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Abstract
Grids are large scale supercomputers that permit coordinated usage of re-

sources owned and controlled by different parties. Acceptable performance

of any supercomputer can be achieved only through efficient management

of resources. Nevertheless, most of the associated algorithmic problems are

computationally hard. A grid, by its decentralization, adds new, intriguing

issues to these problems, such as ensuring fairness between the participating

institutions or coping with their selfish behaviour.

The aim of this work is to study the effects of the increased decentral-

ization in grid scheduling by means of simple mathematical modeling of the

fundamental features that make grids different from classic parallel comput-

ers. We analyze the models with game theoretic approach in order to measure

the consequences of decentralized decision making by selfish participants. We

also employ the theory of equitable multicriteria optimization to guarantee

that all the parties are treated fairly.

Our main conclusion is that grids without any form of centralized control

or coordination work inefficiently. The resulting loss of performance can be

proportional to the number of jobs in the system. Yet, with some centralized

control and coordination, it is possible to share the pool of available resources

fairly amongst participants, so no-one loses by cooperating. In this context,

we propose a number of scheduling algorithms for various configurations of

the grid.

Keywords: grid, scheduling, game theory, fairness, multicriteria optimiza-

tion





Résumé
Les grappes sont des superordinateurs à grande échelle qui permettent l’uti-

lisation coordonnée de ressources possédées et contrôlées par différentes or-

ganisations. La performance d’un super-ordinateur dépend de la gestion effi-

cace de ses ressources, et en particulier de l’ordonnancement des tâches qu’il

effectue. La plupart de ces problèmes sont des problèmes algorithmiques dif-

ficiles. Une grappe, par sa décentralisation, ajoute de nouvelles difficultés à

ces problèmes, comme par exemple assurer l’équité entre les établissements

participants, ou faire face à leur comportement égöıste.

Le but de ce travail est d’étudier les effets de la décentralisation sur le

problème d’ordonnancement dans les grappes de calcul, et ce grâce à des

modèles mathématiques simples capturant les caractéristiques fondamentales

qui distinguent les grappes des ordinateurs parallèles classiques. Nous faisons

notamment appel à la théorie des jeux afin de mesurer les conséquences de

la prise de décision décentralisée par les participants égöıstes. Nous utilisons

également la théorie de l’optimisation équitable pour garantir que toutes

parties sont traitées de manière équitable.

Notre conclusion principale est que les grappes sans aucune forme de ges-

tion ou de coordination centralisée ne fonctionnent pas efficacement. La perte

de performance qui en résulte peut être proportionnelle au nombre de tâches

dans le système. Cependant, avec un certain degré de coordination et une

gestion centralisée, il est possible de partager de façon équitable l’ensemble

des ressources disponibles entre les participants, afin que personne ne perde

du fait de sa coopération. Dans ce contexte, nous proposons des algorithmes

d’ordonnancement pour différentes configurations de grappes.

Mots clés : grappes, ordonnancement, théorie des jeux, optimisation équi-

talbe, optimisation multicritère





Streszczenie
Superkomputery wielkiej skali, nazywane gridami, pozwalaja֒ na skoordyno-

wane korzystanie z zasobów znajduja֒cych sie֒ pod kontrola֒ różnych instytucji.

W laściwe zarza֒dzanie zasobami kluczowe jest dla osia֒gnie֒cia wysokiej wy-

dajności klasycznych superkomputerów. Problemy algorytmiczne zwia֒zane z

tym zagadnieniem maja֒ duża֒ z lożoność obliczeniowa֒. Administracyjne zde-

centralizowanie gridów dodaje do zagadnienia zarza֒dzania zasobami szereg

nowych, istotnych czynników, takich jak problem sprawiedliwego podzia lu

zasobów pomie֒dzy uczestnicza֒ce instytucje, czy też radzenie sobie z ich ego-

istycznym zachowaniem.

Podstawowym celem niniejszej pracy by lo zbadanie, w jaki sposób organi-

zacyjna decentralizacja gridów wp lywa na wydajność systemu. Podstawowe

różnice pomie֒dzy gridami a klasycznymi superkomputerami zosta ly przedsta-

wione przy użyciu modeli matematycznych. Wykorzystuja֒c narze֒dzia teorii

gier, zmierzylísmy spadek wydajności zwia֒zany ze zdecentralizowanym po-

dejmowaniem decyzji przez niezależnych, egoistycznych użytkowników gridu.

Korzystaja֒c z teorii sprawiedliwej optymalizacji wielokryterialnej, opisalísmy

jak powinien wygla֒dać sprawiedliwy podzia l zasobów.

G lównym wynikiem przeprowadzonych badań jest wykazanie, że ca lko-

wicie zdecentralizowane gridy dzia lać be֒da֒ niewydajnie. Spadek wydajności

może być proporcjonalny do liczby zadań w systemie. Możliwe jest jednakże

uzyskanie wydajnego i sprawiedliwego podzia lu zasobów, o ile tylko dzia la-

nia uczestników be֒da֒ koordynowane, a ich kontrola nad lokalnymi zasobami

zostanie ograniczona. Zak ladaja֒c taka֒ koordynacje֒, w pracy proponujemy

algorytmy szeregowania zadań dla różnych możliwych konfiguracji gridów.

S lowa kluczowe: grid, szeregowanie, teoria gier, sprawiedliwość, optymali-

zacja wielokryterialna





Preface

Nowadays, many computer systems gather independent individuals, who co-

operate by sharing their resources. People share their photos and videos

on web sites, their bookmarks in social bookmarking sites, their memories

in blogs, their files in peer-to-peer systems and their computing power in

volunteer computing projects. Similarly, laboratories share their computing

resources in grids. The possibilities offered by hardware and software at last

allow us to build such large-scale, complex systems. However, as such systems

gather independent individuals, they face problems similar to the problems

faced by modern democratic societies. Firstly, individuals are inherently self-

ish. Secondly, the access to shared resources should be equitable.

In early computer systems, sharing was forced by lack of means. Com-

puters were expensive and the performance provided was not adequate to the

needs. Then, because of the exponential drop in costs of hardware, comput-

ers became increasingly affordable. As a straightforward result, a number

of isolated systems appeared. Yet, in recent years, these systems are be-

ing interconnected. Cooperation and sharing became popular in domains

as different as high performance computing, on-line games or video storage.

New possibilities have been created thanks to the tremendous increase of the

network and computer performance, as well as the increased sophistication

of software. Consequently, it is not difficult to get tools that considerably

facilitate the creation of a virtual community. However, the development of

such large scale systems seems to be driven more by a need, than by existing

xiii



possibilities. A well-functioning system is worth more than the simple sum

of its components.

The crucial difference between early and modern systems is that nowadays

members must want to cooperate, as opposed to being forced to do so in the

past. Consequently, to create such incentives, the added value of the system,

i.e. the difference between the value of the system and the total value of its

components, must be distributed equitably amongst the members. A similar

problem is faced by the modern human societies, in which added value is

distributed amongst the citizens in a more or less equitable manner by means

of complex chains of commercial relationships or social welfare systems.

The individuals that share resources in modern systems are independent.

Consequently, in large scale systems, members tend not to identify themselves

with other peers. It is thus natural that each member behaves selfishly. Each

member takes every possible action that maximizes his/her gain, being aware

of the current state of the system and having some expectations about actions

of other players. As a result, using game theoretic terms, peers should end

up in a state called Nash equilibrium. In human societies, this situation is

equivalent to anarchy, a political system that permits selfish maximization

of each member’s gain without any form of global optimization. The Price of

Anarchy, another game theoretical tool, can quantitatively measure the loss

of performance in an anarchic system comparing to the best collaborative

solution. If the Price of Anarchy is too high, some coordination mechanisms

must exist in order to penalize users for their selfish behavior, and thus

increase the motivation to behave in socially-optimal way. This situation is

again analogous to modern democratic societies, in which partial coordination

of independent citizens in achieved through formal law, or informal social

conventions. Nobody is eager to pay taxes and thus to reduce his/her net

income. However, everyone expects that the police and the justice system,

paid by taxes, work efficiently. Consequently, taxes are enforced by law and

backed up by large fines for the ones who try to dodge them.

In this thesis, we study grids, a particular class of modern computing

xiv



systems. Grids are large scale supercomputers that permit coordinated use

of resources owned and controlled by different parties. The development of

grids was mostly driven by large-scale scientific experiments. For instance,

the Large Halidron Collider (LHC) will produce immense quantities of data

that must be analyzed by and shared between physicists around the globe.

Grids are currently more and more accepted both in other scientific projects

and in industry.

Many working grids have shown that grids enable cooperation between

the users. In EGEE grid, particle physicists from around the world jointly

analyze data produced in CERN. In France, Grid’5000 project not only pro-

vides a large scale experimental platform, but also integrates parallel process-

ing community, enabling scientists to share their knowledge. Users consider

important this social effect of the grid.

It seems that grids reached their maturity concerning both the hardware

and the software stack. Fast interconnection networks became available with

the increased adoption of fiber-optic communication links. Many grid mid-

dleware implementations provide implementation of basic services, like large

scale data transfer, remote execution of a job, or basic security tools.

Consequently, the available technologies make grids a community-like sys-

tem that is facing the same problems as other communities face: selfishness

of individual members and fair-sharing of the system’s added value.

In this work, we employ the theory of equitable multicriteria optimization

and game theory to study the problem of managing resources in grids. We

prove that, similarly to other anarchic systems, grids without any form of

centralized control or coordination will work inefficiently. Yet, with some

level of coordination, it is possible to share the pool of available resources

fairly amongst participants, so no-one loses by cooperating.
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7 Résumé étendu en français 165
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Chapter 1

Introduction

1.1 Motivation

Grids introduce a number of new, fascinating issues to the problem scheduling

and resource management. At the same time, many important applications

require computing performance that nowadays can be delivered only by grids.

In this section, we describe in detail our motivation to study grid resource

management and scheduling.

Many high performance computing applications must on grids, as the

quantity of data to analyze, or the sophistication of models rises faster than

the Moore’s law. Consequently, those applications are not feasible to compute

on any single supercomputer.

At the same time, grids are a prominent example of a modern computer

system based on sharing. Thus, our methods and conclusions can be adapted

to related fields, such as peer-to-peer systems.

The grid hardware and software reached a certain level of maturity that

allows us to analyze resource management on a certain level of abstraction.

The problem of resource management in grids is difficult. Even on the

level of a single supercomputer, resource management is a key to achieve

acceptable performance. At the same time, most of the associated algorithmic

1



CHAPTER 1. INTRODUCTION

problems are computationally hard. A grid, by its decentralization, adds

new, intriguing issues, such as ensuring fairness between the participating

institutions or coping with their selfish behaviour.

Existing approaches to grid resource management have some important

drawbacks. A number of earlier works ignored the organizational decentral-

ization of the grid. Broker-based approaches are unable to model the grid

as a whole, as they rely on externally-set prices to control the access to the

resources. Finally, in economic approaches, although the price forms part

of the model, it is usually expressed in some kind of currency, a fact that

may negatively influence sharing and cooperation, and thus the community

of users participating in the grid.

1.2 The Goal and the Scope of the Work

The aim of this work is to study the effects of the increased decentralization

in grid scheduling by means of simple mathematical modeling of the funda-

mental features that make grids different from classic parallel computers.

Grids are composed of resources being under different administrative do-

mains [Foster, 2002]. We claim that grids must be studied with approaches

capable of seeing this organizational heterogeneity. We propose two kinds of

mathematical frameworks: game theory in systems in which owners of indi-

vidual resources have complete control over their machines; equitable multi-

criteria optimization in more centralized systems, in which a grid resource

manager can schedule jobs on resources, yet different stakeholders must be

treated fairly.

We do not propose a fully-featured software that schedules jobs in grids for

a number of reasons. Firstly, a number of such programs is already available

[Berman et al., 2003, Dumitrescu et al., 2005, Kurowski et al., 2004a]

[Capit et al., 2005]. Secondly, at the current level of development of grids, a

scheduler cannot be used in systems other than exactly the one for which it

has been created, as the software stack, the architecture and even the underly-

2
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ing assumptions and predicted usage scenarios differ. Thirdly, the relatively

newness of grids and, consequently, the lack of widely adopted validation

techniques causes scientific validation of such programs hard. Instead, we

analyze our models with means similar to these used in scheduling theory.

We provide a theoretical analysis of worst-case scenarios, lower bounds on

performance of algorithms and simulation results, where appropriate.

1.3 Tools

In this section we provide a summary of the theoretical tools used in this work.

We discuss multicriteria optimization in Section 1.3.1, the axiomatic theory

of fairness in Section 1.3.2, game theory in Section 1.3.3 and approximation

algorithms in Section 1.3.4.

1.3.1 Multicriteria Optimization

Multicriteria optimization problems are specific optimization problems in

which more than one function is to be optimized. Therefore, before defining

multicriteria optimization approaches, we consider a standard, monocriterion

optimization problem.

Definition 1.1. [Papadimitriou and Steiglitz, 1998] An instance of an opti-

mization problem is a pair (X, f) where X is any set, the domain of feasible

points; f is the cost function, a mapping f : X → R1. The problem is to find

x∗ ∈ X for which ∀x ∈ X : f(x∗) ≤ f(x).

In multicriteria optimization, there are a number of cost functions f1, . . . , fN

to be optimized, corresponding to different criteria.

Definition 1.2. An instance of an multicriteria optimization problem (IMOP)

is a pair (X, f ) where X is any set, the domain of feasible points; f =

[f1, . . . , fN ] is a vector-function that maps X into the criterion space of out-

come vectors Y = RN ; fi is the ith criterion, a mapping fi : X → R1.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Relation of Pareto-dominance. Point [2, 1] (black cross) is dominated by all the

points in the light-gray rectangle where both criteria have lower values. [2, 1] dominates all

the points in the dark-gray rectangle where both criteria have higher values.

The problem is to find x∗ that minimizes all the objective functions f =

[f1, . . . , fN ].

Note that the above definition specifies that we are interested in optimiz-

ing all the objective functions. We have to assume a certain solution concept

[Kostreva et al., 2004] that precises what is the meaning of minimization of

multiple functions. Usually, a optimality is defined as Pareto-optimality,

which, in turn, is defined through the relation of Pareto-dominance.

Definition 1.3. An asymmetric, irreflexive and transitive relation

(RN , RN ,≺P ) is the relation of Pareto-dominance iff y′ ≺P y′′ ⇔ ∀1≤i≤N :

y′
i ≤ y′′

i ∧ ∃1≤j≤N : y′
j < y′′

j .

Informally, y′ ≺P y′′ iff y′ is as good as y′′ regarding all criteria and

better regarding at least one (see Figure 1.1).

Definition 1.4. If y′ ≺P y′′, y′′ is Pareto-dominated by y′.

Definition 1.5. y′ is Pareto-optimal iff it is not dominated by any other

point, i.e. ∄y′′ : y′′ ≺P y′.

4



1.3. TOOLS

Figure 1.2: Pareto-dominance and Pareto-optimality. All the feasible solutions (crosses) of

an instance plotted in two-dimensional criteria space [f1, f2]. Boxes denote Pareto-dominated

points. Circles denote points that are optimal for one of the criteria. For each of Pareto-

optimal points [y∗

1 , y∗

2 ], there are no points in a rectangle spanning between [0, 0] and [y∗

1 , y∗

2 ]

(denoted by a gray rectangle).

We use the notion of Pareto-optimity to define a solution of an IMOP.

Definition 1.6. A feasible solution x∗ ∈ X is Pareto-optimal solution to

an instance of the multicriteria optimization problem (X, f ) if the resulting

outcome vector f(x∗) is not Pareto-dominated, i.e. ∄x ∈ X : f (x) ≺P

f (x∗).

Usually, there is a huge number of Pareto-optimal solutions to an IMOP.

In order to solve an IMOP completely, all such solutions must be enumerated.

Figure 1.2 illustrates this concept.

Definition 1.7. The solution to an instance of the multicriteria optimiza-

tion problem (X, f) is the set of all Pareto-optimal solutions X∗ ⊆ X.

Each member is a Pareto-optimal solution ∀x∗ ∈ X∗ ∄x ∈ X : f (x) ≺P

f (x∗). Moreover, all Pareto-optimal solutions belong to X∗, i.e. ∀x ∈ X :

Pareto-optimal(x) ⇔ x ∈ X∗.
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1.3.2 Axiomatic Theory of Fairness

Although extensively studied [Young, 1994], fairness is a complex concept

that depends much on, among others, cultural values, precedents, and the

context of the problem. However, a precise definition is needed to use the

concept of fairness in optimization. In this work, fairness is identified with

distributive fairness, a meaning narrower than social justice [Rawls, 1971].

Distributive fairness is usually related to the question of distribution of

some goods, resources or costs, be it kidneys for transplantation, parliament

mandates, or the costs of water and electricity. In distributive fairness, we

assume that each criterion corresponds to the quantity of goods assigned to

one of independent agents. Thus, the criteria are uniform, which permits

direct comparisons between their values.

Distributive fairness can be precisely described by axioms, which define

a relation of equitable dominance [Kostreva et al., 2004]. Similarly to the

relation of Pareto-dominance, equitable dominance characterizes the set of

solutions to a multicriteria optimization problem.

Definition 1.8. [Kostreva et al., 2004] An asymmetric, irreflexive and tran-

sitive relation (RN , RN ,≺e) is the relation of equitable dominance iff:

anonymity ≺e ignores the ordering of the outcome values. Given any per-

mutation π of (1, . . . , N), ¬
(

[yπ(1), yπ(2), . . . , yπ(N)] ≺e [y1, y2, . . . , yN ]
)

and ¬
(

[y1, y2, . . . , yN ] ≺e [yπ(1), yπ(2), . . . , yπ(N)]
)

monotony a outcome that is Pareto-dominated is also equitably-dominated

i.e. y′ ≺P y′′ ⇒ y′ ≺e y′′

principle of transfers A transfer of any small amount from an outcome

to any other relatively worse-off outcome results in a more preferred

outcome vector, i.e. yi > yj ⇒ [y1, . . . , yi − ǫ, . . . , yj + ǫ, . . . , yN ] ≺e

[y1, . . . , yi, . . . , yj, . . . , yN ]

The notion of equitable dominance, equitable efficiency and equitably-

optimal solution are defined similarly as in Section 1.3.1.
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Figure 1.3: Relation of equitable dominance. Point [2, 1] (black cross) and its symmetric

counterpart [1, 2] (gray cross). The plot is symmetrical regarding f1 = f2 dashed line because

of the anonymity. [2, 1] is dominated by all the points in the light-gray rectangle areas because

of the principle of monotony. [2, 1] is dominated by the points in the light-gray triangle because

of principle of transfers: there, the improvement of the worse-off criterion is greater than the

degradation of the other criteria. Areas painted in dark-gray are equitably-dominated by [2, 1]:

the rectangle areas because of monotony; the trapezoid areas because of the principle of

transfers (the degradation of the worse-off criterion is greater than the improvement of the

better-off criterion)

Definition 1.9. If y′ ≺e y′′, y′′ is equitably-dominated by y′.

Definition 1.10. y′ is equitably efficient iff it is not equitably-dominated by

any other point, i.e. ∄y′′ : y′′ ≺e y′.

Definition 1.11. A feasible solution x∗ ∈ X is equitably-optimal solution

of an IMOP (X, f) if the resulting outcome vector f (x) is equitably-efficient,

i.e. x∗ ∈ X∗ ∄x ∈ X : f (x) ≺e f (x∗).

The axioms of anonymity, monotony and principle of transfers have

straightforward interpretation (Figure 1.3 presents these axioms for a bi-

objective problem). Anonymity states that no criteria is preferred a priori,

e.g. a solution y′ = [2, 1] is equally good as a solution y′′ = [1, 2]. Through

monotony we state that equitably-optimal solutions must be Pareto-optimal,

e.g. y′ = [2, 1] is preferred to y′′ = [2, 2]. Finally, the principle of transfers
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states that a solution improving a worse-off outcome, at the expense of de-

teriorating a better-off outcome is preferred, e.g. y′ = [2, 1] is preferred to

y′′ = [3, 0.5].

Note that equitably efficient solutions are a subset of Pareto-optimal so-

lutions to an IMOP.

An Instance of Equitable Multicriteria Optimization Problem (IEMOP)

can be formulated on the basis of an IMOP, such that the Pareto-optimal

solutions to the IEMOP will be equitably efficient solutions to the IMOP.

The original vector of outcomes of IMOP is transformed into a vector of

cumulative ordered outcomes.

The construction of IEMOP is as follows. First, introduce the order-

ing map θ : RN → RN such that θ(y) = [θ1(y), θ2(y), . . . , θN (y)]. θ is a

permutation of {1, . . . , N} that sorts an outcome vector y according to non-

increasing values of individual outcomes, i.e. θ1(y) ≥ θ2(y) ≥ · · · ≥ θN (y).

Next, apply a linear cumulative map to θ(y), resulting in the cumulative

ordering map θ̄(y) = [θ̄1(y), θ̄2(y), . . . , θ̄N(y)] defined as θ̄k(y) =
∑k

i=1 θi(y).

The coordinates of vector θ̄(y) express, respectively: θ̄1 the largest outcome,

θ̄2 the total of the two largest outcomes, θ̄3 the total of the three largest

outcomes, . . . , θ̄N the total of all outcomes.

The following theorem unites the relations of equitable- and Pareto-

dominance.

Theorem 1.1. [Kostreva et al., 2004] Outcome vector y′ ∈ RN equitably

dominates y′′ ∈ RN , iff θ̄(y′) ≺P θ̄(y′′).

Note that Theorem 1.1 permits to express equitable efficiency for IMOP

in terms of the Pareto-optimality for the IEMOP.

Corollary 1.1. A feasible solution x ∈ X is an equitably efficient solution

of the IMOP (X, f), iff it is a Pareto-optimal solution of the IEMOP (X, θ̄).
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1.3.3 Game Theory

Game theory [Osborne, 2004, Osborne and Rubinstein, 1994] studies math-

ematical games, that is situations in which many independent agents take

decisions. For each agent, the result of the game depends not only on the

decision made by the agent, but also by the other agents.

The agents participating in the game are called players. The decision

player Pk makes is called a strategy σk used by the player. Finally, for each

player Pk, the result of the game is called the outcome uk. The outcome

is a function of player’s strategy σk, but also of strategies of other players

σ = [σ1, . . . , σN ]. With loss of generality, we assume that uk are to be

minimized.

Note that in this work we consider mostly so-called pure strategies, in

which the decision of the player is deterministic. Thus, for brevity, we use the

word strategy for pure strategy. In contrast, a mixed strategy is defined as a

probability distribution over the set of pure strategies of each players, i.e. the

set of decisions available to each player. In [Osborne and Rubinstein, 1994],

a pure strategy is called an action in this context.

The players are assumed to be selfish, i.e. concerned only with optimizing

their own outcomes. The players are also rational. The choice of the player’s

strategy depends only on the optimization of the player’s outcome. Further-

more, the players reason strategically. While making decision, a player takes

into account the decisions he/she expects other players will take.

In this thesis we study strategic games (also called games in normal form)

[Osborne and Rubinstein, 1994]. In such games, all players chose their strate-

gies at the same time. Thus, while deciding, a player cannot observe the

strategies chosen by others.

The following definition formally introduces a strategic game in a form

used in this thesis (comparing to [Osborne and Rubinstein, 1994] we use out-

come functions and not preference relations).

Definition 1.12. A strategic game is a tuple (P, Σ, u) that consists of:

9
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Table 1.1: The structure of payoffs in Prisoner’s Dilemma [Osborne and Rubinstein, 1994].

The payoff specify the number of years a player will spend in prison. The payoff of the row

player is in the top left corner, the payoff of the column player is in the bottom right corner.

to confess not to confess

to confess 3 0

3 4

not to confess 4 1

0 1

• a finite set P = {P1, . . . , PN} of players;

• for each player Pk ∈ P, set of available strategies Σk = {σk}, Σ =

{Σk};

• for each player Pk ∈ P, an outcome function uk : Σ → R

Table 1.1 presents the structure of payoffs in a strategic game called the

Prisoner’s Dilemma (PD). In PD, each of two players has two possible strate-

gies, Σk = {to confess, not to confess}. The payoffs uk are symmetric and

specify the number of years a player will spend in prison. For instance, if

both players chose to to confess, each of them will spend 3 years in prison.

If one player confesses while the other stays silent, the former will be freed

and the latter will spend 4 years in prison.

Definition 1.13. Nash Equilibrium (NE) is a profile of players’ strategies

σNE = [σNE
1 , . . . , σNE

N ] such that no player has an incentive to unilaterally

change his/her strategy. Given the NE strategies of other players, each player

optimizes his/her outcome by playing a NE strategy.

∀k ∀σk 6= σNE
k : uk(σNE

1 , . . . , σk, . . . , σ
NE
N ) ≥ uk(σNE

1 , . . . , σNE
k , . . . , σNE

N )

A game is not guaranteed to always end in a NE. However, NE tries to

capture players’ behavior in a steady state of the game. It is thus usual to

analyze a game by analyzing the payoffs of players in NE.

10
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For instance, in PD the unique Nash equilibrium is (to confess, to confess).

Nash Equilibrium can be not optimal, i.e. there might exist a profile of

strategies resulting in a more preferred outcome for each player (equivalently,

the outcome vector of a NE is not necessary Pareto-optimal). For instance,

in PD u
(
(not to confess, not to confess)

)
≺P u

(
(to confess, to confess)

)
.

In order to compare the performance of the whole system between two

profiles of strategies σ1 and σ2 , classic (utilitarian) approaches compare

sums of outcomes of individual players. σ1 is preferred to σ2 iff
∑

k uk(σ1) <
∑

k uk(σ2). Such an aggregation is meaningful only if outcome functions

are cardinal [Samuelson and Nordhaus, 1998], and their values are directly

comparable which each other. As this assumption is considered too strong

in general, a so-called system goal can be defined, as a function of players’

strategies ug(σ). Using ug(σ), σ1 is preferred to σ2 iff ug(σ1) < ug(σ2).

Note that this notion includes utilitarian performance, that can be defined

as uUTIL
g (σ) =

∑
k uk(σ).

Definition 1.14. The social optimum is the profile of strategies σSOC that

optimizes the system goal ug, i.e.

∀σ ug(σ
SOC) ≤ ug(σ).

The Price of Anarchy (PoA) [Koutsoupias and Papadimitriou, 1999] is

a quantitative measure of inefficiency of the worst NE. PoA can be inter-

preted as the game-theoretical equivalent of worst-case performance ratio of

an algorithm (see the next section).

Definition 1.15. The Price of Anarchy (PoA) is the maximum ratio between

the system goal in a NE and the socially-optimal result:

PoA =
max

σ
NE ug(σNE)

ug(σSOC)
.

The max function in the numerator corresponds to the fact that there

might be more than one Nash equilibrium.
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1.3.4 Approximation Algorithms

Many optimization problems are NP-hard [Garey and Johnson, 1979], thus

it is not possible to solve them optimally by a polynomial algorithm, un-

less P = NP . However, many problems become considerably easier if the

requirement of optimality is relaxed. Instead of searching for the optimal

solution, the relaxed problem consists of returning any solution that is at

most ρ times worse than the optimal one.

Approximation algorithms [Hochbaum, 1997] are a class of polynomial op-

timization algorithms for NP-hard problems. An approximation algorithm

has a guarantee on its worst-case performance, called the approximation ra-

tio ρ.

Definition 1.16. The approximation ratio ρ of an algorithm A for a mini-

mization problem P is the minimum r such that for every problem instance

(X, f) ∈ P the cost f(xA) of the solution xA returned by A is at most r times

larger than the cost f(x∗) of the optimal solution x∗, i.e.

ρ = inf
{
r ≥ 1 : ∀(X, f) ∈ P :

f(xA)

f(x∗)
≤ r
}

.

1.4 Related Work

Grid systems, being one of the most complex computer systems ever built,

span a number of disciplines of computer science. Consequently, the related

work is fairly broad. We start the survey with grid systems in general in

Section 1.4.1, then we review “classic” grid scheduling (Section 1.4.2) and

two specific approaches that take into account distributed nature of the grid:

free market (Section 1.4.3) and game theory (Section 1.4.4).

