modules observational-
ly equivalent to some new trace-modules having all (reachable) states trace-expressible.

7 Conclusions
The main goal of this paper is to investigate the expressiveness of TAM. As it was proved in [8], every single-ob-

ject module can be specified in TAM. Also every deterministic multi-object module can be specified in TAM. Howev-
er, there exists a non-deterministic multi-object module which cannot be specified in TAM.

We have defined a sub-class of modules (called trace-modules) which effectively characterizes the expressive-
ness of TAM. Each trace-module can be specified in TAM and each specification can be modelled by a trace-module.
Hence, the class of multi-object modules which can be specified in TAM is the class of modules observationally
equivalent to some trace-modules. This situation can be illustrated by the following diagram:

We have also proposed some modifications in TAM and we have defined an appropriate sub-class of modules
(called new trace-modules) to model specifications in the proposed version of TAM. It is a property of this class that
each module is observationally equivalent to some new trace-module. We have extended the expressiveness of TAM,
although we have not covered the whole class of non-deterministic multi-object modules. Not all new trace-modules
can be specified in the proposed version of TAM because it can happen that some (reachable) states of objects imple-
mented by the module cannot be expressed by traces.

q0

O

F

I

i I∈ Ei

q q', Q
ki r r ' F

l i Ei q r q' r ', , ,() Ri q r r ' q'pi 1+ … q'ki
, ,(), , ,() ∧⇔[∈, ,∈∀

Xi q r r ' q'pi 1+ … q'ki
, ,(), , ,() q'1 … q'pi

, ,()=]

M Q q0 O F I E, , , , ,()= M
M

Deterministic
Modules

Trace-Modules

Modules Specifiable in TAM

All Modules

11

If we could express by traces all (reachable) states of objects implemented by new trace-modules then we would
be able to specify all modules in TAM. This problem still limits the usefulness of TAM in specification of some non-
deterministic multi-object modules. Extension of the expressiveness of traces, to cover all reachable states of new
trace-modules, will be one of our goals in future research.

7 Bibliography
1. Bartussek, W., Parnas, D.L., “Using Traces to Write Abstract Specifications for Software Modules”, in:Proceed-

ings of 2nd Conference of European Cooperation in Informatics, Lecture Notes in Computer Science, 65.
Springer-Verlag, Venice, 1978.

2. Bojanowski, J., Iglewski, M., Madey, J., Obaid, A., “Functional Approach to Protocol Specification”, in:Pro-
ceedings of the 14th International IFIP Symposium on Protocol Specification, Testing and Verification, PSTV’94,
Vancouver, B.C., pp. 371-378.

3. Erskine, N., “The usefulness of the trace assertion method for specifying device module interfaces”,CRL Report
No. 258, McMaster University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamilton, On-
tario, Canada, 1992.

4. Hoffman, D.M., “The Trace Specification of Communications Protocols”,IEEE Transactions on Computers,
Vol. C-34, No. 12, December 1985, pp. 1102-1113.

5. Iglewski, M., Madey, J., Kubica, M, “Editor for the Trace Assertion Method”, in:Proceedings of the 10th Inter-
national Conference of CAD/CAM, Robotics and Factories of the Future: CARs & FOF’94, M.Zaremba (Ed.),
OCRI, Ottawa, Ontario, Canada, 1994, pp.976-881.

6. Iglewski, M., Madey, J., Kubica, M, “Trace Specifications of Non-deterministic Multi-object Modules”, in:Tech-
nical ReportTR 95-03 (204), Warsaw University, Institute of Informatics, Warsaw, Poland, 1995.

7. Iglewski, M., Madey, J., Parnas, D.L., Kelly, P.C., “Documentation Paradigms”,CRL ReportNo. 270, McMaster
University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada, 1993.

8. Iglewski, M., Madey, J., Stencel, K., “On Fundamentals of the Trace Assertion Method”,Technical ReportTR
94-09 (198), Warsaw University, Institute of Informatics, Warsaw, Poland, 1994.

9. McLean, J.D., “A Formal Foundation for the Abstract Specification of Software”,Journal of the ACM, Vol. 31,
No. 3, July 1984, pp. 600-627.

10. Parnas, D.L., “On the Criteria to be used in Decomposing Systems into Modules”,Communications of the ACM,
Vol. 15, No. 12, December 1972, pp. 1053-1058.

11. Parnas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering. (Version 2)”,CRL Re-
port No. 237, McMaster University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamilton,
Ontario, Canada, 1991; to appear in:Science of Computer Programming.

12. Parnas, D.L., Wang, Y., “The Trace Assertion Method of Module Interface Specification”,Technical Report 89-
261, Queen’s University, C&IS, Telecommunication Research Institute of Ontario (TRIO), Kingston, Ontario,
Canada, 1989.

13. Wang, Y., “Specifying and Simulating the Externally Observable Behavior of Modules”, (Ph.D. Thesis), CRL
ReportNo. 292, McMaster University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamil-
ton, Ontario, Canada, 1994.

