Collective Schedules

Fanny Pascual, Krzysztof Rzadca, Piotr Skowron Sorbonne Université

University of Warsaw, Poland

Le Corbusier (1887-1965)

models

quality of life, cost natural light, ... objectives

solution

Le Corbusier (1887-1965)

BH P|prec,...|... M

models

$\mathbf{C}_{\text {max }} \Sigma \mathbf{C}_{\mathrm{i}}$ $\max \left(C_{i}-r_{i}\right) / p_{i}$ $\Sigma\left(C_{i}-r_{i}\right) / p_{i}$

 objectives
solution

Bi P|prec,...|... M

models

$\mathbf{C}_{\max } \quad \boldsymbol{\Sigma} \mathrm{C}_{\mathrm{i}}$ $\max \left(C_{i}-r_{i}\right) / p_{i}$ $\boldsymbol{\Sigma}\left(\mathbf{C}_{\mathrm{i}}-\mathrm{r}_{\mathrm{i}}\right) / \mathrm{p}_{\mathrm{i}}$

 objectives
solution

How to accommodate

preferences of a population?

How to accommodate

preferences of a population?

How to accommodate

 preferences of a population?

How to accommodate

preferences of a population?

How to accommodate

preferences of a population?

How to accommodate

preferences of a population?

The collective scheduling model

voter/agent 1

voter/agent 2

voter/agent 3 Mol many agents

preferred schedule σ_{1} a "straightforward" model
(single machine, clairvoyance, no release dates, no due dates, no dependencies, no ...)

preferred schedule σ_{2}

preferred schedule σ_{3}

each has a preferred schedule

The collective scheduling model

Build a single schedule accommodating preferences of all agents!

social choice:

how to organize elections

non trivial in many cases:
more than 2 candidates
electing a parlament
picking a representative committee participatory budgets

Social choice cannot be directly applied to collective scheduling

2 possible collective schedules:

preferred by the majority, but delays the red arbitrary long
delays the majority by just 1

Social choice tools we extend

- Positional scoring rules
- Condorcet
- Kemeny

Positional Scoring Rules

Positional scoring rules: each ranking position gets a certain amount of points Winner: highest amount of points ranked preferences of voters

Borda count [Borda, 1770]: the number of defeated candidates

Extending positional

 scoring rules by jobs' length h-score $(J)=\sum f\left(\sum p_{i}\right) \quad$ workload scheduled later (preference for shorter jobs)
scores

collective schedule:

1	3	2

Positional scoring rules don't really work well

fraction of votes

collective schedule:

s voted as first by $\sim 1 / 4$ of agents, but
s is delayed by arbitrary large L1+L2

The Condorcet Principle

The Condorcet Principle: if an object preferred by a majority,

 it should be selected as the winner
ranked preferences of voters

The Condorcet Principle: if an object preferred by a majority, it should be selected as the winner

winner:

ranked preferences of voters

The Condorcet Principle: if an object preferred by a majority,

 it should be selected as the winner
ranked preferences of voters

The Condorcet Principle: if an object preferred by a majority,

 it should be selected as the winner
winner:

ranked preferences of voters

The Condorcet Principle: if an object preferred by a majority, it should be selected as the winner

winner:

ranked preferences of voters

Extending Condorcet to the

 whole ranking is easy...

C

(3)

collective ranking:
C

Extending Condorcet to the

 whole ranking is easy...
collective ranking:

Extending Condorcet to the

 whole ranking is easy...
collective ranking:

Extending the Condorcet to processing times: PTA Condorcet

Job \mathbf{k} before job I if at least $n \frac{p_{k}}{p_{k}+p_{\ell}} \quad$ voters put \mathbf{k} before I

PTA Condorcet schedule:

Why the ratio? $?^{n \frac{p_{k}}{p_{k}+p_{t}}}$ The utilitarian dissatisfaction

\mathbf{N}_{k} : agents who prefer k to I Assume:

$$
\left|N_{k}\right|>n \frac{p_{k}}{p_{k}+p_{\ell}}
$$

If we start with k before I and then swap, k delayed by p_{1} utilitarian dissatisfaction is $\left|\mathbf{N}_{\mathbf{k}}\right| \mathbf{p}_{\mathbf{I}}$