1.4.1 Grid Systems

The grid [Foster and Kesselman, 2004] is a computer system that allows co-

ordinated usage of resources that are under various administrative domains.
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In this Section we discuss the main differences between the grid and conven-

tional supercomputing systems. We focus in this thesis on the administrative

and social challenges caused by the novel features of the grid. Nevertheless,

we briefly present the most popular software (middleware) that provides ba-

sic functionality of the grid. Finally, we present two projects providing grid

infrastructure that form the context of our work: EGEE [EGEE, 2007] and

Grid’5000 [Bolze et al., 2006].

According to the most commonly used definition [Foster, 2002], a grid is

a system that fulfills the following assumptions:

• Resources are not subject to centralized, administrative control.

• Standard, open protocols are used.

• Non-trivial Quality-of-Service are delivered.

The first point defines that the system is distributed not only in computer

science meaning (e.g. non-zero latencies), but also administratively. The

second point requires that the grid, rather than being a single application,

creates an architecture on which various applications can be run. Finally,

the third point guarantees that the resources are shared in coordinated way,

and thus the utility of the whole system is greater than the sum of its parts.

Existing grid projects are based on middleware, software that provides

the basic functions of the system. Currently, a number of grid middle-

ware projects are competing. Basically, there are two main architectural

paradigms for the middleware: Service-oriented grids and lightweight grids.

Service-oriented paradigm [Foster and Kesselman, 2004] describes the

grid as a Service-Oriented Architecture (SOA). A service encapsulates not

only traditional, physical resources (such as computer or a storage system),

but also databases, software licenses, data transfers, etc. SOA defines uni-

form interfaces for various services. The access to a service is granted through

Service-Level Agreements (SLAs), a trade contract between the client and the

resource provider that specifies in detail the parameters of the resource. The

Globus Toolkit from version 4 [Foster, 2005] follows this approach.
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Service-oriented paradigm has been widely criticized for its complexity:

large overhead to access the resources and difficulties for service providers

and developers. Lightweight grid middleware projects seek to provide tools

for a certain community. These projects focus usually on high-performance

computing, i.e. executing computationally- or data-intensive jobs over large

set of heterogeneous resources. Lightweight grid middlewares include gLite

[gLite, 2007] (used in [EGEE, 2007]), CiGri [CiGri, 2007, Calas et al., 2005]

and OurGrid [Andrade et al., 2003].

In this thesis we focus, however, on the economical, or even sociological

challenges caused by the fact that the grid crosses administrative boundaries.

In this meaning, a grid is also a community of users or providers and sets

of formal rules and informal “good manners”. Consequently, we describe two

important grid projects, EGEE and Grid’5000, from an administrative point

of view.

EGEE [EGEE, 2007] provides stable, production-level computing plat-

form for computationally- and data-intensive applications. The system has

very large scale, as it unites resources from over 200 sites providing, in total,

over 30 000 processors. Users of the grid are federated in Virtual Organiza-

tions (VOs). Each VO groups users with common interests (e.g. computa-

tional chemistry). VOs are independent from existing (physical) institutions

such as universities or laboratories. EGEE enables VOs to use resources

granted by providers. Each provider decides which VOs can use its resources

and it is obliged to manage its resources daily by e.g. fixing defect nodes, or

installing new versions of middleware. However, providers do not have any

specific rewards for granting access to their resources.

Grid’5000 [Bolze et al., 2006] is a French national grid initiative that pro-

vides a new kind of scientific instrument for computer scientists. Grid’5000

makes it possible to test distributed systems in settings very close to the real-

ity, at the same time providing rigorous scientific environment, allowing, for

instance, to repeat an experiment in exactly the same settings. Each of 17

laboratories participating in the project grants the whole community access
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to the local resources. At the same time local users can run their experi-

ments on the whole platform. Neither users, nor their host laboratories have

to pay to access the non-local resources. However, there exists a number of

more or less informal rules of savoir-vivre, such as running large-scale exper-

iments preferably during nights and weekends, or not submitting more than

2 advance reservations.

1.4.2 Scheduling Theory

The mainstream of the current research on scheduling and resource manage-

ment [Feitelson et al., 2005] concerns systems in which the performance of all

jobs is optimized. Usually, a common metric (e.g. the maximum completion

time) is optimized and thus all the jobs are treated in approximately equal

manner (sometimes weights are used to express their relative importance).

This approach is justified by the fact that the system has one owner (an orga-

nization) which is able to enforce policies on the local users. Load-balancing

can be achieved in such systems by Work Stealing (WS). Each time a pro-

cessor becomes free, it connects to its (loaded) neighbors in order to take off

some of their load. It can be proved that WS delivers good performance (un-

der some hypotheses) when the makespan is optimized in an on-line system

[Acar et al., 2002].

Nevertheless, the main difference between a grid and a large-scale su-

percomputer is that a grid is, by its definition [Foster, 2002], formed by

resources controlled by different administrative entities. In the context of

grid computing, multi-criteria approaches may be used. Different criteria

either express performance of different jobs [Marchal et al., 2005] (or sets of

jobs as in [Agnetis et al., 2004]), (centralized scheduling), or different factors,

such as completion time and cost of one job [Kurowski et al., 2004b] (broker-

based scheduling [Berman et al., 2003]). A scheduling algorithm is expected

to deliver Pareto-optimal solutions. The main disadvantage of centralized

scheduling is that it requires a centralized control over all the resources and

all the jobs. Given the action enforced by the scheduler on the others, a
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user does not have guarantee that his/her solution is optimal. The main

drawback of broker-based scheduling is that optimizing the execution of one

job independently of the others might not necessarily lead to good results in

grids with many users trying to execute their jobs in parallel. Actions of each

user influence the state of the environment and consequently the parameters

of functions optimized by other users’ brokers. Therefore, users might be

tempered to influence the environment in order to create most favorable con-

ditions for their job. Optimization alone is not able to model such feedback

loops.

1.4.3 Economic Approaches to Grid Resource Manage-

ment

Grid economic approaches [Buyya et al., 2005] [Wolski et al., 2003] analyze

grid resource management by means of market economy. Each resource has a

monetary cost for its usage; each user has a budget to spend on the execution

of his/her jobs.

The simplest approach to match users and resources is to organize auc-

tions [Buyya et al., 2005] each time a user is looking for resources for the

execution of his/her job. In such an auction resources of a requested type

compete for the job. However, most studies proposing auctions as a way of

trading resources leave many important questions unanswered. Especially, it

is not clear how should the bids be formulated and how should they react to

previous auctions. Additionally, the concept of the auction itself has some

specific drawbacks, concerned with the unpredictability of prices. For an

user, it is hard to balance his/her budget between a number of different jobs

(although there exists a mechanism of combinatorial auction, in its general

form it is computationally expensive to implement [Walsh et al., 2001]). For

an owner, who considers investing in the costly infrastructure, it is hard to

calculate the expected return of investment.

Commodity markets for trading the access to the resources

[Kenyon and Cheliotis, 2004], similar to markets for e.g. soya bean, seem to
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be more stable [Wolski et al., 2001], as a large number of buyers and sellers

of homogeneous good is centrally matched. However, computational power is

not a trivial commodity, because both resources and applications are hetero-

geneous. Usually, an application needs a certain operating system, libraries,

system architecture, size of RAM locally available. Moreover, its perfor-

mance depends heavily on various parameters, like e.g. speed of interconnec-

tion network [Gruber et al., 2006]. Heterogeneity divides the computational

market into many sub-markets, in which one player is able to manipulate the

price. Consequently, the resulting market is far from the perfect competition

principle [Samuelson and Nordhaus, 1998], the fundamental assumption of

free-market economy, and its efficiency cannot be guaranteed. In addition,

commodity markets (with derivative tools, such as futures or options, players’

strategies etc.) are complex instruments. Considering that grids are already

one of the most complicated computer systems ever created, the introduction

of another complex system to manage their resources seems to be both risky

and, as we show in this work, not always necessary.

Moreover, there are some disadvantages of the concept of “money” itself.

Firstly, “money” requires a centralized entity, a form of a grid bank, to keep

track of it. Secondly, a recent psychological study [Vohs et al., 2006] has

shown that money has a negative impact on cooperation. In a number of

experiments, participants performed an irrelevant activity during which they

were exposed to the concept of money (represented by e.g. a screen-saver

with floating banknotes). Then, the participants were asked to perform a

collaborative task (like helping to pick up pens that “accidentally” fell or

preparing a place for a discussion). Comparing to the control group, the

participants who were exposed to “money” were less willing to help others

and worked longer alone before asking for help.

Some semi-market approaches were also proposed. The Network of Fa-

vors, implemented in the OurGrid project [Andrade et al., 2003], implements

a kind of barter trade. A grid job is executed if there are no local jobs, but it

is canceled if a local job appears. Through this approach a site can thus chose
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a grid job to be executed, but it cannot solve the general problem whether

to execute a grid job. There are also no guarantees on the finish time of a

grid job, as a grid job is suspended when a new local job appears.

1.4.4 Game Theory

Approaches presented in this section analyze the problem of grid resource

management by means of game theory.

A number of papers focus on creating rules to avoid free-riders, users

who gain from the system without contributing [Ranganathan et al., 2004]

[Golle et al., 2001, Ghosal et al., 2005, Buragohain et al., 2003]. There were

some theoretical works on this subject, in which game theory models were

formed to model users’ behavior. Unfortunately, the models proposed cap-

tured mainly steady-state behavior of the participants, as early peer-to-peer

systems were focused on file-sharing. In file-sharing (and similarly, in selfish

caching problem [Chun et al., 2004], [Laoutaris et al., 2005]), it is possible

to formulate a static (not depending on time) utility function, which can

express the gain each user gets from the system in a closed formula. In the

context of distributed resource management, such a solution is proposed in

[Volper et al., 2004] and focuses on maintaining good relationships of a node

with its neighbors by accepting neighbors’ jobs to be executed on the node

and therefore increasing the probability that the node’s jobs will be accepted

by its neighbors in the future. However, the need for computational power is

usually highly time-dependent with peaks of activity followed by periods of

considerably lower needs. When the local demand is high, the ability to use

foreign computational power is valuable and, at the same time, the execution

of foreign jobs becomes costly. Yet, foreign resources are almost useless when

the local demand drops below some threshold.

[Kwok et al., 2005] proposes a model in which individual clusters (for ex-

ample belonging to different departments of a university) are visible as a one

site in the grid. The model assumes that a job has been already accepted

for the execution by the site. [Kwok et al., 2005] studies which cluster from
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that site should eventually execute the job. Our model concerns the assump-

tion which [Kwok et al., 2005] made a priori, as we are studying the problem

whether a site should accept a job coming from another site.

There exist also some previous work where the infrastructure was consid-

ered a common property. [Angel et al., 2006, Liu et al., 2005] consider jobs

as players in the game. Each job minimizes its completion time through

choosing one of available processors. [Grosu and Chronopoulos, 2005] con-

siders steady state scheduling in which users, players in the game, send parts

of their load to one of the available processors. Similarly, each user minimizes

the expected response time of his/her jobs.

Another related field of research is mechanisms design for the load balanc-

ing problem [Grosu and Chronopoulos, 2004]. Generally, a mechanism can

balance the agent’s cost of invoking an action by a payoff paid to the agent

[Fudenberg and Tirole, 1991]. This enables the mechanism to control the

global behavior of the system. For instance, [Grosu and Chronopoulos, 2004]

introduces a mechanism which assigns a fraction of a global queue to each

participating site and which encourages the sites to report their true process-

ing power, therefore enabling the scheduler to take globally-optimal decisions.

The major disadvantage is that a common “currency” for both the cost of

execution and the payoff of players is required.

1.5 Summary of Contributions

In this work, we propose a new model of the grid that facilitates the analysis

of the performance of the whole system with approaches based on game

theory and on equitable multicriteria optimization. We study three concrete

models based on this general framework. For the resulting problems, we

compute price of anarchy, propose scheduling algorithms and compute worst-

case performance ratios. The rest of this section details our contribution.

The Multi-Organizational Grid Model (Chapter 2) describes the grid as an

agreement to share resources between independent organizations. The chap-
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ter is an extended version of [Rzadca, 2007]. Each organization groups users

willing to use the grid but also provides a resource for users belonging to other

organizations. By mixing resource providers with consumers, we are able to

avoid payments, required by economic approaches to grid resource manage-

ment. Regarding existing game-theoretic approaches to resource manage-

ment, in which the infrastructure is considered a common property, we claim

that our approach models better the heterogeneity present in academic grids,

in which a job is viewed through the organization that has submitted it.

To our best knowledge, this work presents also the first application of

the axiomatic theory of equity (Section 1.3.2) to the problem of scheduling.

The framework of this approach is defined in Section 2.4 and then applied

in specific models in Sections 3.3 and 4.3. By considering axiomatic fairness,

we are able to produce a number of solutions that balance the equity of

individual participants with the performance of the whole system.

In Chapter 3 we extend to multiple dedicated processors the problem of

scheduling sets of sequential jobs on a single processor [Agnetis et al., 2004].

The chapter is an extended version of [Rzadca et al., 2007]. In Proposi-

tion 3.2 we prove that, even when a particular class of schedules is con-

sidered, the resulting search space is exponential. In Section 3.3 we propose

two scheduling algorithms for this problem: exact algorithm based on Dy-

namic Programming and a heuristics based on taboo search. In Section 3.5

we show that, if each organization controls the local schedule, the Price of

Anarchy is linear on the number of jobs. We also show that the resulting

game is similar to the Prisoner’s Dilemma.

In Chapter 4 we extend the Divisible Load Scheduling theory

[Robertazzi, 2003] to on-line systems with multiple loads scheduled on re-

sources having different owners. The chapter is an extended version of

[Rzadca and Trystram, 2007]. In Section 4.3 we show that averaging load

balancing produces equitable results. Yet, in Section 4.4 we prove that load

balancing will never be performed in systems when owners have complete

control over their resources. In Section 4.5 we show that, if resources are
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similarly loaded, it is sufficient to force organizations to commit to their

decisions during “longer” time periods in order to make load balancing the

dominating strategy. In Section 4.6, we prove that, with resources controlled

by independent entities, it is not possible to construct a load balancing algo-

rithm based on currently observed queue lengths. In Section 4.7 we propose

a centralized load balancing algorithm that delivers equitable results even

when loads of resources differ significantly.

In Chapter 5 we extend the problem of scheduling rigid, parallel jobs

to sets of jobs on multiple resources. This chapter is an extended version

of [Pascual et al., 2007]. In Section 5.3 we prove that the worst-case per-

formance ratio of List Scheduling algorithm degrades on multiple resources.

We show the lower bound of 2.25 and proof for approximation ratio of 3.

In Section 5.4 we compute the Price of Anarchy for the resulting game. In

Section 5.5 we propose a centralized scheduling algorithm that has a fixed

worst-case performance on the system-wide makespan and at the same time

does not worsen the local makespans of individual organizations.

21





Chapter 2

Multi-Organizational Grid Model

The central notion of our model is that of an organization: an entity that

groups a resource donated to the grid and local users willing to employ the

whole system. Thus, a computational grid logically interconnects several

resources such as clusters, supercomputers, but also pieces of specialized

equipment like sophisticated displays, microscopes, or DNA sequencers (Fig-

ure 2.1). The users of the grid are grouped in organizations, such as lab-

oratories or faculties. Each organization owns one1 of the resources, which

is the organization’s contribution to the grid. By contributing, an orga-

nization expects that its users will be treated fairly when accessing other

resources. We assume that organizations are independent from each other.

Consequently, each organization is concerned only with the performance of

the jobs produced by its members. Moreover, resources may have their local

schedulers, which order jobs to be computed according to some criteria. A

centralized grid scheduler coordinates these local schedulers. However, as

resources are local to organizations, a local scheduler is not obliged to follow

grid scheduler’s advice. For instance, an organization may locally alter the

1Even if an organization has many physical resources, it has complete centralized control

over all of them. Thus, in the context of the general model, such resources can be modeled

as one ’virtual’ resource with many processors.
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Figure 2.1: A Grid (represented by a thick, black ellipse) interconnects resources (depicted by

cylinders) belonging to different organizations, thus crossing organizations’ boundaries (repre-

sented by dotted lines). Jobs (depicted by rectangles) are owned by organizations.

proposed solution or even quit the grid completely, if it finds its performance

unacceptable.

We also assume that there are no external means of compensations for ac-

cessing resources. An organization cannot explicitly “pay” other organization

neither in some kind of money, nor in barter trade.

2.1 Definitions and Notation

In this section we formally define basic elements of the model and provide

corresponding notation. Then, we define possible characteristics of the model

that change the available information and the type of jobs to be scheduled.
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2.1.1 Elements of the Model

The model of the grid is composed of three basic entities: resources, organi-

zations and jobs.

Resource (denoted as Mk) is an abstraction of an entity that process jobs

(e.g. a supercomputer, a cluster, but also a telescope or a sophisticated

display). A resource is composed of one, or more processors that do

the actual work.

Organization (denoted as Ok) is an administrative entity (such as a faculty,

a laboratory or a company) that groups users and provides access to a

resource. Organizations are independent. O = {O1, . . . , ON} denotes

the set of organizations in the model.

Job (denoted as J i
k) is an entity that, in order to be completed, requires an

access to a resource during certain time pi
k . J i

k is ith job produced

(and owned) by organization Ok. Index i is used only to distinguish

between jobs on a processor and does not imply the arrival or execution

order. Jk stands for the set of all jobs produced by Ok. nk = |Jk| is

the number of such jobs. In a dedicated grid model, each job must be

executed on a certain resource Ml. J i
k,l denotes such a job.

For resource Mk, jobs produced by the resource’s organization Ok are

called local jobs. All other jobs assigned for execution on this resource are

called foreign jobs. For organization Ok, remote jobs are the jobs produced

by this organization which are to be executed on non-local processors.

2.1.2 Additional Characteristics of the Model

Informally, the goal of the scheduler is to find the allocation (where) and

the time of execution (when) for each job. However, the scheduler’s decision

depends greatly on the information available (e.g. whether all the jobs known

in advance or not) and the type of jobs (e.g. whether a job can be stopped and
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resumed later or not). Such properties translate into additional assumptions

in the modeling process. A number of standard properties is commonly used

in the literature [B lażewicz, 1996, Brucker, 2004]. Here, we define the ones

used in this work.

Parallel / Sequential Job J i
k that must be computed in parallel on more

than one processor (on a fixed number of qi
k processors) is called a

(rigid) parallel job. A sequential job requires only one processor.

Preemption If preemption is allowed, a job can be interrupted during exe-

cution. Otherwise, each job must be executed completely and cannot

be interrupted after a processor has started to execute it.

Divisible Load This model allows to divide jobs into a large, but finite,

number of fragments that are independent and can be processed in any

order.

Release dates Job J i
k that has a non-zero release date ri

k cannot be started

before time ri
k (it is not ready).

Off-line / on-line A model is off-line if release dates ri
k of all the jobs

are known before the scheduling starts. Otherwise, it is called on-line

[Sgal, 1998].

Clairvoyance In a clairvoyant model, the exact size pi
k of every job sub-

mitted to the system is known. For a non-clairvoyant model, there are

several possibilities. Job’s size pi
k may be completely unknown until

the job finishes, it may be estimated with a certain error, or the owner

may provide the maximum running time.

Time / Space Sharing If a resource has many processors, they can be

shared by the jobs in many ways. In time sharing, at any moment, a

resource executes only one job (note that time sharing does not require

preemption). In space sharing, a resource is split between jobs that run

on the resource’s processors in parallel.
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2.1.3 Additional Notation

We use the standard game-theoretic notation of −k (dash) to denote the

set containing everything but the element k, so J−k denotes a set of jobs

produced by all but kth organization, J−k =
(⋃

l Jl

)
−Jk. Similarly, · (dot)

denotes the set containing all possibilities, e.g. in dedicated grid model, J·,l

is the set of jobs produced by all organizations that must be executed on

resource Ml, J·,l =
⋃

k Jk,l.

2.2 Performance Measures

In order to assess the performance of the system, we measure the completion

time of jobs [B lażewicz, 1996, Brucker, 2004]. However, there are various

levels of aggregation, on which the performance can be measured: the level

of individual jobs, the level of organizations or the level of the complete

system. There are also various ways in which such an aggregation can be

made.

Note that by focusing on the classic notion of completion time, we implic-

itly assume that the goal of the system is the high-performance computing,

i.e. to finish the computation of the given set of jobs as fast as possible.

Recently, a number of other goals have been introduced in literature, such

as maintaining reliability when resources are falling [Dongarra et al., 2007] or

considering power consumption [Graybill and Melhem, 2002]

[Kim et al., 2007, Albers et al., 2007]. However, by using the completion

time, we are able to study the impact of the notion of organization, i.e. the

novelty of the grid, ceteris paribus, under the same conditions as the classic

parallel systems. Therefore, we are able to compare directly our results.

According to usual notation, Ci
k denotes the completion (finish) time of an

individual job J i
k. To measure the performance experienced by organization

Ok, we may compute two aggregated measures. The sum of completion times

is the sum of completion times of jobs Jk owned by the organization: Ck =
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∑
i C

i
k. The makespan (maximum completion time) is the time when the last

organization’s job finishes Cmax(Ok) = maxi C
i
k.

The sum of completion times Ck is a measure more equitable than makespan

Cmax(Ok), assuming that the jobs are owned by different users. Both mea-

sures satisfy the condition of symmetry, but the makespan is not monotonic,

as it only reflects the improvements of the last finished job. However, both

measures do not fulfill the principle of transfers. The level of equity of the

measure being optimized by the scheduler has an direct impact on produced

schedules. In the classic multiprocessor scheduling problem, the optimization

of the sum of completion times results in schedules better for users, whereas

the optimization of makespan Cmax produces schedules with higher utilization

of the resource [Dutot et al., 2005].

We define similar measures on the system level. The global sum of com-

pletion times ΣC is defined as the sum of completion times of all the jobs

in the system ΣC =
∑

k

∑
i C

i
k. The global makespan Cmax is the time when

last job in the system finishes Cmax(Ok) = maxi,k Ci
k.

In a system with non-zero release dates, the completion time of the job

is not appropriate to evaluate the actual performance. A job released early

and completed late has similar completion time as a job released late and

completed immediately. Yet, the performance experienced by the first job is

low comparing to the latter. Consequently, it is usual to measure instead the

flow time F i
k, the time job J i

k spends in the system. Flow time is defined as the

difference between the completion time and the release date, F i
k = Ci

k − ri
k.

The aggregated measures are defined similarly. The sum of flow times of

organization Ok’s jobs Jk is defined as Fk =
∑

i F
i
k.

2.3 Assumptions and Scope of the Model

From the perspective of resource management algorithms, a grid is an agree-

ment between selfish, independent organizations to share their resources. In
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this section, we present the assumptions of our model. Note that some of

these assumptions are implicitly present in the chosen notation.

We assume that there are no external means of recompense for accessing

resources. An organization cannot explicitly “pay” other organization neither

in some kind of money, nor in barter trade.

Each user is local to some organization. There are no external, nor “grid-

level” users. Consequently, we may assume that each job that has been

produced by a user is owned by the user’s organization.

For the most part of this work, we assume that all the available resources

are owned by organizations. If an organization is outside the grid, it has com-

plete control over the local resource. There are no external, nor “community-

owned” resources. For comparison, we also study systems in which there are

no local resources. In such systems, all the resources are owned directly by

the administrative entity that organizes the grid. The organizations compete

for the access to the resources. The goal of the grid organizer is to share the

resources in a fair manner.

We assume that the organizations are administratively independent. There

is no central, administrative entity that forces them to cooperate. A “grid” is

rather a possibility than an obligation. If an organization is not satisfied with

the performance of the system perceived by its local users, it can eventually

reject the agreement and quit the grid.

The organizations are selfish in the game-theoretic meaning. Each or-

ganization is concerned only with the performance of the locally-produced

jobs. Consequently, organizations are not jealous of results achieved by oth-

ers, if they do not have a direct, negative impact on the locally perceived

performance.

Organizations behave rationally. They take all the possible actions to

optimize the performance of the local jobs. Thus, they not try to “punish”

others, if it does not lead to better local performance. Similarly, an organiza-

tion will not be altruistic towards other organizations. The only motivation

the organizations have to take part in the grid is to optimize the performance
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of the locally produced jobs.

We assume that resources are connected by high-performance network

links offering negligible latency and high bandwidth. We also assume that

the grid offers some middleware that allows to send a job to a resource and

then to execute remotely the job. Thus, the actual connections, both on the

hardware and on the software layer, are out of the scope of this work.

Finally, we assume that the system (resources, communication links and

software) is perfectly reliable. Resources do not break down, are always

available and do not require maintenance.

2.4 Approaches for Optimization

In this work we consider the minimization of the completion time of jobs in

the grid defined in the previous sections. We introduce a centralized, grid-

level scheduler which proposes a schedule to each resource. However, the

power of the centralized scheduler and, consequently, the kind of solutions it

can impose on individual processors, depends heavily on the level of control

the individual organizations have on their resources.

In this thesis, we study the problems from three perspectives, leading

to three different approaches for optimization: multi-criteria optimization,

game theory and constrained multi-criteria optimization.

Firstly, in the most restricted case, we can assume that the organiza-

tion is not able to impose any schedule on its local resource, neither it is

able to quit the grid. This assumption reflects the models in which all the

resources are owned and controlled directly by the grid. The problem trans-

forms then into multi-criteria optimization of performance measures of re-

spective organizations. We assume that all the organizations use the same

type of criteria. Consequently, the grid scheduler optimizes either the vec-

tor of completion times [C1, . . . , CN ], makespans [Cmax(O1), . . . , Cmax(ON)]

or flow times [F1, . . . , FN ].
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Secondly, each organization may have complete control over the schedule

of the local resource. In such a situation, the grid scheduler acts only as

an advisor. The proposed solution must be profitable for each organization.

However, each organization is tempted to modify it locally, if the organiza-

tion’s gain is increased. Consequently, such a problem must be analyzed with

a game-theoretic approach. The framework of such a game may be defined

as follows:

• the set of players is equal to the set of organizations O;

• strategy σk of player Ok is the scheduling of jobs on player’s local

resource Mk;

• payoff function uk for player Ok resulting from a profile of strategies σ =

[σ1, . . . , σN ] is the performance of player’s local jobs Jk. To measure

the performance, a player may use any measure defined in Section 2.2.

The third situation is a combination of the first two. We assume that

each organization independently decides whether to join or to leave the grid.

However, once inside, the organization grants complete control over its re-

sources to the grid scheduler. Yet, an organization will leave the system, if

the gain experienced is lower than the performance the organization could

achieve being outside. Therefore, in order to sustain the grid, the resource

management system must achieve an acceptable performance not only at the

level of the community of users (as in classic, monocriterion scheduling), but

also on the between-organizations level. This problem may be defined as con-

strained multi-criteria optimization of the vector of performance measures of

respective organizations. For each organization, its performance measure of

the resulting schedule must be higher than the performance if the organi-

zation remained outside the grid and maintained complete control over the

local schedule.

The three approaches defined above are far from being exhaustive to the

problem of grid scheduling. However, we claim that they present the prob-

lem in three distinct perspectives that are (or will be) mostly widespread

31



CHAPTER 2. MULTI-ORGANIZATIONAL GRID MODEL

in future grid systems. The multi-criteria optimization approach is suitable

for classic systems, in which a number of resources must be shared between

organizations in a fair manner. A classic application scenario is a super-

computer bought by a state agency, that is later shared between a number

of public laboratories and universities. The game theoretic perspective con-

cerns systems with almost no central control, in which independent parties

try to maximize their own gain, with no motivation to optimize the per-

formance of the system perceived as a whole. We expect that some highly

distributed, peer-to-peer systems will behave in that manner. Finally, the

third perspective, constrained multi-criteria optimization, concerns systems

in which individual goals are noticed, but not necessary selfishly maximized.

Some level of trust and social control can be maintained in the form of e.g.

personal respect of administrators of individual resources. This perspective

models grids in which there are a few participating organizations and the

participation is somehow limited (like in e.g. academic grids).

The perspective presented in this chapter gives a spectrum of views on

grid systems and results in different optimization problems and requires dif-

ferent approaches to solve them. Such a spectrum allows us to compare the

performance and thus to measure the cost of the decreased control. This

spectrum ranges from systems that are almost like classic supercomputers

(optimization), through partly distributed ones (constrained optimization),

to systems that are highly distributed (game theory).

