

Le Corbusier (1887-1965)

sitelecorbusier.com

models

quality of life, cost natural light, ... objectives

solution

Le Corbusier (1887-1965)

sitelecorbusier.com

Plonec,...l. Ministrational de la secondada de

 $\begin{array}{ccc} C_{max} & \Sigma & C_i \\ max & (C_i - r_i)/p_i \\ \Sigma(C_i - r_i)/p_i \\ objectives \end{array}$

solution

Le Corbusier (1887-1965)

sitelecorbusier.com

billion of the second s

 $\begin{array}{ccc} C_{max} & \Sigma & C_i \\ max & (C_i - r_i)/p_i \\ \Sigma(C_i - r_i)/p_i \\ \end{array}$

solution

How to accommodate preferences of a population?

How to accommodate or preferences of a population?

How to accommodate preferences of a population? Le Bourget Aéroporte Saint-Denis Bourget RER Clichy - Montfermeil Marco 1 Noisy - Champs Olympiades Pont de Sèvres societedugrandparis.fr Aéroport d'Orly 10 km 2020/2021 2024 2030 2027 TOUT

societedugrandparis.fr

How to accommodate preferences of a population?

The collective scheduling model

Build a single schedule accommodating preferences of all agents!

social choice: how to organize elections

non trivial in many cases: more than 2 candidates electing a parlament picking a representative committee participatory budgets

Social choice cannot be directly applied to collective scheduling

2 possible collective schedules:

preferred by the majority, but delays the red arbitrary long

delays the majority by just 1

Social choice tools we extend

- Positional scoring rules
- Condorcet
- Kemeny

Positional Scoring Rules

Positional scoring rules: each ranking position gets a certain amount of points Winner: highest amount of points ranked preferences of voters v4 v5 [']

Borda count [Borda, 1770]: the number of defeated candidates

Extending positional scoring rules by jobs' length

$$h$$
-score $(J) = \sum_{a \in N} f\left(\sum_{J_i : J \sigma_a J_i} p_i\right)$

workload scheduled later (preference for shorter jobs)

scores

collective schedule:

Positional scoring rules don't really work well

fraction of votes

collective schedule:

s voted as first by ~1/4 of agents, but s is delayed by arbitrary large L1+L2

The Condorcet Principle

Extending Condorcet to the whole ranking is easy...

collective ranking:

Extending Condorcet to the whole ranking is easy...

collective ranking:

Extending Condorcet to the whole ranking is easy...

collective ranking:

Extending the Condorcet to processing times: PTA Condorcet

Job k before job l if at least $n \frac{p_k}{p_k + p_\ell}$ voters put k before l **2 +** *E* **1 2** + *ε* **PTA Condorcet schedule:**

Why the ratio? $n \frac{p_k}{p_k + p_\ell}$ The utilitarian dissatisfaction

N_k: agents who prefer k to I Assume: $|N_k| > n \frac{p_k}{p_k + p_\ell}$

If we start with k before I and then swap, k delayed by p_I utilitarian dissatisfaction is $|N_k|p_I$

If we start with I before k and then swap, I delayed by p_k

$$\operatorname{dis}(N_{\ell}) = |N_{\ell}| p_k < \left(n - \frac{p_k}{p_k + p_{\ell}}n\right) p_k$$
$$= n \cdot \frac{p_k p_{\ell}}{p_k + p_{\ell}} < |N_k| \cdot p_{\ell} = \operatorname{dis}(N_k).$$

PTA-Condorcet on the short-long example

PTA Condorcet:

S before **L2** in 1/4-
$$\varepsilon$$
 votes, thus **S L2** if 1/4- ε > s/(s+L2)

thus, for long L1, L2, PTA Condorcet schedule is

S L2 **L**1

The Kemeny Rule

Find a ranking minimizing the distance to voters' preferences

The Kendall swap distance:

of swaps between neighbors to convert proposed to preferred# of pairs in non-preferred order

The preferred schedule defines due dates for jobs

The proposed schedule:

Meaningful distances between two schedules

Quantifying the difference for each job by standard measures: Tardiness (T) : $T(c_i, d_i) = \max(0, c_i - d_i)$.

Unit penalties (U) : measure how many jobs are late:

$$U(c_i, d_i) = \begin{cases} 1 & \text{if } c_i > d_i \\ 0 & \text{otherwise.} \end{cases}$$

Lateness (L) : $L(c_i, d_i) = c_i - d_i$.

Earliness (E) : $E(c_i, d_i) = \max(0, d_i - c_i)$.

Absolute deviation (D) : $D(c_i, d_i) = |c_i - d_i|$.

Squared deviation (SD) : $SD(c_i, d_i) = (c_i - d_i)^2$.

aggregating over voters:

The sum (Σ): $\sum_{a \in N} f(\tau, \sigma_a)$, a utilitarian aggregation.

The max: $\max_{a \in N} f(\tau, \sigma_a)$, an egalitarian aggregation.

The L_p norm (L_p) : $\sqrt[p]{\sum_{a \in N} (f(\tau, \sigma_a))^p}$,

Our complexity results

aggregation of voters' preferences	cost function	job sizes	complexity
Σ	L (lateness)	arbitrary	poly (SPT ordering!)
Σ	T (tardiness)	arbitrary	strongly NP-hard
Σ	U (# of late jobs)	arbitrary	strongly NP-hard
Σ	T, U, L, E, D, SD	unit	poly (assignment)
Σ	K,S (Kemeny, Spearman)	unit	NP-hard for 4 agents [Dwork 2001]

Our complexity results

aggregation of voters' preferences	cost function	job sizes	complexity
Lp norm (also max)	T, E, D	arbitrary	NP-hard for 2 agents (similar to [Agnetis04])
max	T, E, D, SD	unit	NP-hard (from closest string)

Experimental evaluation

Settings

- agents preferences from PrefLib
- Tardiness (T) as the cost function (strongly NP-hard, easy to interpret)
- Jobs' sizes random between 1 and p_{max} (uniform, but we also tested normal and exponential)
- Optimal solutions computed by the Gurobi solver (a schedule encoded by binary precedence variables)
- 20 jobs, 5000 voters take minutes;
 30 jobs doesn't finish in an hour

On the average, if jobs' lengths picked randomly, the short jobs are indeed advanced compared to a length-oblivious schedule

PTA-Condorcet and Kemeny schedules are not that different

# of job pairs executed in non-PTA-Condorcet order			relative difference of PTA vs Kemeny schedules	
Dataset	PTA C. Paradox		PTA Copeland ·/·	
	Σ - T	$\max -T$	Σ - T	$\max -T$
AGH1	6%	15%	1.03	1.23
AGH2	5%	18%	1.03	1.28
SUSHI	7%	24%	1.02	1.22
IMPARTIAL	3%	8%	1.00	1.01
MALLOWS	10%	24%	1.03	1.21

Collective Schedules

- Fanny Pascual, Krzysztof Rzadca, Piotr Skowron
- **AAMAS 2018**

Nanterre

- arxiv.org/abs/1803.07484
- How to take into account preferences of large population over possible schedules
- Each voter presents her preferred schedule
- Positional Scoring Functions may delay short jobs with significant support
- Processing Time Aware Condorcet is polynomial
- Kemeny-based methods are (mostly) NP-hard, but feasible for realistic instances