If we start with I before \mathbf{k} and then swap, I delayed by $\mathbf{p}_{\mathbf{k}}$

$$
\begin{aligned}
\operatorname{dis}\left(N_{\ell}\right) & =\left|N_{\ell}\right| p_{k}<\left(n-\frac{p_{k}}{p_{k}+p_{\ell}} n\right) p_{k} \\
& =n \cdot \frac{p_{k} p_{\ell}}{p_{k}+p_{\ell}}<\left|N_{k}\right| \cdot p_{\ell}=\operatorname{dis}\left(N_{k}\right)
\end{aligned}
$$

PTA-Condorcet on the short-long example

Borda schedule:

PTA Condorcet:

if $1 / 4-\varepsilon>s /(s+L 2)$
thus, for long L1, L2, PTA Condorcet schedule is

The Kemeny Rule

Find a ranking minimizing the distance to voters' preferences

the proposed ranking:

\# of swaps between neighbors The Kendall swap distance: to convert proposed to preferred
 \# of pairs in non-preferred order

Kendall distance is 5

Meaningful distances between two schedules

i
The preferred schedule defines due dates for jobs

The proposed schedule:

Aggregating distances over jobs and voters

The proposed schedule:

aggregating over jobs: sum
E.g. tardiness $\mathrm{T}: 3+3+0$
aggregating over voters:
The sum $(\Sigma): \sum_{a \in N} f\left(\tau, \sigma_{a}\right)$, a utilitarian aggregation.
The max: $\max _{a \in N} f\left(\tau, \sigma_{a}\right)$, an egalitarian aggregation.
The $L_{p} \operatorname{norm}\left(L_{p}\right): \sqrt[p]{\sum_{a \in N}\left(f\left(\tau, \sigma_{a}\right)\right)^{p}}$,

Our conn			
aggregation of voters' preferences	cost function	job sizes	complexity
Σ	L (lateness)	arbitrary	poly (SPT ordering!)
Σ	T (tardiness)	arbitrary	strongly NP-hard
Σ	$\underset{\text { (\# of late jobs) }}{\mathbf{U}}$	arbitrary	strongly NP-hard
Σ	$\begin{aligned} & \text { T, U, L, } \\ & \text { E, D, SD } \end{aligned}$	unit	poly (assignment)
\sum	$\begin{gathered} \text { K,S } \\ \text { (Kemeny, Spearman) } \end{gathered}$	unit	NP-hard for 4 agents [Dwork 2001]

Our complexity results

aggregation of voters preferences

Lp norm (also max)
job sizes
arbitrary

NP-hard for 2 agents
(similar to
[Agnetis04])

NP-hard
$\max \quad$ T, E, D, SD
(from closest string)

Experimental evaluation

Settings

- agents preferences from PrefLib
- Tardiness (T) as the cost function (strongly NP-hard, easy to interpret)
- Jobs' sizes random between 1 and $\mathrm{p}_{\max }$ (uniform, but we also tested normal and exponential)
- Optimal solutions computed by the Gurobi solver (a schedule encoded by binary precedence variables)
- 20 jobs, 5000 voters take minutes; 30 jobs doesn't finish in an hour

On the average, if jobs' lengths picked randomly, the short jobs are indeed advanced compared to a length-oblivious schedule

PTA-Condorcet and Kemeny schedules are not that different

Dataset	\# of job pairs executed in non-PTA-Condorcet order		relative difference PTA vs Kemeny schedules	
	PTA C. Paradox		PTA Copeland \%	
	$\Sigma-T$	max-T	$\Sigma-T$	$\max -T$
AGH1	6%	15\%	1.03	1.23
AGH2	5\%	18\%	1.03	1.28
SUSHI	7\%	24%	1.02	1.22
IMPARTIAL	3%	8\%	1.00	1.01
MALLOWS	10\%	24\%	1.03	1.21

Collective Schedules

Fanny Pascual, Krzysztof Rzadca, Piotr Skowron

 AAMAS 2018arxiv.org/abs/1803.07484

- How to take into account preferences of large population over possible schedules
-Each voter presents her preferred schedule
-Positional Scoring Functions may delay short jobs with significant support
- Processing Time Aware Condorcet is polynomial
-Kemeny-based methods are (mostly) NP-hard, but feasible for realistic instances