2.5 The Model and Real-World Grids

The presented framework emphasizes the significance of individual organi-

zations that form the grid. We argue that it closely models a number of

academic grids, such as Grid’5000 [Bolze et al., 2006], which are in fact a

cooperative of participating laboratories. In this section, we briefly compare

our model with notions present in other types of grids.
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Our notion of an organization differs slightly from Virtual Organization

(VO) [Foster and Kesselman, 2004]. VO is an entity that groups real-world

organizations to collaborate temporary on a specific project. Thus, members

of a particular VO have the same goal, that is to advance the common project.

However, a VO is not required to provide its own computational resources.

In a provider-consumer scheme, VO can either pay resource providers and

rent the resources, or convince them in another way. Thus, the organization

defined in this thesis can be perceived as a VO that also contributes resources

to a common pool.

Recent attempts to commercialize grid computing focus on so-called Ser-

vice Oriented Architecture (SOA), in which a number of providers sell access

to services to consumers. A “service” is defined very widely as it may en-

capsulate entities as diverse as computational resources, network links but

also software licenses or even access to particular data. An architecture in

which providers are independent of consumers requires some form of com-

pensation for providers who need to cover their expenses (e.g. electricity,

costs of hardware, software or staff). The compensation can be realized

in a form either external to the domain of the problem (such as money

[Buyya et al., 2005, Kenyon and Cheliotis, 2004]), or a kind of barter trade

of CPU power [Andrade et al., 2003]

Note however, that formal payments are not always required in provider-

consumer grids. EGEE grid [EGEE, 2007] uses provider-consumer scheme,

yet providers are either payed indirectly (through e.g. partial funding of

the hardware), or grant their resources for free. All of the participating

institutions are, however, research laboratories or educational institutes, in

which economic profit is less important than the participation in a cutting-

edge research project. Similarly, thousands of providers of computers in

BOINC [Anderson, 2004] grant access to their computers in exchange for the

sense of doing something “for humanity” (or, more down-to-earth, to appear

in one of the various “best providers” rankings).

We assume that there are no “payments” for accessing resources. This
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assumption allows us to study the problem of resource management directly,

thus without requiring the strong assumptions needed by e.g. the free mar-

ket theory. In addition, the resulting resource management systems do not

require book-keeping, complex accounting nor a centralized, trusted bank

that issue money. Finally, we consider that a grid system should promote

cooperation between organizations and individual users. However, the no-

tion of money reduces the willingness of people to cooperate (Section 1.4.3,

[Vohs et al., 2006]).

2.6 Summary

In this section we presented a new framework model of a grid (Section 2.1).

We assume that the grid is a result of an agreement to share resources be-

tween independent organizations. An organization groups local users but

also provides a resource for users coming from different organizations.

We assume that there are no “payments” for accessing resources. This

assumption allows us to study directly, i.e. without studying the market, the

problem of resource management, to avoid the problems of book-keeping and

banking, and finally, to avoid the negative impact the concept of money has

on cooperation.

In Section 2.4, we presented three perspectives from which we will study

the concrete models in next chapters: fair multicriteria optimization, game

theory, and constrained fair multicriteria optimization. In the first approach

we assume that the grid resource management system has a complete control

over resources. The goal is to share them equitably among the organizations.

In the second approach, we analyze the system from the game-theoretic per-

spective. Here, the grid scheduler can suggest a schedule to individual re-

sources. Still, the owner of a resource can alter the schedule, if he/she finds

the resulting modification profitable. Finally, in constrained optimization,

organizations cannot modify the proposed schedule. However, they may re-

ject it (and thus quit the grid), if the organization’s performance is reduced,
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compared to a situation with no grid. These three diverse approaches allow us

to study the impact of different levels of decentralization on the performance

of the system.
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Chapter 3

Resource Sharing

In this chapter, we consider the grid as a tool for accessing specialized re-

sources (see Figure 3.1). We assume that resources are dedicated. Each job

in the system must be computed on a specific resource, not necessarily the

one belonging to the owner of the job. The main problem is when to ex-

ecute such foreign jobs. The solution proposed by classic approaches is to

execute jobs in order of their increasing computation times on each processor

[B lażewicz, 1996]. However, this solution may be inefficient for organizations

owning highly demanded equipment. Another possible solution is to procras-

tinate the execution of “foreign” jobs on each processor, though it is usually

globally inefficient.

We study three models which differ by the level of control the grid sched-

uler has over the resources’ schedules. The three models correspond to three

approaches for optimization defined in Section 2.4.

Firstly, we analyze the problem of fair scheduling in systems in which

resources are owned by the community and the grid scheduler has complete

control over their schedules. As it was stated in Section 2.4, we formulate

the problem as the multi-criteria optimization. In Section 3.2, we study the

complexity of the problem, and in Section 3.3 we propose three algorithms

for multicriteria optimization: an exhaustive search, an exact dynamic pro-

gramming, and a greedy heuristics.

37



CHAPTER 3. RESOURCE SHARING

(a) (b)

Figure 3.1: A dedicated grid composed of two organizations and two dedicated resources.

Each organization produces jobs for both resources (a). O1’s jobs are plotted in continuous

lines, O2’s jobs – in dotted. Jobs are dedicated, therefore there are scheduled on a specific

processor (b). M1 processes white jobs, M2 processes gray jobs.

Secondly, in Sections 3.4 and 3.5 we study the problem of scheduling in

a decentralized case, in which the grid scheduler only suggests a schedule,

which can be later modified by a resource’s owner. This problem will be

analyzed with game-theoretic approach. We show that the game correspond-

ing to decentralized scheduling is analogous to the well known Prisoner’s

Dilemma game. The Nash equilibrium results in significant performance

drop. Therefore, a strong community control is required to achieve accept-

able performance.

Thirdly, in Section 3.6, we analyze the problem of feasible scheduling

in semi-decentralized case. Here, organizations cannot locally modify the

schedule, but they may leave the grid, if the experienced performance is

unsatisfactory. This problem corresponds to the constrained multi-criteria

approach as it was stated in Section 2.4. To find a feasible solution, we use

algorithms similar to the ones used in multi-criteria optimization.
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3.1 Grid Model

In this chapter, we make the following assumptions (in addition to the ones

assumed in Section 2.3) about the system (see Section 2.1.2 for formal defi-

nitions):

• the model is off-line;

• there are no release dates;

• the scheduler is clairvoyant ;

• preemption is not allowed;

• jobs are sequential ;

• each resource has only one processor;

• resources are time-shared between jobs;

• in order to measure the performance, each organization computes the

sum of completion times of locally produced jobs.

These assumptions lead to the following definitions. For resource Ml, a

(list) schedule is a permutation πl : J·,l → (J
πl(1)
·,l , J

πl(2)
·,l , . . . , J

πl(n·,l)
·,l ) of jobs

J·,l that must be executed on that resource. A non-preempting, time-sharing

resource executing schedule πl, firstly executes the first job J
πl(1)
·,l . Then,

when J
πl(i−1)
·,l is finished, J

πl(i)
·,l is started. For simplicity of notation, in the

description of algorithms we treat πl as a vector containing J·,l in the order

of execution.

A Shortest Processing Time (SPT) schedule πSPT
l is a schedule which

orders the jobs of each organization Jk,l according to non-decreasing sizes of

jobs. If there is one resource and one organization, SPT schedule is optimal

with respect to the sum of completion times of jobs [B lażewicz, 1996]. By

SPT, we denote a SPT schedule that orders jobs on all resources according

to non-decreasing execution times, regardless of jobs’ owners.
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A My Jobs First (MJF) schedule is a SPT schedule that orders all the

local jobs J·,l before the rest of the jobs J−l,l.

A grid schedule is a tuple (π1, . . . , πN) that defines a schedule πl for each

machine Ml.

Without loss of generality, let us assume that on each resource and for each

organization the jobs are numbered according to non-decreasing execution

times (i.e. pi
k,l ≤ pi+1

k,l ).

By Ck,l we denote the sum of completion times of jobs Jk,l produced by

Ok and executed on Ml: Ck,l =
∑

i C
i
k,l.

Each organization Ok is concerned with the sum of completion times Ck

of the jobs Jk,· which have been produced by its members. Organization

Ok does not care about the performance of other organizations. However,

as the processors are dedicated, organizations must submit jobs also to non-

local processors. As a result, Ck depends heavily on the performance of jobs

executed on processors other than the organization’s local processor.

3.2 Optimization Approach

The scheduling problem considered in this section is the fair ordering of jobs

J·,l on each resource Ml which minimizes the sums of completion times [Ck] of

all the organizations. This section considers the complexity of the problem.

The optimization algorithms are presented in the next section, as we use

related algorithms in section concerning constrained optimization approach.

We analyze two related problems. Firstly, in Section 3.2.1, we count

how many possible Pareto-optimal solutions exist for a given instance. An

optimal algorithm should return all the optimal solutions, amongst which a

choice can be made by an entity managing the grid. However, we show that

the number of Pareto-optimal schedules can be exponential on the number

of jobs. Consequently, there is no efficient algorithm enumerating all the

optimal schedules.
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As producing all the solutions is not feasible, in Section 3.2.2 we study

the problem of finding just one schedule with given performance for each

organization. We consider a restricted case with one resource and two orga-

nizations. We prove that even in such a restricted case, the decision version

of the problem is NP-Complete. Thus, the complete grid scheduling problem

defined in this section is also NP-hard.

3.2.1 All Optimal Solutions

In equitable multicriteria optimization, the set of equitable solutions is the

subset of the set of all Pareto-optimal solutions. Therefore, the number of

equitable solutions is not higher than the size of the latter set. We firstly

prove that only SPT schedules can be Pareto-optimal, a result that reduces

the solution space considerably. However, we show that, in the worst case,

there is still an exponential number of Pareto-optimal solutions. Neverthe-

less, determining the worst-case number of equitable solutions remains an

open problem.

Firstly, we prove that all Pareto-optimal schedules are SPT schedules.

Then, we consider a restricted case with one resource and two organizations.

We show that for this restricted case, the number of SPT schedules is ex-

ponential. Moreover, it is possible to construct an instance for which the

number of Pareto-optimal SPT schedules is exponential. Finally, we for-

mally prove that the order of Pareto-optimal solutions is not reduced when

considering more than one resource.

We start by proving the following proposition that reduces the number of

reasonable schedules for each resource.

Proposition 3.1. For resource Ml, a schedule which orders jobs Jk,l origi-

nating from a organization Ok not in shortest processing time (SPT) order

is Pareto-dominated by a SPT schedule for these jobs.
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Proof: The proof of this proposition is based on an exchange argument

and it is analogous to the well known proof of the optimality of the Shortest

Processing Time algorithm for a single resource and a single organization.

Let us assume that there are two jobs J i
k,l and J j

k,l executed in non-SPT

order. Job i is longer (pi
k,l > pj

k,l), but it is executed before job j (Ci
k,l < Cj

k,l).

If these two jobs are swapped (resulting in completion times C̃j
k,l < C̃i

k,l), the

sum of completion times of these two jobs will be decreased. J j
k,l completes

earlier (i.e. C̃j
k,l < Ci

k,l, since the first job starts at the same moment, but it

is shorter). J i
k,l completes at the same moment as J j

k,l did before the swap

(C̃i
k,l = Cj

k,l). All the jobs scheduled between these two jobs will complete

earlier, as they will start earlier. The rest of the jobs is not affected by the

swap. Consequently, this swap reduces at least the sum of completion times

Ck for the owner Ok of the jobs being swapped. 2

Note that this proposition does not hold for jobs belonging to different or-

ganizations. Given two jobs with different owners J i
k,l and J j

m,l, J i
k,l executed

before J j
m,l, swapping them would increase Ck, at the same time decreasing

Cm. Consequently, neither solution would Pareto-dominate the other one.

The consequence of the proposition presented above is that the number

of reasonable (Pareto-efficient) schedules is reduced considerably. However,

their number is still very large even when there are only two organizations

O1 and O2.

Proposition 3.2. The number of SPT schedules on one resource is expo-

nential on the number of jobs on that resource.

Proof: Consider resource M1 with n1,1 local jobs and n2,1 foreign jobs. A

multiset (called also a “bag”) is a set which may contain multiple copies of

an element. The schedule can be fully described by a multiset of size n2,1,

with elements {1, . . . , n1,1 +1}. The idea is that each member of the multiset

specifies a placement for one foreign job. In order to construct a schedule

from the multiset, the local jobs are ordered according to SPT. Then, the

shortest foreign job is assigned the smallest element from the multiset, which
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specifies its placement (1 – the job is placed before the shortest local job, 2

– before the second shortest local job, . . . , n1,1 + 1 – after the longest local

job). This element (actually, one of the copies of the element) is removed

from the multiset. The algorithm proceeds with the rest of foreign jobs

(considering them in SPT order). Consequently, the number of SPT schedules

for one resource is equal to the number of multisets of size n2,1 with elements

{1, . . . , n1,1 + 1}, which in turn is equal to the number of combinations with

repetition of (n1,1 + 1) objects from which n2,1 objects are chosen:

(
n1,1 + n2,1

n2,1

)
=

(
n

n2,1

)
≤
(

n
n
2

)
,

where n = n1,1 + n2,1 is the total number of jobs. We will compute the order

of this expression by estimating the logarithm with Stirling’s formula:

log

((
n
n
2

))
= log

(
n!(

n
2

)
!
(

n
2

)
!

)
= log(n!) − 2 log

((n

2

)
!
)

= (n +
1

2
) ln 2 − n + ln

√
2π − 2

(
n + 1

2
ln 2 − n

2
+ ln

√
2π

)

= n ln 2 − 1

2
ln m + ln 2 − ln

√
2π

= ln

(
2n

√
n

2√
2π

)
.

(3.1)

Consequently,

log

((
n
n
2

))
≤ ln

(
2n 2√

2π

)
.

Neglecting the constants, we get:

(
n
n
2

)
∈ O(2n).

2

Note, that one SPT schedule may Pareto-dominate other SPT schedules.

Let us consider an instance in which O1 has three jobs of sizes p1
1,1 = 1,
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Figure 3.2: An instance for which the number of Pareto-optimal SPT schedules on one pro-

cessor is exponential. There are two organizations O1 and O2. Their jobs are denoted by con-

tinuous (O1) and dashed (O2) lines. Each organization has n jobs of lengths 1, 2, 4, . . . , 2n−1.

p2
1,1 = 3, p3

1,1 = 5 and O2 has two jobs of sizes p1
2,1 = 2, p2

2,1 = 4. SPT

schedule (J1
2,1, J

1
1,1, J

2
1,1, J

3
1,1, J

2
2,1) results in total completion times [20, 17],

which is Pareto-dominated by schedule (J1
1,1, J

2
1,1, J

1
2,1, J

2
2,1, J

3
1,1), resulting in

total completion times [20, 16].

In the worst case, however, the number of non-dominated SPT schedules

remains exponential, as it is formally stated by the following proposition.

Proposition 3.3. The number of Pareto-optimal SPT schedules can be ex-

ponential on the number of jobs.

Proof: We construct an instance for which the proposition holds. Let

us consider the following instance (proposed by [Agnetis et al., 2004]). Two

organizations O1 and O2 produced identical workload of n = n1,1 = n2,1 jobs

with increasing lengths p1
k,1 = 1, p2

k,1 = 2, . . . , pn
k,1 = 2n−1 (see Figure 3.2).

Let us further consider a subset of all possible SPT schedules that execute

jobs in SPT order regardless of the owner of the job (i.e. ∀k,k′J i
k,1 is executed

before J i+1
k′,1 ).
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The lower bound (LB) on Ck caused by the SPT order between jobs is

at least:

Ck ≥ LB = 1 +

+ 2 · 1 · (n − 1) +

+ 2 +

+ 2 · 2 · (n − 2) +

+ . . . +

+ 2n−2 +

+ 2 · 2n−2 · 1 +

+ 2n−1.

In the above formula, the first line corresponds to J1
k,1 length, the second to

the fact that J1
1,1 and J1

2,1 precede other jobs, the third is the J2
k,1 length, the

forth is the length of J2
1,1 and J2

2,1 that precede longer jobs and so on.

Let us now consider C1. In each pair of jobs of the same length (J i
1,1, J

i
2,1),

executing J i
2,1 before J i

1,1 delays J i
1,1 by pi

2,1 = 2i−1 and therefore increases

C1 by 2i−1. We introduce a control variable oi = 1 if J i
2,1 is executed before

J i
1,1, oi = 0 otherwise. [C1; C2] can be expressed as:

[C1; C2] = [LB +
∑

i

oi · 2i−1; LB +
∑

i

(1 − oi) · 2i−1].

This encodes all pairs of integer numbers in the form: [LB+2n−1, LB], [LB+

2n − 2, LB + 1], . . . , [LB + 1, LB + 2n − 2], [LB, LB + 2n − 1]. All such pairs

are Pareto-optimal. Moreover, there are 2n such pairs, as each of n control

variables oi can be either 0, or 1. 2

A complete schedule on the grid level specifies schedules for each proces-

sor. In a grid composed of two resources, each Pareto-optimal SPT sched-

ule of the first resource is matched with each SPT schedule of the second

resource. In the worst case, the number of possible combinations is of the

order of O(2n ·2n). Most of the resulting combinations are Pareto-dominated.

Nevertheless, the following proposition can be proved.
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u1

u 2

Figure 3.3: Total completion times resulting from base grid schedules adjusted by a constant

ui = Ci(MJF) − Ci(π). Gray points present Π2, or results of advancing foreign jobs J1,2

on M2 (assuming that M1 executes all local jobs before any foreign job), black points present

Π1, or the results of advancing J2,1 on M1 with the same assumption.

Proposition 3.4. The number of Pareto-optimal grid schedules is at least of

the order of the number of Pareto-optimal schedules on one of the resources.

Proof: Let us denote as Π1 the set of Pareto-optimal schedules on the first

resource, and as Π2 – on the second. Π1 and Π2 can be plotted (Figure 3.3)

in two-dimensional space (u1, u2), where ui = Ci(MJF)−Ci(π), Ci(π) is the

sum of completion times resulting from a particular SPT schedule π = [π1, π2]

and Ci(MJF) is a constant enabling us to start both plots at 0, 0. Note that

this plot can also be obtained by plotting (C1, C2), reversing the axes and

adjusting each Ci solution by adding constant Ci(MJF) (the set of Pareto-

optimal solutions is the same).

The proof is by induction on set of schedules of one resource. Let us
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assume that we enumerate Π1 in the order of decreasing u1. The first solution

is π1
1 = [u1

1, u
1
2] = [0, 0], the second solution is π2

1 = [u2
1, u

2
2] and so on. In

order to construct a set of grid schedules, each π1 ∈ Π1 must be matched

with each π2 ∈ Π2. This can be visualized by duplicating Π2 |Π1| times

and translating consecutive duplicates by vectors [u1
1, u

1
2], [u2

1, u
2
2],. . . . Let us

denote Πi as Π2 translated by [ui
1, u

i
2]. Consider iteratively adding set Πi to

set
⋃i−1

k=1 Πk. Let us denote π∗i as the element of Πi with the highest value of

u1 that Pareto-dominates an element from
⋃i−1

k=1 Πk. Firstly, all the elements

in Πi with lower value of u1 are also Pareto-optimal. Secondly, the value of

u1 of π∗i before the translation must be higher than u1 of the first Pareto-

dominated point in
⋃i−1

k=1 Πk (as the translation reduces u1). It follows that

if Πi dominates n Pareto-optimal elements of
⋃i−1

k=1 Πk, at least n + 1 new

Pareto-optimal elements are added. Consequently, the resulting number of

Pareto-optimal points is at least of the order of the number of elements of

Π2. 2

Proposition 3.5. In a grid composed of two organizations (N = 2), the

number of Pareto-optimal grid schedules can be in O(22n).

Proof: We show an instance with N = 2 for which no combination of

Pareto-optimal SPT schedules is dominated and the proposition holds. Let

us consider an instance similar to one in the proof of Proposition 3.3. On

M1, two organizations O1 and O2 produced identical workload of n = n1,1 =

n2,1 = n jobs with increasing lengths p1
k,1 = 1, p2

k,1 = 2, . . . , pn
k,1 = 2n−1. On

M2, the length of jobs is multiplied by K ≥ 2n, i.e. n = n1,2 = n2,2 = n, and

p1
k,2 = K, p2

k,2 = K2, . . . , pn
k,2 = K2n−1. Similarly to Proposition 3.3, SPT

schedules on M1 result in pairs [C1, C2] equal to [LB+2n−1, LB], [LB+2n−
2, LB+1], . . . , [LB+1, LB+2n−2], [LB, LB+2n−1], whereas on M2 we get

[LB′+K(2n−1), LB′], [LB′+K(2n−2), LB′+K], . . . , [LB′+K, LB′+K(2n−
2)], [LB′, LB′ +K(2n−1)] (where LB′ is LB computed as in Proposition 3.3,

but with increased job sizes). After matching those schedules in all-to-all

manner, we add [C1, C2] on M1 to [C1, C2] on M2. Denoting LB′′ = LB+LB′,
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we get pairs of [LB′′ + K(2n − 1) + 2n − 1, LB′′], [LB′′ + K(2n − 1) + 2n −
2, LB′′ +1], [LB′′ +K(2n −1)+2n −3, LB′′ +2], . . . , [LB′′ +K(2n −2)+2n −
1, LB′′+K], [LB′′+K(2n−2)+2n−2, LB′′+K+1], . . . , [LB′′, LB′′++K(2n−
1) + 2n − 1]. Note that all such pairs are Pareto-optimal. Considering grid

schedules in the aforementioned order, C2 is strictly increasing, whereas C1

is strictly decreasing. 2

Corollary 3.1. When N is pair, the number of Pareto-optimal grid schedules

can be in O(2Nn).

Proof: It is sufficient to consider instances in which, ∀0 ≤ k ≤ N
2

,

J2k,2k, J2k,2k+1, J2k+1,2k, J2k+1,2k+1 are constructed as in the proof of Propo-

sition 3.3, and the rest of the sets Jl,l′ is empty (i.e. each organization

produces jobs only for its own processor and the processor of its predecessor

or successor). All combinations of schedules between pairs M2k, M2k+1 are

Pareto-optimal. 2

Consequently, the number of Pareto-optimal grid schedules is exponential

in the worst case. This defines the lower bound on the complexity of the

optimization algorithms that enumerate all Pareto-optimal solutions.

3.2.2 One Solution

In the last section we showed that finding all Pareto-optimal solutions is not

feasible as the size of the resulting set can be exponential. However, even

when we relax the goal to find just one of the Pareto-optimal solutions on

one resource, the decision version of the problem is NP-Complete.

Here, we consider the grid scheduling problem restricted to one resource

and two organizations (denoted as RGS). An instance of this problem is given

by two sets of jobs J1,1 = {J1
1,1, J

2
1,1, . . . , J

n1,1

1,1 } and J2,1 = {J1
2,1, J

2
2,1, . . . , J

n2,1

2,1 }
with known sizes pi

k,l. The decision version of the problem consists in finding

a schedule (a permutation) of J1,1∪J2,1, such that the total completion time
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Algorithm 3.1: Algorithm that checks if a given schedule π fulfills the constraints

Q1, Q2 on the sum of completion times of organizations.

Input: J1,1, J2,1, π, Q1, Q2

Output: True if C1 ≤ Q1 and C2 ≤ Q2, False otherwise

C1 = 0;C2 = 0 ;

t = 0;

for i = 1, . . . , |J1,1 ∪ J2,1| do

t = t + p
π(i)
·,1 ;

if J
π(i)
·,1 ∈ J1,1 then

C1 = C1 + t;

else

C2 = C2 + t;
if C1 ≤ Q1 and C2 ≤ Q2 then return True else return False

C1 of O1 is not worse than a given constraint Q1; at the same time C2 is

not worse than Q2. Following the usual notation of scheduling problems, the

restricted problem can be denoted as 1‖ΣCi
1,1 : ΣCi

2,1.

Claim 3.1. The decision version of the grid scheduling problem restricted to

one resource and two organizations (RGS) belongs to NP.

Proof: Given a schedule π, Algorithm 3.1 can be used to check if the

solution fulfills the constraints. 2

We will prove the NP-Completeness of 1‖ΣCi
1,1 : ΣCi

2,1 by a reduction

from Partition, following the proof given by [Agnetis et al., 2004].

An instance of Partition is given by a set A = {s1, s2, . . . , sk} of k positive

integers (without loss of generality numbered such that si−1 ≤ si). We denote

as S the sum of all elements of A, S =
∑

i si. The decision version of Partition

consists of answering the following question: is there a subset A′ ⊆ A such

that
∑

i:si∈A′ si =
∑

i:si∈A−A′ si = S
2
?.

Let us now construct an instance of RGS from an instance of Partition

by the following reduction:
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• Organizations have identical sets of n = nk,1 = |A| jobs of sizes equal

to the elements of the set A: pi
1,1 = pi

2,1 = si

• Q1 = Q2 = 3
2
S + 2(

∑n

i (n − i)pi).

Claim 3.2. The reduction is polynomial.

Proof: Each si ∈ A is converted to exactly two jobs J i
1,1 and J i

2,1. Q1 and

Q2 can be computed in O(n) time. 2

In the remainder of the proof, we restrict our attention to a subset SPT of

all possible schedules. In such schedules, jobs are executed in non-decreasing

order of jobs’ sizes, i.e. ∀π ∈ SPT : p
π(i)
·,1 ≤ p

π(i+1)
·,1 . Note that there are 2n

such schedules in the considered instance. We firstly compute the sum of

completion times for such schedules and then show that a feasible schedule

for RGS is one of such schedules.

Lemma 3.1. All the SPT schedules have the same total completion time
∑

i C
i
·,1 = T = 3S + 4

∑n

i=1(n − i)si.

Proof: Firstly, all the jobs must be executed, so the total completion time

is at least 2
∑n

i=1 si = 2S. Then, as the schedule is SPT, each of the two

shortest jobs (of size s1) delays the following 2n − 2 jobs by s1. Moreover,

as they are executed sequentially, one of the jobs delays the other by s1.

Extending this reasoning to other jobs, we obtain the total completion time

increased by
∑n

i=1 2(2n − 2i)si + si = S +
∑n

i=1 4(n − i)si. By adding the

two elements, we get
∑

i C
i
·,1 = T . 2

Note that the maximum total completion time goal of both organizations

is equal to the half of the total completion time Q1 = Q2 = T/2. This will

finally enable us to prove that a feasible schedule is SPT.

Lemma 3.2. If a feasible schedule π exists (such that ΣCi
1,1 ≤ Q1 and

ΣCi
2,1 ≤ Q2), it is SPT.
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Proof: The proof is by contradiction. Let us assume that π is feasible, yet it

is not SPT. If π is feasible, the total completion time ΣCi
·,1 ≤ Q1 + Q2 ≤ T .

If it is not SPT, there is at least one longer job executed before shorter one.

Switching the order of execution of these two jobs reduces the total comple-

tion time. Let us make all possible switches until the resulting schedule is

SPT. All switches were reducing the global sum of completion times, so the

resulting total completion time is strictly lower than T . However, Lemma 3.1

shows that all SPT schedules have the same total completion time of T . This

leads to a contradiction. 2

A direct conclusion is that, in a feasible schedule, the two organizations

have their total completion times exactly equal to their bounds Q1 and Q2.

Corollary 3.2. In a feasible schedule, ΣCi
1,1 = ΣCi

2,1 = T/2.

Proof: From the last lemma we know that if a feasible schedule is SPT,

thus ΣCi
·,1 = T = ΣCi

1,1 + ΣCi
2,1. Hence, ΣCi

2,1 = T − ΣCi
1,1. A feasible

schedule satisfies ΣCi
1,1 ≤ T/2 and ΣCi

2,1 ≤ T/2. In the second inequality,

after substituting ΣCi
2,1, we get ΣCi

1,1 ≥ T/2. The only value of ΣCi
1,1

satisfying two inequalities is ΣCi
1,1 = T/2, thus also ΣCi

2,1 = T/2. 2

We now compute the total completion time of an organization. Firstly,

in SPT schedule π, consider a pair of jobs J i
1,1 and J i

2,1 of equal size si. Let

us define a function x(i) such that x(i) = 0, if in π J i
1,1 is executed before

J i
2,1, x(i) = si otherwise. x denotes the value of the sum, x =

∑n

i=1 x(i).

Lemma 3.3. In SPT schedule π, total completion times of organizations

are ΣCi
1,1 = x + S + 2

∑
i(n− i)si and ΣCi

2,1 = (S − x) + P + 2
∑

i(n− i)si.

Proof: For an organization, each of n jobs must be executed, which results

in a completion time equal to
∑

i si = S. In addition, executing the i-th

pair (J i
1,1, J i

2,1) delays the n − i remaining tasks by 2si. For all tasks, this

leads to 2
∑

i(n− i)si. Finally, if the pair is executed in order (J i
1,1, J i

2,1), J i
1,1

increases ΣCi
2,1 by si = si − x(i). Otherwise, ΣCi

1,1 increases by x(i). For all
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pairs, this results in x for the first organization, and S − x for the second.

2

Now, we can show that the problem is NP-Complete.

Theorem 3.1. The grid scheduling problem restricted to one resource and

two organizations (RGS) is NP-Complete.

Proof: We showed that the problem is in NP. We also proved a polynomial

reduction from Partition. We now show that, given a solution of RGS, it is

possible to solve Partition, and, given a solution of Partition, it is possible

to solve RGS.

From Corollary 3.2, we have ΣCi
1,1 = ΣCi

2,1. From Lemma 3.3, we have

ΣCi
1,1 = x + S + 2

∑
i(n − i)si and ΣCi

2,1 = (S − x) + P + 2
∑

i(n − i)si.

Thus, x + S + 2
∑

i(n − i)si = (S − x) + P + 2
∑

i(n − i)si, which reduces

into x = S/2. Thus, x must be equal to the half of the sum of the elements

defined by an instance of Partition.

If solution A′ to Partition is known, we construct a SPT schedule in

which J i
2,1 precedes J i

1,1 iff si ∈ A′. For all such pairs, x(i) = si, which gives

us the required
∑

i x(i) = S/2.

If a schedule π satisfying ΣCi
1,1 ≤ Q1, ΣCi

2,1 ≤ Q2 is known, we construct

set A′ by adding element si iff J i
2,1 precedes J i

1,1 in π. As
∑

i x(i) = S/2, and

x(i) = si ⇔ J i
2,1precedesJ i

1,1, x(i) = 0 otherwise, the sum of elements in A′

will be equal to S/2. 2

3.3 Algorithms

In this section, we present different approaches to produce the set of equitably-

optimal solutions. These algorithms solve the problem of multi-organizational

scheduling using the optimization approach (defined in the previous section).

However, after some slight modifications, we use them in the constrained

optimization problem (Section 3.6).
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Procedure sptRecursive(πl, jl, n·,l, jobsLeft, ΠSPT
l )

Input:

• πl: currently constructed schedule;

• jl: number of jobs scheduled in πl;

• n·,l the total number of jobs on Ml;

• jobsLeft: a dictionary that maps Ok to the list containing unscheduled jobs of

Jk,l ordered in SPT order;

• ΠSPT
l the set of all SPT schedules constructed so far.

if jl = n·,l then

ΠSPT
l ∪ = {πl} ;

return

foreach Ok ∈ jobsLeft.keys() do

if len(jobsLeft[Ok]) > 0 then

job = jobsLeft[Ok].pop() ;

πl[jl] =job ;

sptRecursive(πl, jl + 1, jobsLeft,ΠSPT
l ) ;

jobsLeft[Ok].push(job) ;

Subsequent parts describe three algorithms: naive exhaustive search that

tests all the possible schedules and removes the equitably-dominated ones

(Section 3.3.1); an algorithm based on dynamic programming that iteratively

expands grid schedules removing the Pareto-dominated ones (Section 3.3.2);

and a greedy one, based on a taboo-search [Michalewicz and Fogel, 2004]

heuristics, called Equitable Walk (Section 3.3.3).

3.3.1 Scheduling with Exhaustive Search

Exhaustive search (ES) is a naive optimization algorithm that enumerates all

the possible solutions and removes the ones that are equitably dominated.
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Algorithm 3.3: Exhaustive Search (ES) that produces all equitably-optimal grid sched-

ules.

Input: Jk,l, sets of jobs on each processor

Output: Πeq, the set of all equitably-optimal grid schedules

foreach Ml do

ΠSPT
l = ∅ ;

sptRecursive((), 0, n·,l, {Ok → Jk,l}, ΠSPT
l ) ;

Πeq = ∅ ;

ΠSPT = ΠSPT
1 × . . . × ΠSPT

N ;

Πeq = equitablyOptimalSubset(ΠSPT);

return Πeq;

Algorithm

The algorithm is formally described as Algorithm 3.3 and uses Procedure

sptRecursive to produce all SPT schedules. The algorithm starts with

producing all SPT schedules on all the resources. Then, these schedules are

matched in an all-to-all manner to form the set of grid schedules. Finally, the

algorithm returns the grid schedules that result in equitably-optimal vectors

of completion times.

Complexity

The complexity of the algorithm is determined by the number of grid sched-

ules. In the worst case, there are O(2n) SPT schedules on each resource,

which results in O(2Nn) combinations. Given a set of k points, an algorithm

returning a subset of Pareto-optimal points has a complexity of at least k log k

(two criteria). Thus, the worst case complexity of the whole algorithm is in

O(Nn2Nn).
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3.3.2 Scheduling with Dynamic Programming

Our dynamic programming algorithm (DYN) finds the set of Pareto-optimal

grid schedules by constructing partial schedules (specifying the owners of

the first i jobs on a resource) and iteratively expanding them to eventually

contain all the jobs on all the resources. Finally, to find the set of equitably

optimal grid schedules, the Pareto-optimal set is pruned.

Principle

By discarding partial grid schedules that are Pareto-dominated, the dynamic

algorithm uses the property of the optimal substructure of Pareto-optimality.

A Pareto-dominated partial grid schedule will remain Pareto-dominated by

the subsequent paretoSchedules operations that extend the schedule by

adding jobs at the end (see the next section for the definition). The following

proposition formally states this result.

Proposition 3.6. All possible grid schedules extended from a partial grid

schedule that is Pareto-dominated will be Pareto-dominated.

Proof: Let us assume that a partial grid schedule Π′ resulting in completion

times [C ′
1, C

′
2, . . . , C

′
N ] is Pareto-dominated by a partial grid schedule Π′′ with

[C ′′
1 , C ′′

2 , . . . , C ′′
N ] (thus, ∀k, C

′
k < C ′′

k ). Moreover, the number of scheduled

jobs jk,l are the same for the two schedules. A series of paretoSchedules

operations of Π′ that build the grid schedule will result in adding a vector

[∆C1, ∆C2, . . . ∆CN ]. However, the same paretoSchedules operations can

be performed on Π′′. As ∀k, C
′
k+∆Ck < C ′′

k +∆Ck, the grid schedule resulting

from extending Π′ is Pareto-dominated by the grid schedule extended in the

same way from Π′′. 2

Algorithm

The complete algorithm is presented as Algorithm 3.5, and the function that

recursively computes all Pareto-optimal schedules is presented as Function
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Function paretoSchedules(j, ref)

Input:

• j a matrix; j[k][l] is the number of scheduled jobs from Jk,l;

• ref a dictionary indexed by matrices defined as j, containing already

computed Pareto-optimal partial schedules for j

Output: paretoOpt: Pareto-optimal partial schedules in which, for each

organization Ok and each machine Ml, j[k][l] jobs are scheduled

if j == zeros(k,l) then π = (); π.C = [0, . . . , 0]; return {π} ;

if ref.hasKey(j) then return ref [j] ;

schedules = ∅ ;

foreach k ∈ {1, . . . , N} do

foreach l ∈ {1, . . . , N} do

if j[k][l] > 0 then

j[k][l]− = 1 ;

currSched = paretoSchedules(j, ref) ;

j[k][l]+ = 1 ;

foreach π ∈ currSched do

π.add(J
j[k][l]
k,l ) ;

p = p
j[k][l]
k,l ;

A π.C[k]+ = p ;

B foreach k′ ∈ 1, . . . , N do π.C[k′]+ = p(nk′,l − j[k][l]) ;
schedules ∪ = currSched ;

C paretoOpt = paretoOptimalSubset(schedules) ;

ref [j] =paretoOpt ;

return paretoOpt ;
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Algorithm 3.5: Dynamic Programming (DYN) that produces all equitably-optimal grid

schedules.

Input: Jk,l, sets of jobs on each processor

Output: Πeq, the set of all equitably-optimal grid schedules

j == zeros(k, l) ;

foreach k ∈ {1, . . . , N} do

foreach l ∈ {1, . . . , N} do

j[k][l] = nk,l ;
ref = ∅;
ΠPareto = pareto(j, ref) ;

Πeq = equitablyOptimalSubset(ΠPareto);

paretoSchedules. The relation of Pareto-dominance (line C)) is computed

based on the vector of total completion times for each schedule ( π.C )

computed in lines A-B. After adding next job J
j[k][l]
k,l to schedule π, the cost

caused by execution of J
j[k][l]
k,l is added to π.C. Firstly (line A), J i

k,l’s owner

Ck is increased by pi
k,l. Then (line B), for each organization Ok′, all the

remaining nk′,l − j[k][l] jobs will be delayed by pi
k,l, as they will be executed

after J
j[k][l]
k,l .

Complexity

As the algorithm produces the set of all Pareto-optimal solutions, its worst-

case complexity is determined by the worst-case number of Pareto-optimal

grid schedules, which is in O(2Nn). Following the reasoning similar to ES,

the worst case complexity of DYN is in O(Nn2Nn).

Finding Equitably-Optimal Schedules by Dynamic Programming

Note that it is not possible to find equitably optimal schedules directly, as

an equitably-dominated partial schedule may become dominating after the

next extension. The following proposition formally states this observation:
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Figure 3.4: An instance in which O1 has n1,1 = 2 unit-size (pi
1,1 = 1) jobs on M1; O2

has n2,1 = 1 unit-size job on M1. On the second resource, O1 has n2,1 = 1 unit-size

job; O2 has one job of size p1
2,2 = 10. When analyzing schedules for resource M1, the

top schedule Π′ equitably dominates the middle one Π′′ , as it leads to the same sum of

completion times ([C1, C2] = [3, 3]). However, if the schedules are extended to contain also the

bottom schedule for resource M2, the combination of Π′ and the bottom schedule (resulting in

[C1, C2] = [4, 14]) is equitably-dominated by the combination of Π′′ and the bottom schedule

(for which [C1, C2] = [5, 13]).

Proposition 3.7. The structure of the problem of finding the set of equitable

grid schedules by extending partial schedules is not optimal.

Proof: We show an instance and an equitably-dominated partial schedule

that becomes dominating after a subsequent extension.

Consider a grid formed by two organizations O1, O2 (see Figure 3.4). Two

of Pareto-optimal schedules after scheduling all the jobs on the first processor

are π′ = (J1
1,1, J

2
1,1, J

1
2,1)() with [C ′

1, C
′
2] = [3, 3] and π′′ = (J1

1,1, J
1
2,1, J

2
1,1)()

with [C ′′
1 , C ′′

2 ] = [4, 2]. Note that Π′′ result [4, 2] is equitably dominated by

Π′ result [3, 3] (by the principle of transfers). Yet extending both schedules

by scheduling the shorter job before the longer one on the second processor

(so that M2 schedule is (J1
1,2, J

1
2,2) results in completion times of [4, 14] for Π′

and [5, 13] for Π′′. Now, it is Π′′ which is equitably-dominating Π′ (again by

the principle of transfers). 2
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3.3.3 Equitable Walk (EW)

Equitable Walk (EW) is a heuristics which produces a number of grid sched-

ules by iterative modifications of the initial SPT schedule in order to improve

the outcome of the organization disfavored by the SPT schedule. The al-

gorithm is based on the taboo-search paradigm, as it stores a list of already

considered schedules in order not to revisit them and thus possibly stop in a

local optimum. The resulting schedules can be equitable: the algorithm may

produce non-equitable schedules and not all possible equitable schedules may

be produced.

Principle

The algorithm modifies the schedules by iteratively switching the order of two

jobs executed one after another on the same resource. Each iteration starts

with the selection of the organization with the worst total completion time

in the current schedule. Then, the algorithm temporary switches each job of

this organization and computes the resulting vectors of total completion times

[Ck] . Finally, the algorithm advances the job which resulted in equitably-

optimal [Ck] (regarding all the temporary moves performed).

The algorithm starts with SPT schedule. The following result formally

states that there is a SPT schedule that is equitable. Note that there is

more than one SPT schedule iff at least two organizations have at least two

of equal sizes on the same resource.

Corollary 3.3. There is a SPT schedule that is equitably-optimal.

Proof: This is a direct consequence of Theorem 1.1. Each SPT schedule is

optimal with regard to the sum of completion times of all jobs on all resources

(
∑

k

∑
l

∑
i C

i
k,l). Therefore, each such a schedule minimize the sum of sum

of completion times of respective organizations (
∑

k Ck). Hence, each SPT

gives minimal value of θ̄N , the last criterion of IEMOP. Consequently, in

IEMOP, only a SPT schedule can Pareto-dominate another SPT schedule.
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Thus, there is at least one SPT schedule that is not Pareto-dominated in

IEMOP. 2

Algorithm

The complete algorithm is presented as Algorithm 3.6. EW starts with or-

dering jobs J·,q on every resource Ml according to SPT (line 1). Then, the

organization Ok with the largest Ck is selected (line 6). Then, for each

Ok’s job J i
k,l (line 12), the job is temporary advanced (line 13) by switch-

ing J i
k,l with the job executed immediately before. If the resulting schedule

has not been considered yet (line 14), the algorithm computes the result-

ing vector of completion times (lines 16-18) to chose the job resulting in

equitably-optimal total completion times (line 19). Finally, the optimal job

is advanced (lines 23-25). The algorithm repeats such modifications until no

further improvement is possible (line 3).

The output of the algorithm is a list of grid schedules. The algorithm

starts with a SPT schedule. If there is only one SPT schedule, it is equitably-

optimal. If there are more SPT schedules, it is not guaranteed that the algo-

rithm finds the one which is equitably-optimal. Moreover, the equitableness

of the rest of the schedules is not guaranteed. Therefore, before returning,

the algorithm removes the equitably-dominated schedules (line 26) from the

resulting list.

The algorithm may not produce all possible equitable solutions (the equi-

table part of the Pareto-front), because it may be trapped in a local optimum.

Let us consider an instance in which two organizations O1 and O2 produced

jobs only for one machine (i.e. J1,2 = J2,2 = ∅). Two organizations have iden-

tical sets of two jobs of sizes p1
1,1 = p1

2,1 = 1 and p2
1,1 = p2

2,1 = 2. There are ex-

actly two equitably-optimal schedules of this instance, i.e. (J1
1,1, J

1
2,1, J

2
2,1, J

2
1,1)

resulting in completion times [7, 6] and (J1
2,1, J

1
1,1, J

2
1,1, J

2
2,1) resulting in com-

pletion times [6, 7] . Let EW start with a SPT schedule (J1
2,1, J

1
1,1, J

2
2,1, J

2
1,1)

with completion times [8, 5]. In the next step, EW improves O1 result by
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Algorithm 3.6: Equitable Walk

Input: Jk,l, sets of jobs on each processor

Output: ΠEWF , the set of possibly equitably-optimal grid schedules

π = SPT ;1

taboo = ∅; ΠEW = {Π} ;2

repeat3

C = π.C ;4

job∗ = null;C∗ = [∞]; i∗ = 0 ;5

k = argmaxk′(C[k′]) ;6

foreach l ∈ {1, . . . , N} do7

foreach i ∈ {2, . . . , n·,l} do8

πl = π[l] ;9

job = πl[i] ;10

prevJob = πl[i − 1] ;11

if job ∈ Jk,l ∧ prevJob /∈ Jk,l then12

πl[i] = prevJob;πl[i − 1] = job ;13

if π /∈ taboo then14

k′ = prevJob.owner ;15

C ′ = C ;16

C ′[k′]+ = job.size ;17

C ′[k]− = prevJob.size ;18

if C ′ ≺e C∗ then19

job∗ = job; degr∗ = degr;C∗ = C ′; i∗ = i ;20

πl[i] = job;πl[i − 1] = prevJob ;21

if job∗ 6= null then22

l = job∗.machine ;23

π[l][i∗] = π[l][i∗ − 1];π[l][i∗ − 1] = job ;24

taboo ∪ = {π}; ΠEW ∪ = {π};25

until job == null ;26

ΠEWF = equitablyOptimalSubset(ΠEW);27

return ΠEWF ;28
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advancing J2
1,1, which results in schedule (J1

2,1, J
1
1,1, J

2
1,1, J

2
2,1) and completion

times [6, 7]. EW tries now to improve O2 result, however the only possible

move is to delay J2
1,1, a schedule which has been already visited. Conse-

quently, EW stops.

Complexity

The worst-case complexity of EW is exponential as the algorithm is able to

produce the set of all Pareto-optimal solutions. Contrary to DYN, however,

EW can be stopped at any moment (e.g. when the time available for decision

expires). The partial solution is the incomplete list of possibly equitable grid

schedules.

3.4 Game-Theoretic Model

In this section we assume that each organization Ok controls its local re-

source Mk and therefore is able to impose the scheduling of jobs J·,k. Each

organization wants to minimize the sum of completion times Ck of its jobs

Jk,·. However, Ck depends also on the completion time of Ok’s remote jobs

J−k,·, which in turn depends on the schedules imposed by other organiza-

tions. Game theory studies the problems in which players maximize their

returns which partially depend on actions of other players. Consequently, it

seems to be an adequate tool to study this model.

Definition 3.1. A grid scheduling game is a game in the normal form where:

• the set of players is equal to the set of organizations O;

• a strategy σk of a player Ok is an ordering of J·,k (following the local

SPT rule from Proposition 3.1, as all the other strategies are Pareto-

dominated);

• a payoff function uk(σ) for a player Ok resulting from a profile of strate-

gies σ = [σ1, . . . , σN ] is the reduction of the player’s sum of completion

62



3.4. GAME-THEORETIC MODEL

times with comparison to the selfish outcome of the game:

uk(σ) = Ck(MJF) − Ck(σ).

Note that the aforementioned definition specifies a game that is not re-

peated (it is a so-called one-shot game). This is caused by the fact that the

model analyzed in this chapter is off-line.

A selfish player Ok can use a greedy My Jobs First (MJF) strategy, which

schedules all the local jobs Jk,k before any foreign job. Given any strategies

of the rest of organizations, MJF strategy will reduce the total finish time

Ck, by advancing local jobs Jk,k. Therefore, MJF is the prudential strategy

for each player. However, a solution in which every organization schedules

jobs according to MJF (denoted as MJF) very often is not optimal and it

is Pareto-dominated by other solutions. The goal of the grid scheduler is to

propose a schedule at least Pareto-dominating MJF. That is why we define

the payoff uk(σ) for each player Ok as the gain over MJF for that player. The

payoffs defined in such a way must be maximized. Any profile of strategies

σ resulting, for a player Ok, in uk(σ) < 0 is not feasible. The proposed

total execution time for Ok’s jobs is greater than the longest possible total

execution time when Ok decides to order jobs on its resource according to

MJF. Therefore, Ok would play MJF, which would also reduce other payoffs.

We analyze this game from two different perspectives. Firstly, in Sec-

tion 3.5, we assume that there is no cooperation between the players. The

grid scheduler proposes a schedule (a strategy) for each player. However,

players are not obliged to follow the strategies proposed. We show that such

a game is analogous to the well-known Prisoner’s Dilemma (PD) game. Con-

sequently, shortsighted players will tend to chose the greedy strategy, which

results in suboptimal performance of the grid. The price the grid users pay

for such lack of control is high. The price of anarchy, or the ratio between

total completion times achieved in Nash solution and in the optimal one, may

be as high as the number of foreign jobs. Secondly, in Section 3.6, we increase

the power of the grid scheduler. If the scheduler proposes a schedule resulting
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in positive payoff for each player, the players must follow the schedule. We

show how to chose a fair schedule in such setting. This corresponds to the

constrained optimization approach.

3.5 Non-cooperative Game

In this section we assume that each organization Ok controls its local resource

Mk and therefore is able to impose a schedule for J·,k.

Proposition 3.8. MJF is the only Nash equilibrium of the one round, non-

cooperative grid scheduling game.

Proof: Let us assume that, for a particular job configuration J = {Jk,l},

a grid scheduler is able to produce schedule σ∗ = [σ∗
1, . . . , σ

∗
n], which results

in positive payoff uk(σ∗) > 0 for each player. Consequently, there must be

at least one player Ok, for whom the proposed strategy σ∗
k is different than

MJF. Thus, in Mk’s schedule, there is at least one foreign job J i
l,k scheduled

before a local job J j
k,k. If Ok decides to switch the order of execution of

these two jobs, the local job J j
k,k will be finished faster and, consequently, the

player’s payoff uk will increase. At the same time the payoff of the owner of

the delayed job ul will decrease. It follows that the strategy maximizing uk is

MJF, given that the others play any profile of strategies σ−k. Additionally,

if all the other players play MJF, the only strategy which guarantees non-

negative uk for Ok is to play MJF as well. 2

Consequently, the game is analogous to the multi-player Prisoner’s Dilemma

(PD). The equivalent of the mutual collaboration in PD is when organiza-

tions follow scheduler’s suggestion σ∗. When one of the organizations Ok

play σk = MJF , whereas the others play σ∗ (a single betrayal in PD), Ok’s

payoff increases uk(MJF, σ∗
−k) > uk(σ∗), and the others lose. If everyone

plays MJF (multiple betrayal in PD), resulting payoff for each organization

is 0.
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Figure 3.5: A globally optimal schedule may be unfair to one of the organizations (O2), which

experience its performance degraded comparing to locally-optimal schedule.)

In order to measure the loss of performance experienced by players in the

Nash equilibrium, we firstly characterize the globally-optimal outcome of the

game.

Corollary 3.4. SPT maximizes the sum of outcomes,
∑

uk. Therefore,

SPT is the social optimum of the scheduling game.

Proof: The result is a direct consequence of the optimality of SPT schedule

on one resource. On each resource Ml, such schedule minimizes
∑

i C
i
·,l.

Therefore, SPT minimizes
∑

l

∑
i C

i
·,l =

∑
k

∑
l

∑
i C

i
k,l =

∑
k Ck. Recall

that
∑

k uk =
∑

k Ck(MJF) −∑k Ck.
∑

k Ck(MJF) is constant and
∑

k Ck

is minimized by SPT. Therefore SPT maximizes the sum of the outcomes

of players. 2

Note that SPT may not be fair to all organizations, nor, in general, feasi-

ble (see Figure 3.5). In this instance, SPT leads to (C1(SPT), C2(SPT)) =

(16, 13), that gives the minimum sum of completion times measured on the

system level ΣC = 29. However, the optimality on the system level is not

reflected by O2’s result that is worse than in MJF strategy: (C1(MJF),

C2(MJF)) = (41, 8).

When each player plays MJF, the resulting payoffs are 0, therefore every-

one feels a performance drop. The following result shows that the price the

grid pays for the lack of control is considerable.
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Figure 3.6: An instance with one large local job and n small foreign jobs on each resource

which leads to a price of anarchy in O(n).

Proposition 3.9. The Price of Anarchy (PoA) is at least linear with the

number of jobs.

Proof: Consider an instance (Figure 3.6), in which two resources M1 and

M2 have identical loads: one local job of size p1
1,1 = p1

2,2 = p and n2,1 = n1,2

foreign jobs, each of size pi
2,1 = pi

1,2 = ǫ. A MJF schedule results in sum of

completion times of:

C1(MJF) = p + (p + ǫ) + (p + 2ǫ) + · · · + (p + n1,2ǫ) =

= (n1,2 + 1)p +
1

2
ǫn1,2(n1,2 + 1),

whereas an optimal schedule, in which the small foreign jobs are executed

before the local job on both resources, results in total completion time of:

C∗
1 = (ǫ + 2ǫ + . . . + n1,2ǫ) + (n1,2ǫ + p) =

=
1

2
ǫn1,2(n1,2 + 1) + (n1,2ǫ + p).

The price of anarchy PoA is the ratio between the result in the worst Nash

equilibrium and the socially-optimal result.The price of anarchy is equal to:

PoA =
2C1(MJF)

2C∗
1

−→
ǫ→0

n + 1.

2
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Note that in real-world grids scheduling will be repeated, in function of

new jobs arrivals. This would lead to multiple iterations of the game pre-

sented above. In Infinitely Repeated PD, cooperation (following σ∗) becomes

profitable, as a single betrayal (playing MJF) can be punished during the next

rounds by other players (by refusing to cooperate with the free-rider). Con-

sequently, finding a good σ∗ becomes an important problem, analyzed in the

next section. However, the scheduling game will be not repeated infinitely, as

collaboration in the Grid (e.g. in one Virtual Organization) is rather short-

term, therefore the “shadow of the future” is reduced. In PD repeated N

times (N known to players), defection is again the only Nash equilibrium.

Note also that each player can verify if the other player is executing the

collaborative version of the schedule before completing the whole schedule

(by examining completion times of his/her jobs executed on the other proces-

sor). This enables on-line verification of the other player and, consequently,

almost immediate punishment of the non-cooperative behavior by changing

the schedule. However, the player that executes a foreign job first (according

to the cooperative schedule) does not know if the other player will cooper-

ate or not. Such an uncertainty transforms the on-line game into a series of

finitely-repeated off-line games, that can be analyzed similarly to the game

analyzed in this section.

3.6 Constrained Optimization Approach

In this section, we assume that the community, represented by the centralized

grid scheduler, is able to impose a scheduling on the players, if the resulting

payoffs u∗ = [u1, . . . , un] are feasible, i.e. uk ≥ 0 for each organization Ok.

This guarantees that Ck does not rise in comparison with Ck(MJF). More-

over, u∗ should be equitably-optimal, as no organization should be preferred

a priori.

To produce such solutions, we may use EW, the same method as in the

optimization approach. EW must be adjusted to maximize uk, instead of
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minimizing Ck. We call the adjusted algorithm Adjusted Equitable Walk

(AEW). AEW starts with a SPT schedule. Note that one of such schedules

is still equitable (Corollary 3.3 holds), as SPT maximizes the sum of all

the criteria (see Corollary 3.4). However, SPT may not be feasible, and,

generally, AEW may be unable to produce a feasible result.

3.7 Experiments

In this section we present experimental validation of the proposed optimiza-

tion algorithms. Firstly, we compare the performance of two exact algo-

rithms: naive exhaustive search (ES) and dynamic programming (DYN).

Then, we compare the solutions produced by heuristic algorithms (EW and

AEW) to the set of equitably optimal solutions extracted from the results

of the exact algorithms. In these experiments, the instances considered are

relatively small, as exhaustive search has an exponential complexity. Finally,

we show the results of EW and AEW applied to larger instances.

3.7.1 Methods

In this section we briefly describe the experimental setup used to evaluate

the proposed algorithms.

All the algorithms were implemented in Python and used common code

base (e.g. the same function that returned Pareto-optimal solutions). To

optimize the run-time, the algorithms were profiled to remove basic perfor-

mance bottlenecks and then precompiled with Psyco [Psyco, 2007]. Tests

that compared the exact algorithms with greedy heuristics were executed on

a single node running Linux 2.6.15 kernel with one Pentium 4 3.0Ghz pro-

cessor and 1GB of RAM. The tests of greedy algorithms on larger data sets

were executed on 20 nodes of a cluster composed of Intel Bi-Xeon 2.4 GHz

dual-core processors, with 1.5 GB of RAM on each node. In all tests, the

background load was negligible.
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Workloads

The algorithms were evaluated on randomly generated workloads and on

some specific workload. The random workload was generated as follows.

Each resource Mk has the same number of jobs n·,k (i.e. n·,k is the parameter

of experiments). The number of jobs of each organization on each proces-

sor is distributed uniformly: e.g. in a two-organizational grid, n1,k is uni-

formly distributed over {0, 1, . . . n·,k}, and n2,k = n·,k − n1,k. Jobs’ sizes

pi
k,l are uniformly distributed over {1, . . . , max pi

k,l} (max pi
k,l is a parameter

experiments). For each combination of n·,k and max pi
k,l, 50 instances were

generated. Using this method, we generated the following set of workloads:

• small data set, used for the evaluation of exact algorithms, with N = 2

organizations, n·,k ∈ {5, 8, 10, 11, 12} and max pi
k,l ∈ {5, 10, 20, 50}

• small-3 data set, used for the evaluation of exact algorithms, with

N = 3 organizations, n·,k ∈ {4, 5, 6}) and max pi
k,l = 10

• large data set, used for large-scale evaluation of greedy heuristics with

N ∈ {2, 3, . . . , 8} organizations, n·,k ∈ {10, 15, 20} and max pi
k,l = 10

We also used an artificial data set composed of instances depicted in

Fig. 3.2. Two organizations have identical load of n1,1 = n2,1 = n jobs of

increasing sizes (1, 2, 4, 8, . . . , 2n−1). There are no jobs for the second resource

(n1,2 = n2,2 = 0). Such a series of instances of increasing size enables us to

directly measure the impact the increased number of Pareto-optimal solutions

on the performance of the algorithm.

Quality indicators

All the algorithms produce a number of equitably-optimal solutions, yet a

grid scheduling system would use only one of them. This motivates the need

to measure the quality of the whole set by evaluating one of the returned

solutions.
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To measure the quality of the proposed solutions, we choose two solutions

from the set of equitably-optimal schedules:

• a min-sum solution with the minimum sum of completion times of

organizations, when optimizing [Ck], or the maximum Σuk, when con-

strained optimization is used. Such a solution can be interpreted as the

best solution from the community point of view.

• A min-max solution that minimizes the maximum completion time

of an organization; or maximizes the the minimum organization’s im-

provement uk in constrained optimization. Such a solution is the “fair”

solution in the classic sense.

Note that the min-sum solution for the unconstrained optimization (i.e.

optimization of [Ck]) is a SPT solution. However, in the case of constrained

optimization, we consider only feasible (i.e. ∀kuk ≥ 0) solutions, thus SPT

is the min-sum solution only if it is feasible.

Then, we compare both solutions with the MJF solution. For each solu-

tion type (min-sum and min-max ), we calculate the improvement over MJF

regarding two measures: the sum of completion times of organizations (rep-

resenting the social goal) and the worst completion time of an organization

(representing the fair goal). We can define the min-sum sum score as:

1 −
∑

k Ck(min-sum)∑
k Ck(MJF)

,

and the min-sum max score as:

1 − maxk Ck(min-sum)

maxk Ck(MJF)
.

Two measures for the min-max solution (min-max sum score and min-max

max score) are defined similarly.
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Table 3.1: Average run-time of DYN and ES algorithm over randomized instances in function

of n·,k. small data set. Each row is an average from 200 random instances.

run time [s]

n·,k DYN ES

5 0.01 0

8 0.16 0.05

10 0.87 1.18

11 1.83 5.3

12 3.91 36.78

average 1.36 8.66

3.7.2 Exact Algorithms

Run-time

Both the ES and the dynamic programming algorithm have the same expo-

nential worst-case complexity. The complexity of the ES is determined by

the number of possible SPT schedules. DYN is able to discard partial sched-

ules that are Pareto-dominated, and thus substantially reduce the number of

solutions considered. Thus, even though Section 3.2.1 showed that the num-

ber of Pareto-optimal schedules can be exponential, dynamic programming

should be faster. The results are presented in Tables 3.1, 3.2 and Figure 3.7

for small data set, Table 3.3 and Figure 3.8 for exponential instances and

Table 3.4 for small-3 data set.

In the random data set, on the average, the DYN algorithm performed

significantly faster than the ES in larger instances (n·,k ≥ 10). Moreover,

the average runtime of the ES algorithm was more sensitive to the increase

in max pi
k,l. However, the actual linear correlation coefficients (Pearson’s

product-moment coefficient) between max pi
k,l and run-times were small (0.041

for the exhaustive search, 0.030 for DYN). This was caused by large standard

deviations of the run-times.
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Table 3.2: Average run-time of DYN and ES algorithm over randomized instances in function

of max pi
k,l. small data set. Each row is an average from 200 random instances.

run time [s]

max pi
k,l DYN ES

5 1.39 6.54

10 1.23 8.03

20 1.31 9.96

50 1.5 10.11
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Figure 3.7: Comparison of the run-time of DYN and ES plotted against the total number

of possible schedules. small data set. Each dot represents one run of the algorithm over one

instance.

All the observed differences are statistically significant (using paired, two-

tailed t-test, we obtained p < 0.0001).

Detailed analysis revealed that the run-time of both algorithms was al-

most perfectly linearly correlated with the total number of possible SPT
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Table 3.3: Comparison of the run-time of DYN and ES over exponential instances.

run time [s] solution count

n dynamic exhaustive all pareto

3 0.01 0.01 20 16

4 0 0.01 70 44

5 0.01 0.03 252 116

6 0.04 0.15 924 278

7 0.15 0.69 3432 620

8 0.65 3.8 12870 1324

9 2.8 33.38 48620 2752

10 12.56 275.09 184756 5628

11 70.61 2126.75 705432 11400

schedules. For the ES, the resulting correlation coefficient is 0.958, whereas

for the DYN the coefficient is not as high (0.882), but the dependence is

clearly visible. Figure 3.7 presents the run-time of both algorithms plotted

against the number of possible SPT schedules. We can see that the linear

regressions become close to the results observed for run-times greater than

a few seconds. DYN algorithm is almost an order of magnitude slower on

small instances, but becomes more than an order of magnitude faster on large

instances.

Similar phenomena can be observed in exponential instances (Table 3.3

and Figure 3.8). We see that DYN algorithm is faster for all but the smallest

instance. Both run times are almost perfectly linearly correlated with the

number of solutions (ρ = 0.991 for the ES, ρ = 0.996 for the DYN) and the

number of Pareto-optimal solutions (ρ = 0.927 for the ES, ρ = 0.944 for

the DYN). However, the run time of the DYN algorithm rises much slower

with the total number of solutions compared to the ES. The linear regression

coefficient is equal to 9.78E − 5 for the DYN and 2.91E − 3 for the ES.

Note also that the number of all solutions rises much faster than the

number of Pareto-optimal ones. Therefore, an algorithm that does not have
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Figure 3.8: Comparison of the run-time of DYN and ES over exponential instances (left axis);

the total number of schedules and the number of Pareto-optimal schedules (right axis).

to go over all the solutions will be faster for larger instances.

When the number of organizations is increased, the number of criteria,

the number of possible solutions, and thus the number of Pareto-optimal

solutions raises. Thus, the exact algorithms start to require large amount of

memory and, eventually, start swapping. Consequently, the run-time of the

exact algorithms becomes unacceptable even for small instances. During our

initial tests, a simple instance with N = 4 organizations and n·,l = 4 jobs on

each processor (with sizes J1,1 = {3, 7},J1,2 = {5},J1,3 = {1}, J1,4 = {2},

J2,1 = {6, 6}, J2,2 = {1, 2}, J2,3 = {1, 8}, J2,4 = ∅, J3,1 = {8}, J3,2 = {5},

J3,3 = {1}, J3,4 = {2}, J4,1 = ∅, J4,2 = {6}, J4,3 = ∅, J4,4 = {1, 5}) was

not computed by DYN in more than 15 hours. Therefore, we experimented

on smaller instances with N = 3 organizations. However, we were able to

experiment only on relatively small instances (n·,l < 6), as ES was not able to

finish in more than a week of constant computation in a number of instances
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for n·,l = 6 (e.g. with sizes J1,1 = {3, 3, 9} J1,2 = {1, 6} J1,3 = {3, 4, 9},

J2,1 = {1, 4}, J2,2 = {2, 2}, J2,3 = {2}, J3,1 = {5, 9}, J3,2 = {2, 8}, J3,3 =

{4, 6, 8}).

Table 3.4: Comparison of the run-time of DYN and ES over random instances. small-3 data

set.

run time [s]

n dynamic exhaustive

4 1.68 0.27

5 19.69 4.05

Table 3.4 presents aggregated results. We see that ES is faster, which is

caused by the fact that instances considered are relatively small (we observed

similar phenomena for data sets with two organizations). Note also that the

runtime (for n = 5) is about three orders of magnitude greater than the

runtime in case of 2 organizations.

Number of Solutions

In the worst case, the number of Pareto-optimal solutions can be exponential

on the size of the instance. In this section we investigate if this phenomena

can be observed frequently in random data set. Also, as equitable solutions

are a subset of Pareto-optimal solutions, we measure if the number of result-

ing solutions is substantially reduced. Aggregated results are presented in

Table 3.5, Table 3.6 and in Figure 3.9.

A number of interesting relationships can be observed. Firstly, the num-

ber of optimal solutions of all the types grows with the size of the instance

n·,k. The growth of the number of all solutions is almost perfectly exponen-

tial, as the Pearson’s correlation coefficient between the instance size and the

logarithm of the number of all solutions is equal to ρ = 0.780 (compared to

ρ = 0.410 for the number itself). Moreover, the number of Pareto-solutions

also grows exponentially. Correlation coefficients in this case are ρ = 0.808
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for the logarithm and ρ = 0.369 for the number itself. However, the relation-

ship between the number of equitably optimal solutions and the instance size

is not as clear. In unconstrained optimization, the correlation coefficients are

ρ = 0.347 for raw number and ρ = 0.490 for the logarithm. In constrained

optimization, the correlation coefficients are ρ = 0.349 for raw number and

ρ = 0.407 for the logarithm. Consequently, the difference is small. That re-

sult leaves the question of the complexity of finding all the equitable solutions

open.

When the sizes of jobs are similar (as in the first row of Table 3.6),

there are significantly more Pareto-optimal solutions (two tailed type-3 t-test,

p < 0.001), even though the number of all solutions is the same. However, the

number of equitable solutions is the same (two tailed type-3 t-test, p > 0.1).

Also, all the other differences are insignificant.

With the increased number of organizations (N = 3, Table 3.7), the

number of all and Pareto-optimal solutions rises considerably in comparison

with two organizations. Note that we were not able to run ES algorithm on

some instances with n·,k = 6 due to large runtime (see previous section), thus

we do not have the results on the number of exact solutions. The increase in

the number of equitably-optimal solutions is also visible.

Table 3.5: Average number of solutions and standard deviations σ in function of n·,k. small

data set.

all solutions pareto-optimal equitable

unconstrained constrained

n·,k mean σ mean σ mean σ mean σ

5 57.3 32.4 19.4 7.8 4.8 3.8 3.5 2.5

8 1630.7 1501.4 82.0 44.3 12.1 10.9 7.3 6.8

10 18998.6 19852.4 210.0 184.1 22.7 20.6 11.3 11.1

11 59359.9 66803.4 341.0 442.1 26.7 27.5 16.3 21.8

12 225004.9 261132.4 531.9 803.1 42.5 63.3 19.3 21.4

average 61010.3 147442.1 236.9 456.7 21.8 35.0 11.5 15.9
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Figure 3.9: Number of Pareto-optimal solutions and equitably optimal solutions (for con-

strained and unconstrained optimization) plotted against the total number of solutions. small

data set.

Table 3.6: Average number of solutions and standard deviations σ in function of max pi
k,l.

small data set.

all solutions pareto-optimal equitable

unconstrained constrained

max pi
k,l mean σ mean σ mean σ mean σ

5.0 63070.1 153116.6 416.6 845.2 24.1 50.7 12.4 20.4

10.0 63544.8 145851.6 183.6 183.6 19.4 34.1 8.8 13.5

20.0 64030.6 148650.7 165.1 142.0 20.6 23.4 11.2 13.3

50.0 53395.5 142569.5 182.2 158.6 22.9 25.2 13.8 15.1

average 61010.3 147442.1 236.9 456.7 21.8 35.0 11.5 15.9
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Table 3.7: Average number of solutions and standard deviations σ in function of n·,k. small-3

data set.

all solutions pareto-optimal equitable

unconstrained constrained

n·,k mean σ mean σ mean σ mean σ

4 1264.8 1174.5 198.2 114.8 7.2 7.4 4.4 3.3

5 13251.2 21163.1 581.4 377.0 18.3 25.4 7.2 6.8

6 n.a. n.a. 1766.3 1036.4 29.5 38.6 12.9 17.3

average 7258.0 16082.3 848.6 923.5 18.4 28.3 8.2 11.4

Profile of Solutions

In this section we measure how min-sum and min-max solutions improved

the non-cooperative MJF solution. Table 3.8 presents the aggregated results

for unconstrained optimization of [Ck], whereas Table 3.9 – for constrained

optimization of [uk] where unfeasible solutions are discarded. Tables 3.10

and 3.11 present results for instances with N = 3 organizations.

The impact of the maximum size of the job max pi
k,l is almost insignif-

icant, therefore we do not present these results here. The worst scores are

achieved for max pi
k,l = 5. However, the difference between averages scores

for max pi
k,l ∈ 10, 20, 50 are not significant (e.g. p value for two-tailed t-test

of type 3 comparing scores for max pi
k,l = 10 and max pi

k,l = 20 is 0.74).

Firstly, we see that, on the average, MJF is a good strategy. In uncon-

strained optimization, min-sum solution is SPT solution that is optimal for
∑

Ck. Yet, on the average, SPT is only 12% better than MJF.

Secondly, constraint optimization does not affect much
∑

Ck, as the av-

erage
∑

Ck for min-sum solutions is 10% better than MJF. Somewhat sur-

prisingly, the worst completion time in min-sum solutions (max min-sum) is

improved more in unconstrained optimization (9.3% compared to constrained

optimization’s 8.5%). Yet, a detailed analysis of the results reveals that in

232 instances the maximum total completion time was worse than in MJF
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Table 3.8: Mean scores (in percents) and standard deviations σ (in percentage points) of

solutions returned by exact methods in unconstrained optimization (multicriteria minimization

of [Ck]). small data set. Each row is an average over 200 instances.

min-max min-sum

sum max sum max

n·,k mean σ mean σ mean σ mean σ

5 11.1 7.3 7.8 14.5 5.1 9.7 18.6 10.4

8 11.7 6.7 9.0 14.1 6.4 8.9 20.4 10.7

10 12.5 6.3 10.7 12.2 6.9 9.0 22.2 9.9

11 11.9 5.7 10.1 13.0 7.0 8.4 21.1 9.9

12 13.1 6.1 11.5 13.5 8.2 9.2 22.6 10.3

average 12.1 6.5 9.8 13.5 6.7 9.1 21.0 10.3

Table 3.9: Mean scores (in percents) and standard deviations σ (in percentage points) of

solutions returned by exact methods in constrained optimization (multicriteria maximization

of [uk]). small data set. Each row is an average over 200 instances.

min-max min-sum

sum max sum max

n·,k mean σ mean σ mean σ mean σ

5 9.1 8.1 7.4 9.1 8.1 7.4 6.8 6.5

8 10.0 7.6 7.6 8.1 9.1 7.2 7.6 6.4

10 11.7 7.0 9.5 8.2 10.9 6.7 8.9 5.8

11 10.8 6.3 8.4 7.6 9.9 6.0 8.3 5.4

12 11.8 7.4 9.6 8.7 11.0 7.1 9.3 6.5

average 10.7 7.4 8.5 8.4 9.8 7.0 8.2 6.2
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Table 3.10: Mean scores (in percents) and standard deviations σ (in percentage points) of

solutions returned by exact methods in unconstrained optimization (multicriteria minimization

of [Ck]). small-3 data set. Each row is an average over 50 instances.

min-max min-sum

sum max sum max

n·,k mean σ mean σ mean σ mean σ

4 3.1 9.7 22.4 11.1 9.5 6.5 9.0 14.6

5 2.2 9.1 25.5 9.1 9.6 6.2 8.8 14.1

6 3.0 7.5 24.4 9.2 9.8 6.4 8.6 13.6

average 2.8 8.8 24.1 9.9 9.6 6.3 8.8 14.0

strategy (resulting in negative score). Consequently, the standard deviation

of max min-sum in unconstrained optimization is much higher (13.5%) than

in constrained optimization (8.4%).

Thirdly, in unconstrained optimization, choosing the min-max solution

considerably worsens the social criterion, as the gain in
∑

Ck is reduced by

the half. At the same time, however, the worst Ck is considerably improved

(by more than 20%). In constrained optimization, min-max solution is only

slightly better than min-sum regarding the maximum Ck. However, min-

max is the solution that maximizes the minimum gain over MJF, which not

necessary corresponds to the minimization of the maximum Ck.

Finally, the impact of the size of the instance n·,k is small, although there

is a slight improvement of the results with the instance size, e.g. for n·,k = 5,

sum min-sum= 11%, whereas for n·,k = 12, sum min-sum= 13%.

With the increase in the number of organizations, scores get better, es-

pecially in unconstrained optimization (Table 3.10). This is probably caused

by the increase in the number of solutions, out of which it is easier to chose

the better one. Additionally, we can see similar phenomena as observed in

two organization case.
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Table 3.11: Mean scores (in percents) and standard deviations σ (in percentage points) of

solutions returned by exact methods in constrained optimization (multicriteria maximization

of [uk]). small-3 data set. Each row is an average over 50 instances.

min-max min-sum

sum max sum max

n·,k mean σ mean σ mean σ mean σ

4 6.4 5.8 4.6 4.8 7.5 7.1 5.4 7.9

5 6.6 5.7 5.1 5.1 7.7 6.6 6.0 7.3

6 7.0 5.6 4.9 4.1 8.2 6.3 5.5 5.3

average 6.6 5.7 4.9 4.6 7.8 6.7 5.6 6.9

3.7.3 Greedy Heuristics

To measure the performance of EW and AEW, we experimented on the same

random data set as in the previous section. In the first place, we measure

the run-time of the algorithms. Then, we measure the quality of the results

returned by both methods: the number of equitable solutions returned; and

the quality of two “best” solutions from each result set.

Run-time analysis

We started with comparing the runtime of the DYN and that of greedy

heuristics. Table 3.12 presents the aggregated results. Note that the increase

in the DYN runtime (comparing with Table 3.1) is caused by an additional

operation (i.e. removing equitably-dominated solutions) on DYN results. We

do not present the average run-time in function of max pi
k,l, because the

results of EW and AEW did not differ from the average.

We can see that, firstly, both greedy algorithms produce results much

faster than DYN (the differences between DYN and EW; and DYN and

AEW are statistically significant). Secondly, although on average AEW is

slower than EW, the difference is small. Using paired, two-tailed t-test, we

obtained p = 2.75E − 5 for the average, but only p = 0.025 for n·,k = 12.

81



CHAPTER 3. RESOURCE SHARING

Table 3.12: Comparison of the average run-time of DYN and equitable walk algorithms (EW,

AEW) over randomized instances. Each row is an average from 200 random instances. small

data set.

run time [s]

n·,k DYN EW AEW

5 0.01 0.00 0.00

8 0.16 0.01 0.01

10 0.88 0.03 0.03

11 1.84 0.04 0.06

12 4.04 0.06 0.08

average 1.39 0.03 0.04

In the second series of tests, we measured the runtime of both greedy

heuristics on larger instances (Table 3.13).

We see that the run-time of heuristics rises sharply with the increased

number of organizations up to N = 6. Afterward, although the average run-

time is increasing, the differences are no longer statistically significant. With

two-tailed, type 3 T-Test on EW average run-time, we obtained p = 0.14 for

N = 6 and N = 7, and p = 0.11 for N = 7 and N = 8. The increase of the

run-time is sharp, but not necessary exponential. The number of organization

is similarly correlated with the run-time (EW: σ = 0.73, AEW: σ = 0.70) as

with the logarithm of the run-time (EW: σ = 0.68, AEW: σ = 0.63).

When increasing the number of jobs on each processor n·,k, we also note a

steady increase in the average run-time of both algorithms. Here, however, all

the differences are statistically significant. The increase is rather linear than

exponential. n·,k correlates with run-times better (EW: σ = 0.52, AEW:

σ = 0.54) than with the logarithms of run-times (EW: σ = 0.29, AEW:

σ = 0.39).
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Table 3.13: Comparison of the average run-time (in seconds) of equitable walk algorithms over randomized instances from large data set.

Each cell is an average from 50 random instances

n·,k → average 10 15 20 25

N ↓ EW AEW EW AEW EW AEW EW AEW EW AEW

2 11.69 19.99 0.06 0.05 1.23 1.24 20.43 26.29 25.05 52.40

3 89.43 80.12 8.20 2.79 58.29 58.62 124.41 107.24 166.84 151.86

4 149.24 125.44 52.04 30.14 133.41 103.09 184.80 168.67 226.72 199.87

5 189.80 159.56 93.89 56.02 161.00 142.49 216.32 199.68 288.02 240.04

6 285.72 238.35 142.45 104.74 237.98 204.19 332.12 282.27 430.32 362.21

7 303.00 261.42 163.87 139.96 249.78 223.58 344.04 296.76 454.31 385.39

8 324.42 275.97 174.12 145.44 269.91 243.39 374.69 331.06 478.96 383.99

average 193.33 165.84 90.66 68.45 158.80 139.51 228.12 201.71 295.75 253.68

8
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Table 3.14: Quality of the set of solutions returned by EW and AEW compared to the exact

solutions. small data set. First two columns present the percentage of solutions returned by

EW and AEW that were equitably-dominated by one of the DYN solutions. Last two columns

show the percentage of equitably-optimal solutions found by EW and AEW. Each row is an

average from 200 random instances.

% of sols eq dominated % of sols found

n·,k EW AEW EW AEW

5 2.27 1.50 89.38 94.49

8 9.99 5.46 74.51 84.72

10 17.78 8.95 61.59 77.52

11 18.52 10.72 60.47 75.83

12 22.20 13.61 54.57 70.24

average 14.15 8.05 68.10 80.56

Reconstruction of the Equitably-Optimal Set

In the second series of tests, we measured the quality of the results returned

by both methods. Firstly, we compared the number of equitable solutions

returned by DYN and both greedy methods. The more solutions returned,

the broader the choice of the grid community.

Table 3.14 compares the solutions produced by EW and AEW to that pro-

duced by the DYN algorithm. Firstly, we can see that most of the solutions

returned by both algorithms are indeed equitable, although the percentage

of non-equitable solutions grows with the size of the instance.

However, the algorithms are not able to reconstruct the whole set of

equitably-optimal solutions. The number of solutions omitted by greedy

heuristics increased with the size of instance. Figure 3.10 (for AEW) and

Figure 3.11 (for EW) support this remarks. These figures aggregate the

data on the level of the number of equitably-optimal solutions. If a few in-

stances have a particular number of equitably-optimal solutions, the scores

of algorithms are averaged over these instances. We can see that the both

algorithms work fairly well if there are a few equitably-optimal solutions.
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Table 3.15: Quality of the set of solutions returned by EW and AEW compared to the exact

solutions. small-3 data set. First two columns present the percentage of solutions returned by

EW and AEW that were equitably-dominated by one of the DYN solutions. Last two columns

show the percentage of equitably-optimal solutions found by EW and AEW. Each row is an

average from 50 random instances.

% of sols eq dominated % of sols found

n·,k EW AEW EW AEW

4 4.57 5.87 70.92 77.45

5 12.57 14.16 53.13 68.66

6 15.64 9.08 39.41 61.11

average 10.92 9.70 54.49 69.07
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Figure 3.10: The percentage of solutions returned by AEW that were equitably-dominated

by one of the exact solutions and the percentage of all equitably-optimal solutions plotted

against the total number of equitable solutions (data is averaged over all instances with the

same number of equitably-optimal solutions). small data set.
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Figure 3.11: The percentage of solutions returned by EW that were equitably-dominated by

one of the exact solutions and the percentage of all equitably-optimal solutions plotted against

the total number of equitable solutions (data is averaged over all instances with the same

number of equitably-optimal solutions). small data set.

When the number of equitably-optimal solutions grows, scores of the algo-

rithms quickly worsen. This trend is no longer clearly visible for larger sets

of equitably-optimal solutions, as there are only few such instances.

The same trends can be seen in three organizational grids (Table 3.15).

The difference between the percentage of equitably optimal solutions returned

for n·,k = 5, N = 2 (89%) and N = 3 (53%) is probably caused by the increase

in the number of solutions: for N = 2 there are, on average, 4.8 equitably

optimal solutions (Table 3.5), whereas for N = 3 there are 18.3 solutions

(Table 3.7). For n·,k = 10, N = 2, the number of equitably-optimal solutions

is similar, but the number of equitably optimal solutions found is slightly

higher.
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Table 3.16: Mean ∆-scores and standard deviations σ (in percentage points) showing the

difference between scores achieved by exact method and EW algorithm in unconstrained op-

timization (multicriteria minimization of [Ck]). small data set. Each row is an average over

200 instances.

∆ min-sum ∆ min-max

sum max sum max

n·,k mean σ mean σ mean σ mean σ

5 0.00 0.00 0.00 0.00 -0.08 0.70 0.11 0.49

8 0.00 0.00 0.00 0.00 0.01 0.31 0.07 0.24

10 0.00 0.00 0.00 0.00 0.04 0.18 0.04 0.13

11 0.00 0.00 0.00 0.00 0.04 0.28 0.06 0.21

12 0.00 0.00 0.00 0.00 0.04 0.19 0.04 0.11

average 0.00 0.00 0.00 0.00 0.01 0.39 0.06 0.27

Quality of individual solutions

The last result indicates that both greedy algorithms produce fewer solutions.

Yet, in the end, only one solution will be used to schedule the jobs. In

this experiment we measured how this decrease in the number of produced

solutions translates into the loss of the efficiency of the whole system.

From the set of equitably-optimal solutions produced by each greedy al-

gorithm, we chose two solutions, similarly to the analysis in 3.7.2: the min-

sum solution and the min-max solution. Then we compared scores of these

solutions with that of corresponding solutions taken from the whole set of

equitably-optimal solutions produced by DYN algorithm. For each measure,

we subtracted the score of the greedy method from that of the exact method.

Consequently, for a measure, a ∆-score of e.g. 10 percentage points means

that the score of a greedy heuristics was worse by 10 percentage points from

the score of the exact method. Aggregated results for N = 2 are presented

in Table 3.16 for EW and in Table 3.17 for AEW; for N = 3 in Table 3.18 for

EW and in Table 3.19 for AEW. Note that EW returns the same min-sum

solution as DYN (i.e. SPT), so the corresponding ∆-score is always 0.
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Table 3.17: Mean ∆-scores and standard deviations σ (in percentage points) showing the

difference between scores achieved by exact method and AEW algorithm in constrained opti-

mization (multicriteria maximization of [uk]). small data set. Each row is an average over 200

instances.

∆ min-sum ∆ min-max

sum max sum max

n·,k mean σ mean σ mean σ mean σ

5 0.06 0.40 0.01 1.31 -0.03 0.28 0.00 0.65

8 0.09 0.58 0.07 0.98 0.01 0.21 0.03 0.36

10 0.03 0.12 0.03 0.34 0.02 0.09 0.02 0.20

11 0.06 0.26 0.01 0.32 0.02 0.11 0.01 0.20

12 0.04 0.16 0.01 0.25 0.03 0.12 0.04 0.14

average 0.06 0.35 0.03 0.77 0.01 0.18 0.02 0.36

Table 3.18: Mean ∆-scores and standard deviations σ (in percentage points) showing the

difference between scores achieved by exact method and EW algorithm in unconstrained opti-

mization (multicriteria minimization of [Ck]). small-3 data set. Each row is an average over

50 instances.

∆ min-sum ∆ min-max

sum max sum max

n·,k mean σ mean σ mean σ mean σ

4 0.00 0.00 0.00 0.00 -1.48 2.67 0.87 1.70

5 0.00 0.00 0.00 0.00 -1.13 2.46 0.69 1.38

6 0.00 0.00 0.00 0.00 -0.99 2.52 0.80 1.90

average 0.00 0.00 0.00 0.00 -1.20 2.54 0.78 1.66
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Table 3.19: Mean ∆-scores and standard deviations σ (in percentage points) showing the

difference between scores achieved by exact method and AEW algorithm in constrained opti-

mization (multicriteria maximization of [uk]). small-3 data set. Each row is an average over

50 instances.

∆ min-sum ∆ min-max

sum max sum max

n·,k mean σ mean σ mean σ mean σ

4 0.22 0.80 0.43 1.57 -0.05 1.37 0.28 1.56

5 0.29 0.67 -0.08 2.44 -0.15 0.95 0.05 1.02

6 0.28 1.00 0.29 1.79 0.17 0.91 0.19 1.34

average 0.26 0.83 0.21 1.97 -0.01 1.10 0.17 1.32

The greedy methods provide solutions that are not far from the optimal

ones. For N = 2, all average scores differ less than 0.1 percentage points

from the optimal ones. However, the difference is statistically significant

(two-tailed type one t-test, p < 0.001).

The standard deviations are significant compared to the average values.

This is caused by large dispersion of results. For instance, for N = 2, n·,k = 5,

and ∆ min-max max only 13 instances out of 200 had score different than 0,

but the highest difference observed was 4.5 percentage points.

We also saw a number of instances in which ∆ min-max sum or ∆ min-

sum max were negative, i.e. greedy heuristics returned “better” results than

the exact methods. In this instances, however, greedy heuristics were not able

to return all equitably-optimal solutions. Consequently, an exact solution

that has the lowest min-max max can have higher min-max sum than the

solution that has the lowest min-max max among the ones found by a greedy

heuristics.

Further investigating the difference in the quality of solutions, we saw

that, generally, the less solutions discovered by a greedy algorithm, the larger

is the difference. For instance, the correlation coefficient between the percent-

age of equitably-optimal solutions found by AEW and the ∆ min-sum sum
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Table 3.20: Mean scores and standard deviations σ (in percents) showing the quality of

solutions produced by EW algorithm in unconstrained optimization (multicriteria minimization

of [Ck]). large data set. Each row is an average over 200 instances.

min-sum min-max

sum max sum max

N mean σ mean σ mean σ mean σ

2 12.51 5.05 11.71 11.22 8.47 7.26 21.68 9.54

3 12.18 4.36 15.74 10.82 8.89 6.44 27.84 8.63

4 10.96 3.64 15.65 9.84 8.74 4.61 28.23 8.07

5 10.16 3.28 14.42 9.58 8.37 3.79 28.05 7.89

6 8.79 2.72 14.69 8.54 7.16 3.07 29.06 7.66

7 8.14 2.57 14.76 8.05 6.97 2.92 27.54 7.26

8 7.33 2.24 14.19 7.02 6.33 2.53 26.75 6.93

average 10.01 3.99 14.45 9.46 7.85 4.77 27.02 8.34

score is −0.31. However, the correlation between the number of equitably-

optimal solutions and the score is much smaller (0.05), indicating that there

is no clear relationship.

With the increased number of organizations (N = 3, Tables 3.18 and 3.19),

both the observed differences and the standard deviations are increased.

However, the differences in the score of the main measure do not exceed

0.3 percentage points for AEW and 0.8 percentage points for EW.

We conclude that, even that the number of solutions returned is smaller,

the quality of the solutions returned is similar.

In the second series of tests, we run both greedy algorithms over large

data set. As the instances were significantly larger, it was not feasible to run

exact algorithms. Thus, Table 3.20 and Table 3.21 present only the results

achieved by EW and AEW. We do not present quality of both algorithms in

function of the number of jobs on each processor n·,k. Similarly to last tests,

we found the average values similar and all but a few differences statistically

insignificant.
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Table 3.21: Mean scores and standard deviations σ (in percents) showing the quality of

solutions produced by AEW algorithm in constrained optimization (multicriteria maximization

of [uk]). large data set. Each row is an average over 200 instances.

min-sum min-max

sum max sum max

N mean σ mean σ mean σ mean σ

2 11.71 5.94 9.72 6.85 10.94 5.83 9.24 5.40

3 11.81 4.63 10.41 8.15 10.91 4.40 8.37 4.30

4 10.67 3.75 8.63 6.54 10.03 3.53 7.28 3.38

5 10.00 3.33 7.60 6.07 9.51 3.20 7.17 3.93

6 8.62 2.83 6.81 5.24 8.24 2.75 6.04 3.13

7 8.07 2.60 6.52 5.26 7.75 2.49 6.02 3.36

8 7.17 2.36 5.34 4.44 6.89 2.28 5.06 2.52

average 9.72 4.17 7.86 6.40 9.18 3.96 7.03 4.04

We see that the quality of proposed solutions falls with the number of

organizations. However, it is not because of the algorithms that are not

scalable with the size of the instance. min-sum sum solution returned by

EW is SPT solution that is optimal for this criteria. Yet, we see that even

the optimal solution is better than MJF by, on the average, 7% when N = 8

(compared to almost 12% when N = 2). Similar trends can be seen in all

the other scores.

Note also that in some instances AEW was not able to find at least one

acceptable result, i.e. ∀kuk ≥ 0 (see Table 3.22). Here, as we do not have

the results of exact algorithm, we do not know whether such a solution does

not exist or, simply, AEW is unable to find it. The worst result, however, is

achieved for the smallest instance considered (with N = 2 organizations and

n·,l = 10). In the last series of tests, for the same N and n·,l, AEW always

found an acceptable solution, or such a solution did not exist.
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Table 3.22: Number of instances in which AEW was able to find at least one acceptable result

(i.e. ∀kuk ≥ 0).large data set.

n·,l

orgCount 10 15 20 25 sum

2 44 45 48 47 184

3 48 49 50 50 197

4 50 49 50 50 199

5 50 50 50 50 200

6 50 50 50 49 199

7 50 50 50 50 200

8 49 50 50 49 198

sum 341 343 348 345 1377

3.8 Equitable Criteria

Using the above optimization scheme, organizations can manipulate the re-

sults of the process only by dividing long jobs into pieces. Let’s assume that

job J i
k,l’s size is pi

k,l and the job is executed at the beginning of the queue, the

job’s contribution to the Ck is pi
k,l. If job’s owner Ok, instead of submitting

J i
k,l, divides the job into pi

k,l jobs of size 1 and then submits them as inde-

pendent jobs, the contribution will increase to 1
2
pi

k,l(p
i
k,l − 1). For the grid

scheduler, this would be a signal that the performance of Ok decreases. Con-

sequently, a equitable scheduler, which compares Ck directly with completion

times of different organization, would favor Ok jobs.

A simple solution is to compare instead the weighted sum of completion

times
∑

i,l wkC
i
k,l. Let us assume that, for each organization Ok, the weight

of each job is equal to the inverse of the total number of jobs produced by the

organization wk = 1
nk,·

. As a result, in the above example, when ji
k,l is not

divided, it’s contribution to the weighted completion time is the same. When

the job is divided, it’s contribution becomes 1
2pi

k,l

pi
k,l(p

i
k,l − 1) = 1

2
(pi

k,l − 1),

which is of the same order as the contribution in the first case.
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The shift of the optimization goal from Ck to wkCk does not change much

the EW. The first schedule considered must order jobs according to weighted

SPT rule, i.e. according to ascending
pi

k,l

wk
. Then the algorithm proceeds as

described above.

3.9 Summary

In this chapter we addressed the problem of resource management in highly

heterogeneous computational grids. Our model emphasizes the miscellaneous

nature of both the resources (by considering dedicated resources) and the

users (by introducing the notion of an organization). We analyzed the model

using three approaches: equitable optimization (Section 3.2), when the grid

scheduler has a complete control over all the local schedulers; game theory

(Section 3.5), when local schedulers can alter their schedule; and constrained

equitable optimization (Section 3.6), when local schedulers cannot alter their

schedule, but the owner of the resource can leave the grid. The optimization

problems considered are difficult: the problem of finding one Pareto-optimal

solution is NP-hard (Section 3.2.2) and the number of all Pareto-optimal solu-

tions can be exponential (Section 3.2.1). Using game theoretic approach, we

demonstrated (Proposition 3.9) that the complete decentralization may lead

to a significant performance loss of the system. We proposed simple, greedy

heuristics to find solutions for optimization problems in the unconstrained

and in the constrained case (Section 3.3.3). Through an extensive exper-

imental validation (Section 3.7) we showed these heuristics deliver results

that are not far from the optimal ones and work a few orders of magnitude

faster at the same time. Our experiments also show that the constraints

on optimization do not worsen the results significantly. Therefore, strong

control performed by the grid community is indispensable to achieve good

performance.
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Chapter 4

Divisible Load Balancing

One of the first applications of large-scale distributed computing was

Seti@home, that eventually evolved into a platform called BOINC

[Anderson, 2004]. Seti@home gathered 95 TFLOPS of sustained computing

power through computers of hundreds of thousands of volunteers connected

over the Internet [Anderson and Fedak, 2006]. Such a large scale parallelism

is possible because BOINC applications are embarrassingly parallel. Each

BOINC application would take thousands of CPU-years on a single machine.

However, embarrassingly parallel applications can be divided into a large

number of relatively small and independent fragments, that are then com-

puted in parallel on a large number of volunteers’ computers. Fortunately,

there are many problems which are embarrassingly parallel, mostly through

data parallelism or parameter sweeps. In data parallelism, a large volume of

data to analyze can be divided into independent pieces, as it was the case

of Seti@home. In parameter-sweep problem, a relatively simple computer

model must be run with many parameter settings. In scheduling theory,

embarrassingly parallel problems are modeled as divisible load.

In this chapter, we consider the grid as a tool to compute divisible load

jobs. Following our general model of multi-organizational grid, we assume

that each job was produced by an organization. Yet, it can be computed

in parallel on other organizations’ resources, if these organizations agree to
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accept the job.

We study what decision organizations should make in the presence of

uncertainty. We consider an on-line model, in which jobs are produced during

the lifetime of the system and are unknown before having been produced.

As long as there are no local jobs, computing a foreign job does not cause

any additional cost. This is one of the reasons of BOINC popularity. How-

ever, if a new local job is produced, the foreign job is blocking the needed

resources and thus delaying the newly-produced local job. In such situation,

BOINC, running in the best-effort mode, suspends the computation of for-

eign job. Consequently, the owner of the foreign job cannot have any fixed

guarantee on its completion time.

In contrast to this approach, we assume that the system must guarantee

the latest finish time of every submitted job, which is announced to the user

while the job is submitted. We claim that such guarantee gives better quality

of service than best-effort execution commonly used in distributed divisible

load computing.

This chapter is organized as follows. After the formal definition of the

model in Section 4.1, we compute the expected delay in the computation of

next local job in Section 4.2. This function allows us to analyze a simplified

case with optimization approach (Section 4.2). We study a classic algorithm,

averaging load balancing, that distributes the load so that every resource fin-

ishes computation at the same moment. We show that the solution proposed

is not only globally optimal, but also the most fair (Section 4.3), but it al-

ways deteriorates the performance of the least loaded resource. In Section 4.4

we use a game-theoretic approach to demonstrate that the fair solution will

never be realizable. Then, in Section 4.5 we show that, in the case of sim-

ilarly loaded resources, if we oblige the organizations to collaborate during

longer time periods, averaging load balancing becomes the dominant strat-

egy for each organization. Yet, when the load is uneven among the resources,

using simple, averaging load balancing algorithm becomes unfeasible for the

less-loaded resources. Moreover, in Section 4.6 we show that if organizations
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make decisions depending on their current queue length, load balancing will

never be performed. In Section 4.7 we solve this problem by introducing

another load distribution algorithm, that employs the general ideas of fair,

constrained optimization.

4.1 Grid Model

In this chapter, we make the following assumptions about the model:

• the system works on-line;

• the scheduler is clairvoyant ;

• each resource has only one processor;

• processors are identical;

• jobs follow the divisible load model;

• resources are time shared between jobs;

• preemption is not allowed;

• as a performance measure, each organization Ok calculates the sum of

flow times Fk of locally produced jobs Jk.

At a given moment, let the local load Lk stand for the time moment when,

on resource Mk, the computation of the last currently known local job ends.

For the sake of the theoretical analysis, unless otherwise stated, we assume

that the jobs Jk are produced by a Poisson process with a known mean time

between arrivals λk. The sizes pi
k of the jobs follow exponential distribution

with known µk. Such assumptions are commonly used in queuing theory due

to the fact that the probability of arrival at each time moment is constant.

Similarly, job, during its execution, has constant probability to be finished

in each time moment. Note that these parameters are not needed by the

algorithms presented in the chapter.
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Local resource management systems queue incoming jobs on First Come

First Served (FCFS) basis.

Although we discuss several load balancing (LB) algorithms, they all share

a common property of being able to guarantee the latest finish time of every

job submitted to the system, which is announced to the user in the moment

of job submission. We consider that such guarantee, as opposed to best-effort

execution, provides better usage experience for the users (better Quality of

Service) and prevents job starvation.

We can formulate the problem of selfish LB both from the grid’s (in-

frastructure’s) and from the organization’s point of view. The grid should

provide a LB algorithm which satisfies as many organizations as possible.

Each organization must decide whether to participate in the LB process, or

not, given the algorithm and the observed behavior of other organizations.

4.2 Cost of Computation

Most of the papers dealing with Grid Economy assume that the cost of a

resource is given in advance. But what is the real cost of running a job

during a certain amount of time? One possible approach might consider that

a job should participate in resource’s running cost, such as the cost of the

electricity consumed, or the cost of the staff. However, if no jobs are executed,

these costs remain constant. Supercomputers are not normally switched off,

nor the staff is dismissed. On the other hand, in space-sharing systems, a

small (and therefore cheap) job can block resources required by a large job,

which would pay more.

We can alternatively suppose that the cost of accepting foreign load Φk

is determined by the delay in the computation of the “next” local job Jn
k ,

unknown at the moment of decision. Such a measure expresses the“irritation”

of a local user who experiences his/her job being delayed because of a foreign

load being executed (see Figure 4.1). Note that if Φk is accepted, the arrival

of Jn
k cannot interrupt Φk’s scheduled or ongoing execution, because such

98



4.2. COST OF COMPUTATION

Figure 4.1: A dilemma (top figure) faced by organization Ok accepting a foreign load. Ac-

cepting it (bottom figure) can delay the execution of the next local job by Φk, if the local job

arrives before Lk + Φk.

interruption could break the announced finish times for jobs which fragments

belong to Φk. It would essentially turn our system into best-effort one.

More formally, we can formulate a function g(r, Lk, Φk) which expresses

the delay in the computation of Jn
k in function of known local load Lk, size

of the foreign load Φk, and Jn
k ’s arrival time r = rn

k > 0. We assume that the

decision whether to accept a foreign load Φk is made at time t = 0. We also

do not consider the impact of the following local jobs nor LB which might

occur in the future. Using this notation,

g(r, Lk, Φk)=





Φk if r ∈ (0, Lk),

−r + Lk + Φk if r ∈ (Lk, Lk + Φk),

0 if r ∈ (Lk + Φk, +∞).

If Ji,n arrives before the foreign load is started, it is delayed by Φk, i.e. the
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Figure 4.2: The expected delay in the execution of the next local job EG(Lk, Φk) plotted

against local load Lk and the accepted foreign load Φk (a) and the social outcome Φk −
EG(Lk, Φk), i.e. the difference between the sender’s gain Φk and the expected delay (b). All

variables are measured in time units. λ = 0.2.

size of the foreign load (first row). If Ji,n arrives after the foreign load is

finished, it is not delayed (last row). Finally, during computation of Φk, the

delay linearly decreases with r (second row).

Knowing that r is a random variable with distribution f(r), we can com-

pute the expected value of g(r, Lk, Φk) as

EG(Lk, Φk) =

∫ +∞

−∞

g(r, Lk, Φk)f(r)dr =

=

∫ Lk

0

Φkf(r)dr +

∫ Lk+Φk

Lk

(−r + Lk + Φk)f(r)dr. (4.1)

If the local jobs arrive according to a Poisson process with known λk,

then the delays between the jobs follow exponential distribution, thus f(r) =

λk · exp(−λkr) for r > 0. After computing the integrals, we get the following

formula:

EG(Lk, Φk) = Φk +
e−λkLk

λk

(
e−λkΦk − 1

)
.

EG(Lk, Φk) is plotted on Fig. 4.2.a. It should be noted that, firstly,

the expected delay EG(Lk, Φk) is not linear with foreign load Φk. This
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suggests that the approach used in [SunGrid, 2005], that calculates the cost

of execution of a job on a resource as cost = coefficient · jobsize, may miss

some important phenomena. Secondly, Φk −EG (Lk, Φk) > 0 for all possible

(positive) values of Φk and Lk.

4.3 Averaging Load Balancing: A Fair Optimiza-

tion Perspective

The cost function EG shows that the gain the sender gets from sending a part

of its load is always greater than the expected lateness of future local jobs of

the receiver. In this section, we will use this fact to characterize the fairness

of the load resulting from a simple, averaging load balancing algorithm.

In two-organization grid, setting the load to be sent to the half of the

difference in loads results in equitably-optimal solution. Note that an aver-

aging load balancing algorithm works in that way. Note also that we do not

consider here more sophisticated algorithms that e.g. balance each job sepa-

rately. Therefore, we may treat ’the load’ on each resource as composed of a

single job. To simplify our analysis, we also consider that both resources op-

timize their makespan (which, with a single job on each resource, is identical

with the sum of completion time Ck).

Proposition 4.1. Let us assume that L2 > L1. Sending half of the difference

in loads to the least-loaded resource (Φ∗
1 = 1

2
(L2 − L1)) equitably-optimizes

the vector of sum of completion times [C1, C2]. Moreover, the resulting load

distribution equitably-dominates all other distributions.

Proof: Solution [C1, C2] is equitably-optimal, iff it is a Pareto-optimal

solution concerning the minimum sum of criteria min C1 + C2 and the max-

imum criterion min max(C1, C2). In this proof we show that, firstly, Φ∗
1 is

optimal for the maximum criterion, and then that Φ∗
1 optimizes also the sum

of criteria.
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A fraction Φ1 of M2’s load sent to M1 results in completion times [C1, C2] =

[L1 + EG(L1, Φ1), max(L1 + Φ1, L2 − Φ1)].

C2 is minimized when L1 + Φ1 = L2 − Φ1 ⇔ Φ∗
1 = 1

2
(L2 − L1).

C1 ≤ C2, as C1 = L1 + EG(Φ1) ≤ L1 + Φ1 ≤ L2 − Φ1 for Φ1 ∈ [0, Φ∗
1].

Consequently, Φ∗
1 minimizes the maximum criterion.

The sum of criteria (C1 + C2)(Φ1) is equal to:

(C1+C2)(Φ1) =

{
L1 + EG(Φ1) + L2 − Φ1 if L1 + Φ1 ≤ L2 − Φ1 ⇔ Φ1 ≤ Φ∗

1

2L1 + EG(Φ1) + Φ1 if Φ1 > Φ∗
1.

When minimizing the function in the first case (Φ1 ≤ Φ∗
1), we may omit

constants, so that the function becomes:

L1 + EG(Φ1) + L2 − Φ1 → EG(Φ1) − Φ1 =
e−λ1L1

λ1

(
e−λ1Φ1 − 1

)
→ e−λ1Φ1 ,

a monotonically decreasing function having the minimum value for the max-

imum possible Φ1, i.e. Φ∗
1.

In the second case (Φ1 > Φ∗
1) we obtain a monotonically increasing func-

tion of Φ1 that is minimized for Φ1 → Φ∗
1.

Note also that C1 + C2 is continuous. For all Φ1 except Φ∗
1 C1 + C2 is a

composition of continuous functions. Upper-limit in Φ1 = Φ∗
1 is equal to the

value of function (C1 + C2)(Φ
∗
1):

lim
Φ1→Φ∗

1
+

(C1 + C2)(Φ1) = 2L1 + EG(Φ∗
1) + Φ∗

1 (4.2)

= L1 + L2 − 2Φ∗
1 + EG(Φ∗

1) + Φ∗
1 (4.3)

= (C1 + C2)(Φ
∗
1). (4.4)

Thus, the global minimum of (C1 + C2)(Φ1) is in Φ1 = Φ∗
1.

Consequently, as Φ1 = Φ∗
1 optimizes both the sum of criteria and the

worst criterion, Φ∗
1 is the only equitably-efficient solution of the problem. 2
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4.4 A Two-Player Sender-Receiver Game

We present now how the foregoing cost function EG(Lk, Φk) can be used

to analyze the expected result of LB performed in a grid formed by two

organizations.

Definition 4.1. A simple load balancing game is a game in a normal form,

where:

• P = {OH , OL}, where OH , the sender has heavier load on its local

resource MH . (LH ≥ LL). OL will be denoted as the receiver;

• σH = {send, compute locally}, σL = {accept, reject}. OH sends part ΦL

of its load to the other resource or computes everything locally. OL

either accepts the incoming foreign load, or rejects it.

• The payoff of each player is defined as the reduction of completion time

of player’s job. Each player maximizes the payoff. The table of payoffs

is depicted in Table 4.1.a.

In such game, LB (send and accept) is globally-optimal, thus it the best

solution from the infrastructure’s point of view.

Proposition 4.2. The pair of strategies corresponding to LB (send and ac-

cept) is the social optimum (maximizes the sum of payoffs).

Proof: If the sender sends and the receiver accepts the load, the receiver

expects that its local jobs will be delayed by EG(LL, ΦL). As it will affect

OL’s criterion FL, OL’s payoff will be always negative. However, sender’s

jobs are finished faster by at least ΦL (assuming that the sender’s load after

sending ends at time LL + ΦL or later, otherwise ΦL should be reduced).

Therefore, the sender’s payoff is at least ΦL. As Φk − EG (Li, Φi) > 0, the

sum of payoffs of both players, or the social outcome (plotted on Fig. 4.2.b)

is always positive. 2
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Table 4.1: The structure of payoffs in a basic game (a) and when the organizations cooperate

longer (b). The row player’s payoff is in the top left corner, the column player’s in the bottom

right corner.

a b

compute

receive reject cooperate locally

send Φk, 0, cooperate 1

2
(Φk − EG (Lk, Φk)), 0,

−EG(Lk, Φk) 0 1

2
(Φk − EG (Lk, Φk)) 0

compute 0, 0, compute 0, 0,

locally 0 0 locally 0 0

The social outcome reaches the maximum for small local load Lk and

large foreign load Φk as limΦk→∞ Φk − EG(0, Φk) = 1
λk

. Social outcome

diminishes with the increase of Lk, because the risk of delaying the next

local job becomes greater, yet the gain of the sender is the same.

Corollary 4.1. LB (send and accept) will never occur in simple load balanc-

ing game.

Proof: For the receiver, the action accept is dominated by reject, as it

always leads to a lower payoff (−EG(LL, ΦL) if the heavier loaded resource

sends, 0 otherwise). Thus, the receiver will never play accept. 2

However, the probability of being the receiver is similar to that of being

the sender, if the resources are similarly loaded and the system forces the

organizations to commit to their decisions for some period, instead of let-

ting them cooperate only instantly. Consequently, both organizations should

benefit from cooperation. Table 4.1.b informally shows the idea. In such a

game, as Φk − EG (Lk, Φk) > 0, the action cooperate dominates the local

computation, and, consequently, LB becomes the only profitable strategy.

The transition from the basic game to the cooperation game can be viewed

as a transition from a one-shot game to a repeated game with players com-

mitting to their strategies. Actions which are dominated in a simple game

become feasible when the game is repeated. There is, however, an important
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difference between repeating the simple game and the cooperation game. The

simple game is asymmetric, so in order to obtain payoffs from Table 4.1.b,

every player must alternate between being the sender and the receiver.

4.5 Averaging Load Balancing Game

The last section shows that if players are forced to cooperate longer, load-

balancing should be profitable. Since it is hard to extend the theoretical

results to cases with more than two players and more than one next job,

we decided to validate the proposed model empirically by constructing a grid

simulator with learning participants. In the simulator each resource measures

the performance of its local jobs and accordingly adjust its willingness to join

the LB coalition.

A coalition C is formed by a subset of resources. Resources belonging

to the coalition balance their load by a centralized, averaging LB algorithm.

Periodically, each organization decides whether to join the coalition for the

next time period T ≫ pi,j . An organization cannot leave, nor enter, the

coalition until the next decision moment. This decision is made locally, and

it depends only on the performance of local jobs Jk. There are no outside,

administrative rules that would enforce an organization to join the coalition.

However, once an organization is in the coalition, it must obey the results

of the LB algorithm. Organizations outside the coalition compute all the

locally produced jobs and no foreign jobs.

If a resource Mk participating in C has been assigned some foreign load Φk

(composed of fragments of foreign jobs), Mk must execute Φk immediately

after time Lk, i.e. immediately after finishing the last local job known at

the moment of the execution of the algorithm. As both local and foreign

jobs are never postponed, we can guarantee that a job J i
k will start no later

than max(Lk, L
′
k + Φk) (where L′

k is the local load known in the moment of

executing the last LB procedure before ri
k). The job can be finished faster if

the next LB is performed before the job’s scheduled finish time.
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Algorithm 4.1: Averaging Load Balancing.

Input: L = [L1, . . . , LN ], vector of current loads of resources (with true

values for resources participating in the coalition)

L = 1
|C|

∑
k:Ok∈C Lk ;

foreach k : Ok ∈ C do

if Lk > L then

sk = Lk − L;

toSend = sk ;

foreach l : Ol ∈ C do

if Ll < L then

space = L − Ll;

Φl,k = min(space, toSend) ;

send(Mk,Ml,Φl,k);

toSend− = transmit;

The decision taken by each organization whether to join the coalition is

modeled by two pure strategies (corresponding to the ones from Table 4.1.b):

s1 – join the coalition; and s2 – do not join the coalition. In this game, each

organization uses mixed strategy σk, which specifies probability pk that the

organization Ok will join the coalition (i.e. the probability of using strategy

s1).

4.5.1 Description of Algorithms

Here, we describe the LB algorithm used to balance the load in the coalition

and the algorithm that the organization execute to adjust the probability of

participation in the coalition.

Load Balancing

The LB algorithm is executed periodically, and it balances the load by mov-

ing jobs or their fragments between resources. The algorithm is given as
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Algorithm 4.1. The algorithm starts by computing the mean load L from the

loads of resources in the coalition. Then, the resources with load greater than

the mean send fractions of their load to the ones with the load lower than the

mean. We assume no priorities in the load. Every job which parts were load

balanced is completed in exactly the same time moment L. Consequently,

after LB, the load of all resources in the coalition finishes exactly at L. The

next iteration of LB is performed at L.

The complexity of the algorithm is in O(N2).

Strategies

Organization Ok that participated in the coalition adjusts its strategy σk

at the moment of deciding whether to join the coalition for the next time

period by Algorithm 4.2. σk is based on the observed sum of flow times Fk

of local jobs submitted during the last time period. Ok computes (loop in

line 3) what would have been the sum of flow times F̃k of local jobs if the

organization had not joined the coalition.

By comparing Fk and F̃k, the organization can measure if LB was prof-

itable, and adjust pk accordingly. More specifically, each organization Mk

that was participating in the coalition computes the ratio Rk = Fk

fFk

(line 8).

In order to limit the maximum possible changes, we bound the ratio (by 1
2

and 2) (line 9). Then, the organization computes the one-round desire to

join the coalition qk, which depends on Rk. If Rk > 1, LB worsened the

performance of local jobs (line 10). Otherwise, the ratio is inverted (line 11)

(so that the impact of Rk = 2 and Rk = 1
2

will be the same).

For instance, if the performance of LB is the same as the performance if

all the jobs had been executed locally, the organization is indifferent about

joining the coalition, Rk = 1, and qk = 1
2
. If the time of the execution of

local jobs during LB is twice as much, Rk = 2 and the organization does not

want to join the coalition, qk = 0.

The value of pk is then adjusted by the value of qk multiplied by a small

number expressing the learning coefficient (line 12).
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Algorithm 4.2: Algorithm adjusting pk for Ok ∈ C.

Input:

• Jk list of jobs produced during last time period, ordered by non-decreasing

release dates;

• Ck = [C1
k , . . . , Cnk

k ] completion times of Jk with LB;

• η learning coefficient, 0 < η ≤ 1;

• pk current value of pk.

Output: pk adjusted by Jk performance

F̃k = 0;1

qEnd = 0;2

foreach J i
k ∈ Jk do3

qEnd = max(qEnd, ri
k) + pi

k ;4

F̃k+ = qEnd − ri
k ;5

Fk = 0;6

foreach J i
k ∈ Jk do Fk+ = Ci

k − ri
k ;7

Rk = Fk

fFk

;8

Rk = min(2,max(0.5, Rk)) ;9

if Rk > 1 then qk = 1 − Rk

2 ;10

else qk = 1
2Rk

;11

pk = (1 − η)pk + ηqk ;12

return pk ;13
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The complexity of the whole algorithm is in O((nk)2).

If an organization remained outside of the coalition, it cannot compute

the relative performance Rk. In this case pk does not change. As initially

organizations are indifferent to the coalition, the starting value of pk is 1
2
.

4.5.2 Experimental Analysis

We simulated the grid environment with N = 10 organizations participating

in the previously described game using a custom-built discrete event simula-

tor.

Unless otherwise stated, we assume that the resources are similarly loaded,

so the expected delay between two consecutive jobs is the same 1
λ
, λ = 0.2.

Jobs’ sizes follow the gamma distribution with parameters (α, β), α = 2,

β = 2. The period of cooperation in coalition is T = 1000. unless otherwise

stated. We repeated each experiment 50 times. The results obtained in each

repetition were very similar to each other and the same phenomena could be

observed.

In algorithm adjusting pi, when computing F̃i and Fi, we took into ac-

count only jobs that were submitted between tprev + 0.2T and tprev + 0.8T

(where tprev is the time at which the previous decision was taken), i.e. sat-

isfying tprev + 0.2T ≤ ri
k ≤ tprev + 0.8T . This allows us to avoid transitory

effects and to capture the performance of the system in the steady-state.

Fig. 4.3.a depicts a typical course of a simple cooperation game with

identically-loaded resources. After a short period of adjustment, the proba-

bility of joining the coalition oscillates between 0.8 and 0.9 with a few peaks.

We see that joining the coalition is, in general, more profitable than com-

puting the whole load locally. Otherwise, pk values would drop below 0.5.

The probabilities do not, however, converge to 1.0. This suggests that it

was common that LB delayed the execution of local jobs. We also varied

the number of organizations N from 2 to 30. We observed similar results,

although the more organizations, the higher final value of pk was observed.
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Table 4.2: Mean score and standard deviation achieved by individual organizations in 1000

rounds of the simple cooperation game. λ = 0.2

score / standard deviation

no. of organizations parameters typical overloaded

homogeneous configuration

2 α = β = 2.0 0.50 ± 0.00 / 0.65 ± 0.00

5 α = β = 2.0 1.25 ± 0.06 / 1.29 ± 0.10

10 α = β = 2.0 1.76 ± 0.12 / 1.64 ± 0.11

30 α = β = 2.0 2.37 ± 0.11 / 2.06 ± 0.20

2 α = β = 1.0 0.13 ± 0.00 / 0.06 ± 0.005

5 α = β = 1.0 0.23 ± 0.00 / 0.10 ± 0.00

10 α = β = 1.0 0.28 ± 0.01 / 0.11 ± 0.01

30 α = β = 1.0 0.30 ± 0.01 / 0.12 ± 0.01

heterogeneous configuration, α1 = β1 = 3

2 α = β = 2.0 -7.13 ± 0.00 / 3.66 ± 0.00 0.93 / 0.24

5 α = β = 2.0 -1.98 ± 0.06 / 1.53 ± 0.04 5.11 / 2.05

10 α = β = 2.0 -0.14 ± 0.03 / 0.93 ± 0.04 14.23 / 5.53

30 α = β = 2.0 1.55 ± 0.11 / 1.57 ± 1.17 36.99 / 9.29

2 α = β = 1.0 -24.21 ± 0.00 /12.29 ± 0.00 4.45 / 2.14

5 α = β = 1.0 -0.55 ± 0.01 / 0.27 ± 0.01 62.42 /11.92

10 α = β = 1.0 0.01 ± 0.00 / 0.10 ± 0.01 98.67 /18.96

30 α = β = 1.0 0.23 ± 0.01 / 0.11 ± 0.01 131.99 /25.42
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Figure 4.3: The probability of joining the load-balancing coalition pk plotted against the round

number in the homogeneous case (a) and when one of the resources (its pk is represented by

a thick black line) is overloaded (b). pk values for individual organizations are depicted by

different styles of lines.

The speed-up experienced by organization Ok can be defined as Ok’s score

Sk =
fFk

Fk
− 1, if Fk < F̃k (LB was better for Ok than local computation) and

Sk = −(Fk

fFk

− 1) otherwise. If Sk = 1, Ok’s jobs’ flow time when LB was

used was reduced by a half comparing to local computation, if Sk = −1, Ok’s

jobs’ flow time was twice as much. Sk expresses how well the LB algorithm

performed.

In order to measure the score, we fixed pk = 1.0 for all the organiza-

tions, and performed N = 1000 rounds of the game without using the pk’s

adjustment algorithm described in the previous section. Table 4.2 presents

the aggregated results. As scores for individual organizations were similar,

for brevity we present only the average score (computed as an average from

individual organizations’ scores, which, in turn, are averages over 1000 runs),

the actual range in which individual organizations’ scores belonged, and the

average standard deviation, computed as the average from standard devia-

tions of score for each organization, again with the actual range. We can see

that, on the average, if the resources were similarly loaded and their load

was high (α = β = 2.0 with λ = 0.2 gives average load of 80%), jobs were
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speeded up from 50% to 237%. The more organizations in the grid, the bet-

ter the results. This is because if there are more resources, more resources

can actually send their load and profit from the LB. In the underloaded case

(α = β = 1.0, which gives average load of 20%), the algorithm was not as

efficient, because there were not as many jobs to be load-balanced. However,

performance varied heavily, as standard deviations are high.

However, one resource overloaded with local jobs, for instance O1 in

Fig. 4.3.b (with α1 = 3, β1 = 3), is able to hinder others from cooperat-

ing. p1 of such an organization quickly reaches a value slightly higher than

in the previous experiment. The rest of the organizations does not want to

collaborate with O1, so their probabilities oscillate around 0.1. There are

sharp increases, when LB gets profitable for an underloaded organization.

After such an increase we usually observe a gradual downfall, meaning that

the organization constantly loses performance in comparison to individual

computing. Such an overloaded organization has also enormous impact on

the mean score achieved by other organization. While the score achieved by

M1 is high, others are constantly loosing by cooperating with this organiza-

tion. Only in largest grids (30 participants in the normally loaded case, 10

and 30 participants in underloaded case) other organizations gain, although

this gain is much smaller compared with the homogeneous case.

4.6 Load-Balancing Based on Queue Length

Both effects observed in the previous section suggest that, although LB is

indeed profitable, organizations should perhaps make their decisions on a

finer level. However, it will be shown in this section that if each organization

is able to decide about participating in the load-balancing process based on

the current queue length on the local resource, cooperation will never appear,

and therefore the grid will work inefficiently.

Let us assume a grid composed of two organizations O1 and O2 that

participate in an averaging LB algorithm. The organization with bigger local
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load sends a half of the difference in load to the less loaded organization. The

amount of load sk sent by organization Ok is:

sk(Lk, Ll) =
Lk − Ll

2
.

If sk > 0, organization Ok sends a fraction of its load to organization Ol. If

sk < 0, Ok receives a fraction of Ol’s load.

Given resource’s Mk current load Lk and its expectations about the dis-

tribution of load in the other resource, Mk can compute the expected result

of LB process. Let us assume that organizations are identically loaded and

they know their average arrival rate λ and the average service rate µ. Let’s

denote γ = µ − λ and ρ = λ
µ
. Then, for each resource, its queue length Lk

has a mixed distribution having an impulse at Lk = 0 and being exponential

for Lk > 0 [Larson and Odoni, 1981]. For our analysis, this distribution can

be approximated by the following continuous distribution:

f(Lk) =

{
0 for Lk < 0

(1 − ρ)δ(Lk) + ργe−γLk for Lk ≥ 0
,

where δ(Lk) is Dirac delta function. Knowing this, Mk can compute the

expected value of sk(Lk, Ll) as:

ESk(Lk) = E
(Lk − Ll

2

)
=

1

2

(
Lk − ELl

)
=

=
1

2

{
Lk −

(
0 · (1 − ρ) +

+

∫ ∞

0

ργLke
−γLkdLk

)}
=

1

2

(
Lk −

ρ

γ

)
.

Consequently, organization Ok expects that it will send its jobs only if its

current queue is longer than the expected queue length of Ml,
ρ

γ
. Only in

this case LB is profitable for Ok. Organization Ol, however, is capable of the

same analysis. If Ml’s current queue length Ll is less than the average ρ

γ
, Ml

will not participate in LB process. In order to carry out the LB, we need two

organizations willing to participate. Consequently, if Ok wants to participate,
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it must know that if Ol participates (and the LB occurs), Ol’s queue length

will be longer than ρ

γ
. This modifies the probability distribution function

(pdf) of Ml’s queue length. Following the general formula for conditional

probability Pr(A|B) = Pr(A and B)
Pr(B)

the pdf of Ml’s queue length, given that

Ll > ρ

γ
can be expressed as:

f ∗(Ll|Ll >
ρ

γ
) =





f(Ll)
1−F ( ρ

γ
)

if Ll ≥ ρ

γ

0 if Ll < ρ

γ

,

where f(Ll) is the original pdf and F (Ll) = 1 − ρe−γLl is its cumulative

distribution function. Then, the expected value of s becomes:

ESk(Lk|Ll >
1

γ
)=

1

2

{
Lk −

−
(∫ ∞

ρ

γ

ργLke
−γLk

1 − (1 − ρe−γ
ρ

γ )
dLk

)}

=
1

2

(
Lk −

ρ + 1

γ

)
.

Consequently, LB becomes profitable for organization Ok only if its queue

length is longer than ρ+1
γ

. We can, however, iterate this reasoning further.

Generally, the following formula holds:

ESk(Lk|Ll >
ρ + n

γ
) =

1

2

(
Lk −

ρ + n + 1

γ

)
.

It makes the one-step LB analogous to the beauty contest game [Camerer, 2003].

The more iterations of the above reasoning the players make, the longer the

minimum queue length which makes LB profitable. As the players are com-

pletely rational, the minimum profitable queue length increases indefinitely.

The LB will thus never occur.

Obviously, in the longer time period, Mk’s queue length will also follow

the same distribution as Mk’s. The expected result of LB (computed as:

ESk = 1
2
(ELk − ELl)) becomes then zero. Each organization can expect

that it will send, on average, as much load as it will receive. In the analysis

in Section 4.2 we showed that the cost EG of accepting a fraction of load

of size Φ is always less than Φ, the profit the sender gets from sending it.

Therefore, in the longer time period, the LB process is indeed profitable.
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4.7 Bounded, Iterative Load Balancing

In Section 4.5 we showed that, although cooperation is profitable, one over-

loaded resource is able to make the LB unprofitable for the rest of the orga-

nizations. In Section 4.6 we demonstrated that it is impossible to formulate

rational strategies based on the current queue length. Consequently, the only

part of the system that can be improved is the LB algorithm. In this section

we will propose Bounded, Iterative Load Balancing algorithm (BILB) that

balances the load in a more equitable way. The algorithm uses two mecha-

nisms: iterative LB, in which firstly the least-loaded resources are balanced,

then the resources are iteratively added in the order of their local load; and

bounded LB, in which no resource is forced to accept foreign load which would

increase its local queue too much. The former technique favors underloaded

resources, the latter directly uses conclusions from the cost model presented

in Section 4.2, where we showed that accepting foreign load is cheaper when

local queue is short.

This section presents the load balancing algorithm (Section 4.7.1), an

analysis (Section 4.7.2), the algorithm the organizations use to modify their

strategies (Section 4.7.3) and the experiments (Section 4.7.4).

4.7.1 BILB Algorithm Description

Principle

BILB allows each organization to control the maximum foreign load it will

receive. Each organization, once every T time units, instead of declaring

whether it participates to the coalition or not, announces its declared partic-

ipation level lk. lk value is expressed in the same units as job length. The

algorithm guarantees that, after the LB process completes, if a resource has

been assigned some foreign load Φk, the resource’s queue length will not ex-

tend lk. In order to prevent that organizations declare lk = 0, an overloaded

resource will not be able to send more than lk of its load. Let us denote the
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Algorithm 4.3: Bounded Iterative Load Balancing. Φk denotes the total load received

by Mk, Ψk the total load sent by Mk.

Input: L = [L1, . . . , LN ], vector of current loads of resources; without loss of

generality we assume that L1 ≤ L2 ≤ . . . ≤ LN

L1 = L1 ;1

for k = 2 to N do2

Lk =
(k−1)Lk−1+Lk

k
;3

surplusk = max(Lk − Lk, lk) ;4

for l = 1 to k − 1 do5

Ml.space = min(Lk − (Ll + Φl), ll − Ll − Φl + Ψl);6

receivers = sort((M1, . . . ,Mk−1),Ml.space) ;7

for i = 1 to k − 1 do8

let l denote the index of machine Ml such that receivers[i] = Ml ;9

Φl,k = min(surplusk

k−i
,Ml.space) ;10

send(Mk, Ml, Φl,k) ;11

surplusk− = Φl,k ;12

load that Mk sends as a result of LB as Ψk. Using this notation, Ψk ≤ lk. By

lk, an organization can control the risk of taking part in LB. Lower values

mean lower risk, but also smaller load to be sent if the resource is overloaded.

Higher values enable the resource to send much load, if it is overloaded, but

also could force it to accept much foreign load.

BILB balances the load of a machine with machines that have smaller

loads. Consequently, the machines that have their load smaller than the

overall average can gain from the process.

Algorithm

BILB is described as Algorithm 4.3. The algorithm starts by collecting the

loads Lk, and the declarations of maximum participation lk from organi-

zations. Firstly, the resources are sorted according to the increasing queue

lengths. Let us assume that L1 ≤ L2 ≤ . . . ≤ Ln. Then, for each resource Mk,
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its load is balanced with {M1, . . . , Mk−1} (loop starting at line 2). These re-

sources have their load already balanced, with mean queue length Lk−1. The

maximum load Mk will send, surplusk, is bounded by the average Lk−Lk and

Mk’s announced participation lk, Ψ∗
k = max(Lk −Lk, lk) (line 4). surplusk is

then divided onto {M1, . . . , Mk−1}. On each receiver Ml, the space available

for surplusk is bounded by the delay to the average (Li + Φi − Lk) and by

the declared participation li − Li − Φi + Ψi (Φi is the total load already re-

ceived by Mi, Ψi is the total load sent by Mi) (line 6). Receivers are sorted

by increasing space available for Mk load (line 7). Then, for each receiver

Ml, the load Φl,k actually received is bounded by the space available and the

number of remaining receivers Φl,k = surplusk

k−i
(line 10). In other words, if

Ml receives anything, Ll + Φl − Ψl ≤ ll. Note that after such a bounding,

the actual load Ψk =
∑k−1

i=1 Φi,k that Mk sends can be lower than the value

computed in line 4.

Next iteration of BILB is performed after mink(Lk + Φk − Ψk).

Complexity

The computational complexity of BILB is in O(N2).

4.7.2 Algorithm Analysis

The two mechanisms used by the algorithm are difficult to analyze theoret-

ically together, however we show that they both contribute to the desired

effects.

Firstly, iterative LB achieves more equitable solutions than averaging LB.

Assuming that L1 ≤ . . . ≤ Lk ≤ . . . ≤ Ln, as the load sent in the averaging

LB depends on the average load sk = Lk − L, resource Mk will profit from

averaging LB only if its load is greater than the average load L. Otherwise

it will be just receiving foreign load. However, in iterative LB, Mk sends

a fraction Ψk = Lk − Lk. Since the resource balances its load with less

loaded resources, L1 ≤ . . . ≤ Lk, the average is smaller than or equal to the

resource’s load Lk ≤ Lk, so the load send Ψk ≥ 0. Only the least loaded
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resource will only receive the load. Iterative LB is also profitable for the

heavier loaded resources. In fact, for each resource Mk, Lk ≤ L, so Ψk ≥ sk

(and this becomes an equality only for the heaviest loaded resource). Each

resource sends at least the same amount of load as in averaging LB.

Additionally, iterative LB makes jobs finish earlier. Resource Mk finishes

all its jobs that are known in the moment of LB until the time Lk, whereas

in averaging LB jobs are finished later (L ≥ Lk). Only the jobs of the most

loaded resource MN are not accelerated in comparison with averaging LB.

Bounding the load that a receiver may accept has two goals. Firstly,

through parameter lk organization Ok can control its participation in the

algorithm on a finer level, as it is able to balance the risk of getting a load of

size lk (which would induce the cost EG(Lk, lk)), and the gain from sending

its job of size lk. Secondly, this mechanism uses the observation that the

longer the resource’s queue, the more expensive is foreign job’s execution.

The longer the queue, the more probable that the next job Jn
k arrives before

Lk. Thus, it is more probable that Jn
k will be delayed by foreign load received

as a result of LB. When a resource is heavily loaded, it should not receive

any foreign load, as it is almost certain that next local job arrives before the

foreign load is finished.

4.7.3 Strategies

The algorithm executed by organizations to modify their strategies is anal-

ogous to Algorithm 4.2. However, after computing Rk, each organization

computes the declared participation as follows (this replaces lines 10-12 in

Algorithm 4.2):

if Rk > 1 then

lk = lk − ηlk(Rk − 1) ;

else

lk = lk + ηlk(
1

Rk
− 1) ;

lk = max(1,min(lk, 1000)) ;
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Figure 4.4: The declarations of maximum participation of each organization lk plotted against

the round number in the homogeneous case of two organizations (a) and of ten organizations

(b). α = β = 2, λ = 0.2, lk values for individual organizations are depicted different styles of

lines.

Similarly to Algorithm 4.2 lines 10-12, this operation makes the change

of lk proportional to the performance achieved.

4.7.4 Experimental Analysis

We simulated the BILB algorithm in a system similar to the one described

in Section 4.5.2. The parameters of the system were the same as in the pre-

vious experiments. For the plots of optimum participation level, we repeated

each experiment 10 times and observed no significant differences between

individual runs.

When resources are similarly loaded, LB is highly profitable as the de-

clared levels of cooperation lk quickly reach the upper bound (Fig. 4.4). As

such a bound is strongly greater than observed queue lengths, an organiza-

tion, by declaring lk = 1000, essentially turns off the bounding mechanism

and declares that it will accept everything.

When resources’ loads differ, both mechanism used in BILB are needed

depending on the number of overloaded resources in the system. Firstly, in
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Figure 4.5: The declarations of maximum participation of each organization lk plotted against

the round number in the heterogeneous case of two organizations (a) and of ten organizations

(b). For M1, plotted in thick, black line, α1 = β1 = 3, whereas for the other organizations,

α = β = 2. lk values for individual organizations are depicted by different styles of lines.

λ = 0.2

smaller grids (Fig. 4.5.a) composed of 2 organizations, the underloaded orga-

nization O2 declares its participation level l2 less than 1.5, which is rounded

to 1.0 by the algorithm. This is a consequence of the discrete nature of our

simulator, as the first job after LB may come at earliest in the next time

unit. Clearly, if LB was performed before job submission, l2 would be equal

to 0. This result shows, however, that the algorithm used for lk modification

works correctly: O2 cannot gain by load-balancing its jobs (as M1’s queue is

with almost always longer), but it can accept a foreign load of size 1, since

it will not delay its local jobs.

Secondly, in larger grids (Fig. 4.5.b), we can see that the declared partic-

ipation level of all organizations eventually reaches the upper bound. This

result, although surprising, is justified by the “iterativeness” of the LB algo-

rithm. As resources with smaller loads are balanced firstly, they are able to

gain from the process, without being flooded by overloaded resource’s jobs.

Both results show that, in function of particular grid configuration and

resources’ load level, both mechanism used in BILB are needed.
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Table 4.3: Mean score and standard deviation achieved by individual organizations in 1000

rounds of the BILB in function of different levels of declared participation lk. 2 and 10

organizations with λ = 0.2, α = β = 2.

two organizations ten organizations

lk score ± std dev ± score ± std dev ±
1 0.125 0.006 0.123 0.014 0.076 0.006 0.055 0.006

2 0.258 0.003 0.251 0.012 0.261 0.016 0.190 0.016

3 0.387 0.01 0.364 0.001 0.710 0.043 0.515 0.039

4 0.48 0.006 0.467 0.004 1.429 0.072 1.059 0.131

5 0.574 0.006 0.568 0.008 2.148 0.092 1.541 0.153

6 0.587 0.018 0.587 0.021 2.334 0.085 1.701 0.054

7 0.609 0.013 0.642 0.033 2.518 0.124 1.878 0.150

8 0.606 0.017 0.639 0.019 2.661 0.095 1.999 0.174

9 0.608 0.011 0.617 0.007 2.793 0.114 2.095 0.184

10 0.592 0.017 0.648 0.026 2.912 0.083 2.197 0.155

20 0.613 0.007 0.713 0.019 3.116 0.140 2.413 0.195

50 0.623 0.004 0.737 0.031 3.134 0.230 2.372 0.253

100 0.636 0.039 0.774 0.035 3.135 0.153 2.427 0.169

1000 0.628 0.011 0.729 0.006 3.123 0.139 2.393 0.212
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Table 4.4: Mean score and standard deviation achieved by individual organizations in 1000 rounds of the BILB in function of different levels

of declared participation lk. Heterogeneous grid, one overloaded resource M1 has α1 = β1 = 3, the rest α = β = 2. λ = 0.2. The overloaded

organization’s declared participation level is fixed to l1 = 1000.

two organizations ten organizations

typical overloaded typical overloaded

lk score std dev score std dev score ± std dev ± score std dev

1 0.003 0.017 0.034 0.022 0.079 0.006 0.057 0.006 0.003 0.004

2 -0.005 0.047 0.074 0.046 0.267 0.014 0.196 0.021 0.019 0.017

3 -0.03 0.058 0.12 0.078 0.687 0.033 0.510 0.050 0.097 0.069

4 -0.062 0.062 0.152 0.106 1.290 0.055 0.946 0.084 0.382 0.251

5 -0.098 0.081 0.185 0.146 1.807 0.058 1.343 0.098 1.116 0.855

6 -0.138 0.101 0.194 0.144 1.748 0.069 1.370 0.152 1.921 1.737

7 -0.167 0.116 0.192 0.141 1.696 0.066 1.375 0.098 3.086 2.823

8 -0.202 0.128 0.195 0.133 1.605 0.049 1.363 0.088 4.201 3.845

9 -0.233 0.152 0.202 0.159 1.545 0.086 1.315 0.128 5.664 5.116

10 -0.278 0.167 0.203 0.149 1.448 0.071 1.290 0.108 6.651 5.938

20 -0.661 0.353 0.232 0.166 0.887 0.059 1.181 0.081 13.635 10.712

50 -1.822 0.903 0.316 0.189 0.607 0.026 1.226 0.126 20.841 10.551

100 -3.753 2.005 0.501 0.272 0.591 0.057 1.226 0.089 21.845 9.602

1000 -7.054 3.641 0.949 0.253 0.609 0.104 1.229 0.161 22.018 9.423

1
2
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4.7. BOUNDED, ITERATIVE LOAD BALANCING

Table 4.5: Mean score and standard deviation achieved by individual organizations in 1000

rounds of the BILB. λ = 0.2. In heterogeneous configurations, the overloaded organization

declared l1 = 1000.

score / standard deviation

no. of organizations parameters typical overloaded

homogeneous configuration

2 α = β = 2.0, l = 1000 0.65 ± 0.00 / 0.73 ± 0.010

5 α = β = 2.0, l = 1000 2.00 ± 0.10 / 1.72 ± 0.14

10 α = β = 2.0, l = 1000 3.15 ± 0.17 / 2.45 ± 0.22

30 α = β = 2.0, l = 1000 4.56 ± 0.30 / 3.36 ± 0.24

2 α = β = 1.0, l = 1000 0.64 ± 0.02 / 0.79 ± 0.01

5 α = β = 1.0, l = 1000 1.65 ± 0.07 / 1.64 ± 0.12

10 α = β = 1.0, l = 1000 3.15 ± 0.01 / 2.41 ± 0.14

30 α = β = 1.0, l = 1000 4.55 ± 0.40 / 3.32 ± 0.60

heterogeneous configuration, α1 = β1 = 3

2 α = β = 2.0, l = 1 0.03 ± 0.02 / 0.00 ± 0.00 0.02 / 0.00

5 α = β = 2.0, l = 3 0.11 ± 0.07 / 0.56 ± 0.02 0.44 / 0.03

10 α = β = 2.0, l = 5 1.12 ± 0.82 / 1.80 ± 0.10 1.33 / 0.15

30 α = β = 2.0, l = 10 29.77 ± 8.73 / 3.40 ± 0.15 2.52 / 0.23

2 α = β = 1.0, l = 1 0.18 ± 0.05 / 0.00 ± 0.00 0.00 / 0.00

5 α = β = 1.0, l = 3 1.90 ± 1.14 / 0.14 ± 0.00 0.07 / 0.00

10 α = β = 1.0, l = 5 8.75 ± 4.55 / 0.21 ± 0.01 0.10 / 0.00

30 α = β = 1.0, l = 10 40.36 ± 10.87 / 0.31 ± 0.02 0.12 / 0.03
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In order to measure the score (computed as in Section 4.5.2), we fixed

the declared level of participation lk and performed N = 1000 rounds of the

game without using the lk’s adjustment algorithm described in the previous

section.

Firstly, we tested different levels of participation lk in order to assess the

quality of the adjustment algorithm. Tables 4.3 and 4.4 presents the example

results for grid composed of 2 and 10 organizations aggregated in the same

way as in Section 4.5.2 (each row is an average over 1000 runs with the

same settings). In homogeneous cases, all organizations fixed their values of

lk to the same value. In heterogeneous cases, the overloaded organization

O1 declared l1 = 1000, because it almost never receives any load and it is

profitable that it sends as much as possible. The rest of the organizations

declared the same lk, shown in the different rows of the table.

In the homogeneous case (Tables 4.3), we can see that, indeed the maxi-

mum participation leads to best performance, although the score achieved is

similar as for lk = 4. What is, however, important, is that for lower partici-

pation levels, the standard deviation is also lower, which means that the risk

is smaller for individual organizations.

In the heterogeneous case (Table 4.4) with two organizations, the mini-

mum participation of the least loaded organization, which was proposed by

the adjustment algorithm, indeed leads to the best performance of this organi-

zation. Nevertheless, in heterogeneous grid composed of 10 resources, for less

loaded organizations it is better to reduce the lk to 5. Performance achieved

with lk = 5 is significantly better than the performance for lk = 1000, pro-

posed by the adjustment algorithm. It should be noted that, with λ = 0.2, 5

is the average time between two jobs are released. If a resource accepts a for-

eign load which extends its queue length to 5, in average half of the local jobs

will be delayed. Resources may also use more sophisticated techniques for

learning their optimal participation level [Marks, 2001, Sastry et al., 1994].

In order to compare scores achieved by organizations using BILB with the

simple algorithm (Table 4.2), we set lk values which maximized the average
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score in the same analysis as in Table 4.4. The results are shown in Table 4.5.

We see that, firstly, BILB provides better results in the homogeneous setting,

and secondly, it allows positive gains for all the organizations even when one

of the resources is overloaded. BILB is especially profitable in heterogeneous

configurations with many resources.

4.8 Discussion

The proposed solutions are simple, yet distributed systems applying them

manage to avoid some common pitfalls. Firstly, every job submitted to the

system has guaranteed completion time. This is a clear advantage over the

best-effort mode used commonly for grid jobs.

Typical free-riding is impossible. By participating in the coalition, or-

ganizations will share their resources, as long as they are underloaded. If a

resource is heavily loaded, the resource does not impede others from LB. It

simply will use the resources that remain free after the less loaded organiza-

tions have balanced their load.

There are several ways in which organizations can attempt to cheat the

algorithm in order to obtain better gain. Firstly, an organization can delay

the execution of foreign load. However, others can immediately detect such

behavior, because of the guarantees on the completion time. As we showed,

generally, LB is profitable for each organization. Therefore, by declaring

that such delayers will be penalized by temporal or permanent exclusion,

the community is able to impose the desired behavior on every organization.

This is a consequence of folk theorem in repeated games.

Secondly, organizations may be tempted to overstate the queue length

on their resources in order to reduce, or even suppress the load assigned to

them by the algorithm. However, such behavior may reduce organization’s

performance when the BILB algorithm is used. As the algorithm sorts re-

sources by increasing queue length, the resource which declares larger local

load can be overtaken by another resource, which, in turn, can fill the queues
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of less loaded resources with its jobs, leaving no space for the cheater’s jobs.

Only the least-loaded resource will profit from overstating its actual load.

In the general case, this problem is, unfortunately, similar to the n-player

repeated Prisoner’s Dilemma (PD). In PD, although mutual cooperation is

socially-optimal, the Nash equilibrium is mutual defection. In our game,

organization Ok defects when it declares its queue length L̃k equal to the

declared participation level lk (L̃k = lk) (higher declarations are dominated

by this action), although the true queue Lk is shorter Lk < L̃k. Additionally,

other organizations cannot observe the true Lk, and therefore can guess the

action undertaken by Ok only by the observed result of the LB algorithm.

We think that, similarly to other real-world PD occurrences, the only way to

prevent such situations is an out-of-game verification of organizations. Such

control can be performed e.g. by sporadic test of the true queue length. Each

organization must provide an account, indistinguishable from other accounts

of that organization, by which an auditor would submit a job and note the

current queue length looking at the guaranteed finish time for that job. Alter-

natively, the community may impose a particular, trusted queuing software

to be installed on each resource. Although the software may be modified

locally, periodic updates (that are, again, imposed by the community) make

such efforts unprofitable. This approach is used in EGEE grid [EGEE, 2007].

One of the drawbacks of the proposed solutions is the centralization of

the load balancing algorithm. This, however, should not be a problem in

typical grid systems, composed of tens (rather than thousands) resources.

Recall that the computational complexity of the algorithm is small (O(N2)).

In larger systems, the load could be balanced in a more distributed fashion,

with a number of instances of BILB running on overlapping fragments of the

system.
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4.9 Summary

In this chapter we proposed a new method for load balancing in decentral-

ized systems owned by multiple parties. We presented a new cost function

in which the cost of execution depends both on the size of a job and on the

local load (Section 4.2). Although load balancing is equitably-optimal (Sec-

tion 4.3), we demonstrated that it will never be performed when players are

myopic (Section 4.4). We overcame this issue by forcing players to commit

to their decisions for longer periods of time (Section 4.5. In the basic set-

ting, when resources were similarly loaded, even a simple queue-averaging

load balancing algorithm gave acceptable results for all the players. Then

we proved that if organizations choose their actions according to the cur-

rent queue length, cooperation will never occur (Section 4.6). Finally, we

addressed the issues of load heterogeneity by designing another algorithm,

called Bounded Iterative Load Balancing, which delivers more equitable so-

lutions by employing two techniques: bounding the foreign load assigned for

execution on a resource by limiting the maximum length of the queue; and

load balancing the least-loaded resources first, so that they could also gain

from the process (Section 4.7). This algorithm delivers better results than

the previous algorithm in all the settings considered. Moreover, it is able

to produce gain even for the least-loaded organizations. Additionally, our

system provides basic Quality of Service parameters for every submitted job,

as it is capable of determining the job’s worst-case finish time in the moment

of the submission of the job.
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Chapter 5

Rigid Load Balancing

In this chapter we study the multi-organizational extension of the classic

parallel job scheduling problem. The classic version of the problem consists

of scheduling jobs on a multiprocessor resource. Each job must be executed

in parallel on a specific number of processors. The goal is to minimize the

makespan, the time the last job completes. This model adapts well to a

popular supercomputing scenario, in which a cluster is shared between a

number of MPI jobs.

We extend the classic model to multiple organizations. In our model,

each organization owns a multi-processor resource and produces jobs that

are scheduled locally on its resource. Through grid-level load balancing,

these jobs can be then executed on different resources. In this chapter we

study approximation algorithms with a guarantee on the worst-case perfor-

mance ratio. We aim to measure the impact of organizational and hardware

decentralization on the approximation ratio.

After formally defining the model in Section 5.1, we show some basic

results on scheduling jobs on one resource in Section 5.2. Then, we study

the model with the three approaches defined in Section 2.4. Firstly, in Sec-

tion 5.3, we show that, even if the grid scheduler retains complete control

over all resources, the discontinuity of resources causes the approximation

ratio of a simple List Scheduling algorithm to rise to 3. Moreover, the equity
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of results cannot be guaranteed. Then, in Section 5.4, we show that the

cost of organizational decentralization is not as high as in previously consid-

ered grids, because the Price of Anarchy is between 3/2 and 2. Finally, in

Section 5.5, we propose a scheduling algorithm that has a fixed worst-case

approximation ratio on the system makespan and at the same time does not

worsen local makespans of any organization. We provide an experimental

evaluation of the algorithms in Section 5.6.

5.1 Grid Model

In this chapter, we make the following assumptions (in addition to ones in

Section 2.3) about the system:

• the model is off-line;

• the scheduler is clairvoyant ;

• each resource has m processors;

• jobs are parallel and rigid. J i
k must be executed in parallel on qi

k pro-

cessors of exactly one resource.

• there are no release dates;

• processors are time-shared between jobs. Resources are space-shared

and time-shared between jobs;

• preemption is not allowed;

• in order to measure the performance, each organization computes the

makespan Cmax(Ok) = max Ci
k of locally produced jobs.

Note that we do not allow a job to be executed in parallel on two, or more

resources. This assumption is caused by the underlying heterogeneity of net-

work links. As a job must be executed in parallel, we assume that fragments

of the job executed on different processors will actively communicate with
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each other. Inside one resource, such communication is fast. However, links

between resources are a few orders of magnitude slower, so communication

between resources would increase job’s execution time.

Note also that with the assumption that each organization measures the

completion time of its locally-produced jobs, and not the completion time of

the local resource, executing a foreign job at the end of the schedule does

not cause any cost for the owner. This is a direct consequence of the off-line

assumption of the model.

We will now introduce notation and definitions used in the chapter. J i
k

is low if it needs no more than a half of resource’s processors (qi
k ≤ m

2
),

otherwise it is high. Two low jobs can be executed in parallel on a resource.

We denote by pmax = max pi
k the maximum length of a job. By W =

∑
pi

kq
i
k we denote the total surface of the jobs.

We denote by Ik the set of jobs allocated to be executed on resource Mk.

For resource Mk, a schedule πk is a mapping of jobs Ik to processors and

start times in such a way that in each time moment no processor is assigned

to more than one job. A schedule is usually represented by a Gannt chart.

At any time moment t, uk(t) is defined as the number of currently used

processors of Mk (i.e. processors that compute jobs). Utilization Uk(t) is

the ratio of the number of currently used processors to the total number of

processors m, Uk(t) = uk(t)
m

.

5.2 Scheduling on One Resource

Let us first focus on the simple case of scheduling rigid parallel jobs on one

resource consisting of m identical processors. As in this section there is no

reason to distinguish between a resource and an organization, we simply use

Cmax to denote the makespan and omit the index of the organization in other

notations (e.g. qi
k becomes qi). We use the classic list scheduling algorithm,

which has an approximation ratio equal to 2− 1
m

[Eyraud-Dubois et al., 2007].

We show that if the jobs are ordered according to decreasing number of
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Algorithm 5.1: List Scheduling (LS) algorithm.

Input:

• J = (J1, . . . , Jn), ordered list of jobs

• m number of processors

unscheduled = J ;1

t = 0 ;2

while not empty(unscheduled) do3

m′ = m − u(t) ;4

foreach J i ∈ unscheduled do5

if qi ≤ m′ then6

schedule(J i, t) ;7

m′ = m′ − qi ;8

unscheduled.remove(J i) ;9

t = mini:Ji∈(J−unscheduled)∧Ci>t Ci ;10

required processors, the resulting schedule can be divided into at most two

periods regarding the utilization of the resource. Firstly, more than the half

of the processors are used. Then, less than the half of the processors are used,

during at most pmax. Preliminary results established in this section will be

used later to solve the general problem of multi-organization scheduling in

the rest of the chapter..

5.2.1 List Scheduling

List scheduling [Graham, 1969] is a class of heuristics which work in two

phases. In the first phase, jobs are ordered into a list. In the second phase

(detailed as Algorithm 5.1), the schedule is constructed by assigning jobs to

processors in a greedy manner. Let us assume that in time moment t, m′

processors are free in the schedule under construction (line 4). The scheduler

chooses from the list the first job J i requiring no more than m′ processors
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Figure 5.1: When jobs are presorted according to number of required processors, the schedule

can be divided into two regions with utilization U(t) > 1

2
(up to tHL) and U(t) ≤ 1

2
(after

that moment).

(line 6), schedules it to be started at t (line 7), and removes it from the list.

If there is no such job, the scheduler advances to the earliest time moment t

when one of scheduled jobs finishes (line 10).

List scheduling of rigid parallel jobs is an approximation algorithm with

guaranteed worst case performance of 2 − 1
m

[Eyraud-Dubois et al., 2007].

The ordering of jobs in the first phase is not important. A polynomial time

algorithm with better approximation ratio is not known.

The following lemma describes the utilization of the schedules returned

by LS.

Lemma 5.1. [Eyraud-Dubois et al., 2007] In a schedule constructed by LS

with makespan Cmax, the following property holds:

∀ t, t′ ∈ [0, Cmax] : t′ ≥ t + pmax ⇒ u(t) + u(t + pmax) > m.

5.2.2 Highest First (HF) Job Order

The 2 − 1
m

approximation ratio of list scheduling does not depend on the

particular order of jobs in the list. Therefore, we may choose a criterion

which gives some interesting properties of the resulting schedule without

loosing the approximation ratio.
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Let us consider jobs ordered according to the Highest First (HF) rule, i.e.

by non-increasing qi. The following proposition holds.

Proposition 5.1. All HF schedules have the same structure consisting of

two consecutive regions of high (t ∈ [0, tHL) : U(t) > 1
2
) and low (t ∈

[tHL, Cmax(Mk) : U(t) ≤ 1
2
) utilization, where 0 ≤ tHL ≤ Cmax(Mk) (Fig-

ure 5.1).

Proof: The proof is by contradiction. Let us assume that at time moment

t the utilization is low (U(t) ≤ 1
2
), and that at time t′ > t the utilization is

high (U(t′) > 1
2
). Note that all the jobs executed at t are low (they all require

less than half of the available processors). Let us consider a job scheduled

after t requiring less processors than it is available at t. If there is no such

job, yet U(t′) > 1
2
, at least one high job follows a low job, which contradicts

the assumption of HF order of jobs (as, according to HF, the high job should

have been scheduled before scheduling jobs that execute in parallel when job

executing at t starts). If such a job exists, scheduling it at t would result in a

smaller completion time. Consequently, scheduling it after t contradicts the

greedy principle of the list scheduling algorithm. 2

Proposition 5.2. In the region [tHL, Cmax(Mk)] of low utilization, the func-

tion U(t) is non-increasing.

Proof: The proof is analogous to the previous proof. Let us assume that

U(t) increases at time moment t′′ (t′′ > tHL). Consequently, a job starts at

t′′. This job must be low, otherwise utilization would increase to more than
1
2
, the case included in Proposition 5.1. However, at time tHL there are at

least 1
2

processors free, so a low job could be started. Hence, scheduling the

job at t′′ contradicts the greed of the list scheduling algorithm. 2

Proposition 5.3. In a HF list schedule, no job starts after tHL.
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a b

Figure 5.2: Executing all the jobs locally may lead to N approximation (a) ratio regarding

the globally-optimal solution (b). All the jobs were produced by organization O1, the owner

of M1.

a b

Figure 5.3: By matching certain types of jobs, cooperative solution (b) delivers better

makespans for both organizations than a solution scheduling all the jobs locally (a). Light

gray jobs were produced by organization O1, dark gray by O2.

Proof: The proof is by contradiction. Let us assume that a job J i is

started at t′ > tHL. J i is low, because otherwise U(t′) > 1
2
, which is excluded

by Proposition 5.1. However, at time tHL there are enough free processors

to start J i. Consequently, starting J i at t′ contradicts the greed of the list

scheduling algorithm. 2

5.3 Optimization Approach

5.3.1 Motivation

A number of instances motivate organizations to cooperate and accept non-

local jobs, even if the resulting configuration is not necessary globally optimal.

In a non-cooperative solution all the organizations compute their jobs on their
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local resources. However, such a solution can be as far as N times worse than

the optimal one (see Figure 5.2). Note also that careful scheduling offers

more than simple load balancing of the previous example. By matching

certain types of jobs, bilaterally profitable solutions are also possible (see

Figure 5.3).

5.3.2 Problem Complexity

By restricting the number of organizations to N = 1, the size of the resource

to m = 2 and the jobs to sequential ones (qi
k = 1), we obtain the classic,

NP-hard problem of scheduling sequential jobs on two processors P2||Cmax

[Garey and Johnson, 1979]. Therefore, the considered problem is also NP-

hard.

5.3.3 Approximation Ratio of List Scheduling

In this section we consider the approximation ratio of the LS algorithm. In

the case of one resource, LS has approximation ratio of 2 − 1
m

. However,

as we assumed that a job cannot be executed in parallel on two resources,

we cannot treat N resources as one resource having Nm processors. Such

discontinuousness worsens the approximation ratio of the LS algorithm, even

if we assume that all the resources and jobs are owned by one party.

Proposition 5.4. Approximation ratio of LS algorithm scheduling parallel

jobs on N identical multiprocessor resources is at least 2 + 1
4
.

Proof: We construct an instance for N = 2 and then generalize the result

to N .

Let us consider an instance (depicted in Figure 5.4), in which there are

three jobs of length 1 and of heights q1 = m
2
− 1, q2 = m

2
+ 1, q3 = m

2
+ 2 and

four jobs of height m
2
− 2 and of lengths p4 = p5 = 1

4
+ ǫ, p6 = p7 = 1

4
− ǫ.

The makespan of the optimal schedule is 1. However, a LS algorithm with

priority list (J4, J5, J6, J7, J1, J2, J3, results in makespan 2 + 1
4
− ǫ.
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a b

Figure 5.4: Even with no notion of organizations, LS on discontinuous resources has the

approximation ratio of at least 2+ 1

4
(b) regarding the optimal makespan (a). N = 2 resources

with m processors, short jobs have lengths of 1

4
+ ǫ, 1

4
− ǫ, 1

4
+ ǫ, 1

4
− ǫ.

If N is even, similar instance can be constructed by considering N
2

copies

of {J1, . . . , J7}. The optimal schedule has makespan of 1, yet the worst LS

schedule is the same as the worst schedule with N = 2. If N is odd, we

construct the instance that is formed by jobs {J3, . . . , J7} and ⌊N
2
⌋ copies

of {J1, . . . , J7}. The optimal schedule has makespan of 1. The worst LS

schedule repeats ⌊N
2
⌋ times the worst schedule for N = 2 and in the last

resource schedules short jobs before J7, thus it also has makespan 2 + 1
4
− ǫ.

2

Two lower bounds on the global makespan can be defined. Let us denote

as W =
∑

pi
kq

i
k the total surface of the jobs, and as pmax = max pi

k the length

of the longest job. Firstly, all the jobs must fit into available processors, so

C∗
max ≥ W̄ = W

Nm
. Secondly, the longest job must be executed, so C∗

max ≥
pmax.

Proposition 5.5. LS is a 3-approximation of C∗
max.

Proof: The proof is by contradiction. Let us assume that the last job

finishes after 3C∗
max. It is thus started after 2C∗

max. At the moment the last

job is started, all the other resources are busy (otherwise, the job would have
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been started earlier). Let us denote as LB = max(W̄ , pmax). Consequently,

on each resource Mk we have Cmax(Mk) ≥ 2C∗
max ≥ 2LB. Thus, From

Lemma 5.1, on each resource Mk, we have (as LB ≥ pmax):

uk(t) + uk(t + LB) ≥ m for 0 ≤ t ≤ W̄ .

After integrating this inequality, we get:

∫ W̄

0

uk(t)dt +

∫ W̄

0

uk(t + LB)dt ≥ m

∫ W̄

0

1dt.

∫ W̄

0

uk(t)dt +

∫ LB+W̄

LB

uk(t)dt ≥ mW̄ .

After adding inequalities for every resource Mk, we get:

∑

1≤k≤N

(∫ W̄

0

uk(t)dt +

∫ LB+W̄

LB

uk(t)dt

)
≥ NmW̄ ≥ W .

Left-hand side of the inequality is the surface of the jobs computed on all

resources in periods [0, W̄ ] and [LB, LB + W̄ ]. Those periods do not over-

lap. The surface computed is thus greater than the surface of all the tasks

available, which leads to a contradiction. 2

It rests an open problem whether this ratio can be improved.

5.3.4 Equitable Optimization

The above analysis concerned optimization of only one goal, i.e. the system-

level makespan Cmax, albeit on multiple and non-contiguous resources. As

all the jobs are mixed, we cannot have any guarantee on fairness between

organizations’ makespans Cmax(Ok). In this section, we briefly analyze two

ways in which LS can be extended to improve the fairness of the resulting

schedules. Generally, we use techniques similar to iterative LB, proposed in

Section 4.7.

Any fair algorithm should favor jobs of organizations that are less-loaded

(regarding the organization’s total work W (Ok) or the length of the longest
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Figure 5.5: The greedy behavior of list-scheduling algorithm results in placing the job that

has the second-highest priority (J2, q2 = 6 light gray) as the last job. m = 10 processors.

The algorithm starts by scheduling the highest-priority job J1 (q1 = 5, dark gray), and then,

hence there are 5 free processors left, schedules the gray jobs that have lower priority, but fit

better into the available space.

a b

Figure 5.6: When less prioritized jobs cannot delay the already placed ones, the resulting

schedule (a) can be N times longer than the optimal one (b). Here, different shades of gray

correspond to different organizations owning the jobs. Long, sequential jobs have increasing

lengths of 1, 1 + ǫ, 1 + 2ǫ, . . ..

job pmax(Ok)). However, such priorities are impossible to apply in a LS

algorithm.

Firstly, job’s priority can be expressed by ordering the job earlier in the

first phase of LS algorithm. However, the greedy behavior of LS algorithm

in the second phase can result in scheduling jobs having lower priority, but

requiring less processors before higher priority jobs. Figure 5.5 shows an

instance in which J2, second-highest priority job, is scheduled as the last

one.

Secondly, LS algorithm can schedule jobs of different organizations in
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backfilling-like fashion. Assuming that O1 has priority over O2, which has

priority over O3,. . . , all the O1’s jobs would be LS on all available resources.

Then, O2 would be scheduled by LS between them with an additional restric-

tion that a O2’s job cannot delay any O1’s job. The algorithm would then

schedule O3,. . . ,ON jobs similarly. Unfortunately, such an algorithm does

not have guarantee on the approximation ratio. Figure 5.6 shows an instance

that, scheduled with such an algorithm, has the makespan N times longer

than the optimal one.

5.4 Game-Theoretic Approach

Let us firstly assume that each organization can control the schedule on

the local resource. However, the allocation of jobs to resources is given in

advance (i.e. determined by an independent, external entity), and cannot be

thus modified.

Definition 5.1. The Parallel Scheduling Game (PSG) is a strategic game in

which:

• the set of players is equal to the set of organizations P = O;

• a strategy of Ok is schedule πk of jobs Ik assigned for execution on Mk.

Ik is known and cannot be altered by any player. The set of strategies

of player Ok contains all possible schedules;

• the payoff of player Ok is the maximum completion time Cmax(Ok) of

Ok’s jobs Jk.

A strategy similar to My Job First (MJF, defined in Section 3.4) is as

follows. An organization firstly schedules its local jobs with LS. Then, foreign

jobs are scheduled either at the end of the schedule, or in gaps so that they

do not delay any local job.

Proposition 5.6. MJF is the only Nash equilibrium of PSG.
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(a) (b)

Figure 5.7: MJF strategy (a) results in extending the system makespan comparing to

the globally-optimal strategy (b). Globally-optimal solution is dominated, as it extends the

makespan of organization O1 (the producer of light gray jobs) in comparison with MJF.

Proof: The proof is analogous to the proof of Proposition 3.8. For any

organization Ok, given any scheduling on non-local resources, the strategy

minimizing Cmax(Ok) is a strategy that schedules the foreign jobs so that

they do not delay any local job (MJF strategy). 2

The inefficiency resulting from MJF strategies is, however, relatively low.

Proposition 5.7. The Price of Anarchy is at least 3
2
.

Proof: Consider an instance in Figure 5.7. MJF solution, depicted in (a),

has Cmax = 3, whereas the global optimum has Cmax = 2. 2

Proposition 5.8. The Price of Anarchy is at most 2.

Proof: The proof is constructive. We show how to build a MJF schedule

from an optimal schedule by extending the makespan on each resource at

most twice.

Let us consider an optimal schedule OPTk on resource Mk resulting in

C∗
max(Mk). MJFk can be constructed as follows. Firstly, copy OPTk and

append it at the end of the original schedule (i.e. start the copy at C∗
max(Mk)).

Secondly, remove all the foreign jobs that start before C∗
max(Mk). Thirdly,

remove all the local jobs that start at or after C∗
max(Mk). The schedule can

be then compacted by removing the idle time between jobs.
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The resulting schedule is a MJF schedule, as, on each resource Mk, all

the local jobs start before C∗
max(Mk), which is the earliest start time for

foreign jobs. Moreover, on each resource the resulting makespan is at most

2C∗
max(Mk), thus the global makespan is also at most 2C∗

max. 2

Let us now assume that each organization Ok is able to send any local job

J i
k ∈ Jk to a non-local resource Ml. After migrating to Ml, J i

k is scheduled

by the owner Ol of the host resource Ml. In such a game, the strategy

of an organization consists of two parts: deciding which local jobs should

be migrated (migration strategy); and scheduling foreign jobs on the local

resource (scheduling strategy).

Definition 5.2. The Parallel Scheduling Game with Migration (PSGM) is

a strategic game in which:

• the set of players is equal to the set of organizations P = O;

• a strategy of Ok is a tuple (πk, µk) where πk is the schedule of jobs Ik

on Mk and µk : Jk → M, the migration function, maps each local job

to a machine where this job will be executed. The set of strategies of

player Ok contains all possible tuples;

• the payoff of player Ok is the maximum completion time Cmax(Ok) of

Ok’s jobs Jk.

Any rational migration strategy migrates Ok’s job if, given schedules and

scheduling strategies of other players, Cmax(Ok) is not increased after this

operation.

The problem of determining optimal migration strategy is NP-hard. By

restricting the number of organizations to N = 2, the number of processors

on each resource to m = 1 and the number of jobs produced by one of the

organizations, |J2| = 0, we obtain the problem of minimization of the total

completion time of sequential jobs on two resources, P2||Cmax, which is NP-

hard.

142



5.5. MULTI-ORGANIZATION SCHEDULING

An example rational migration strategy is the greedy migration strategy,

an equivalent of the conservative backfilling algorithm. Let us assume that

the other players use MJF as the strategy for scheduling foreign jobs. Greedy

migration strategy analyzes all the areas of free processors in the schedules

on other resources. If there are m′ free processors in period [t′, t′′) (at the end

of the schedule, it is possible that t′′ → ∞), the algorithm migrates the first

local job J i
k starting at or after t′ that requires qi

k ≤ m′ during pi
k ≤ (t′′ − t′).

As all the migrated jobs start earlier, greedy migration is able to reduce the

local makespan, and thus is a rational migration strategy.

Proposition 5.9. MJF and any rational migration strategy is the Nash

equilibrium of PSGM.

Proof: The proof is analogous to the proof of Proposition 5.6. For any

organization Ok, given any scheduling on non-local resources, the strategy

minimizing Cmax(Ok) is a strategy that schedules the foreign jobs so that

they do not delay any local job (MJF strategy). Regarding migration, the

best Ok can do is to try to fill the gaps in other schedules by its jobs (rational

migration), if the gaps occur before Ok’s local makespan. 2

5.5 Multi-Organization Scheduling

The Multi-Organization Scheduling Problem (MOSP) is the minimization

of the makespan of all the jobs (the moment when the last job finishes)

with an additional constraint that no makespan is increased compared to a

preliminary schedule in which all the resources compute only locally produced

jobs. More formally, let us denote C loc
max(Ok) as a makespan of Ok when Jk,

the set of jobs executed by Mk is equal to the set of locally produced jobs,

i.e. Jk = Ik. MOSP can be defined as:

min Cmax such that ∀k Cmax(Ok) ≤ C loc
max(Ok). (5.1)
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a b c

Figure 5.8: Globally-optimal solution (b) is inadmissible, as it extends the makespan of orga-

nization O1 (the producer of light gray jobs) in comparison with the local solution (a). The

best solution not extending O1’s makespan (c) is 3

2
from the global optimum.

5.5.1 Impact of the Constraint

Because of the constraint of not worsening any local makespan, some globally-

optimal solutions are not feasible. The following proposition formally states

this results.

Proposition 5.10. Any scheduling algorithm solving MOSP has an approx-

imation ratio of at least 3
2

regarding the optimal solution of the unconstrained

minimization of system-wide Cmax.

Proof: Consider an instance in Figure 5.8. The best solution not worsening

O1 makespan, depicted in (c), has Cmax = 3, whereas the global optimum

has Cmax = 2. 2

5.5.2 Multi-Organization Load Balancing Algorithm

We can use load-balancing techniques similar to these presented in the pre-

vious chapter to optimize the system-wide makespan, at the same time not

worsening makespans of individual organizations. The algorithm presented in

this section guarantees the approximation ratio of the global makespan. The

algorithm presented in the following section (Section 5.5.3) further improves

both the global makespan and the equity between organization’s makespans.
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Algorithm 5.2: Backfill List Scheduling (BLS) algorithm. The algorithm schedules

jobs J on M without rescheduling any job already scheduled on M. procFree(t, Ml)

denotes the function returning set of free processors from machine Ml.

Input:

• J = (J1, . . . , Jn), ordered list of jobs;

• M set of machines, possibly with other jobs scheduled;

unscheduled = J ;1

t = mini:Ji scheduled on M Ci ;2

while not empty(unscheduled) do3

foreach Ml : ∃J i : J i ∈ Il ∧ Ci = t do4

procs =procFree(t, Ml) ;5

foreach J i ∈ unscheduled do6

if qi ≤ |procs| then7

t′ = t ;8

while ((t′ = minj:Jj∈Il∧Cj>t′) < t + pi)∧ (t′ < Cmax(Ml)) do9

procs∩ =procFree(t, Ml) ;10

if qi ≤ |procs| then11

schedule(J i, procs, t) ;12

unscheduled.remove(J i) ;13

procs =procFree(t, Ml) ;14

t = mini:Ji scheduled on M∧Ci>t Ci ;15
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Algorithm 5.3: Multi-Organizational Load Balancing Algorithm (MOLBA).

Input: Jk sets of jobs produced by each organization

for k = 1 to N do1

Jk =sort(Jk, qi ց) ;2

LS(Jk, Mk) ;3

O′ = ∅;J ′ = ∅;M′ = ∅ ;4

for k = 1 to N do5

if C loc
max(Ok) > (αW̄ + pmax) then6

O′.add(Ok) ;7

J ′∪ = Jk ;8

M′.add(Mk) ;9

unschedule(J ′) ;10

J′ =sort(J ′, qi ց) ;11

BLS(J′,M′) ;12

J ′′ = ∅ ;13

foreach J i ∈ J ′ do14

if J i.start > αW̄ then J ′′.add(J i) ;15

unschedule(J ′′) ;16

BLS(J ′′,M) ;17
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Algorithm

Multi-Organizational Load Balancing Algorithm (MOLBA), denoted by

MOLBA(α) (α ≥ 1), computes a lower bound of the global makespan, se-

lects all the organizations whose makespan is larger than (α + 1) times the

lower bound and then reschedules some of their jobs onto the less loaded

resources. α is a parameter of the algorithm which expresses the trade-off

between the global efficiency and the constraints on local makespans (see the

proofs in the following sections). Later on, we will refer to the algorithm

with a particular value of α as MOLBA(α), e.g. MOLBA(2). MOLBA is

described as Algorithm 5.3 and uses Backfilling List Scheduling described as

Algorithm 5.2.

MOLBA starts with scheduling jobs Jk on local resource Mk with LS

in Highest-First order (i.e. non-increasing number of required processors)

in lines 1-3. Resulting Cmax(Ok) form the constraint for the rest of the

algorithm.

Then, the algorithm computes the subset O′ of all organizations that

have local makespan Cmax(Ok) ≥ αW̄ + pmax (lines 4-9). Jobs of these orga-

nizations are unscheduled, mixed and list-scheduled on resources belonging

to O′ in HF order (lines 10-12). Note that in this case, BLS works as LS

on multiple resources, as no job is scheduled on M′ before the start of the

algorithm.

Next, jobs belonging to O′ that start after αW̄ are removed from local re-

sources and rescheduled by BLS algorithm on all resources (lines 13-17). The

jobs are scheduled sequentially in a greedy manner by BLS (Algorithm 5.2).

A job J i is scheduled on a resource Ml in time t if there are then qi free

processors (Algorithm 5.2, line 7). However, no migrated job can delay a

local job: a job J i is scheduled before the original makespan of the host re-

source Ml (t < C loc
max(Ol)) only if at least qi

k processors are free on Ml from

time t to time t + pi
k (Algorithm 5.2, line 9). Such a strategy is similar to

the well-known conservative backfilling in FCFS (First Come First Serve)
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[Lifka, 1995]. Therefore, a job incoming to one of resources that do not be-

long to O′, is scheduled either in a gap, or at the end of the schedule.

Computational Complexity

The basic component of MOLBA(α) is (B)LS algorithm, performed firstly

for local scheduling, and then in rescheduling jobs starting after αW̄ . LS, at

each time moment when utilization changes, examines the list of not executed

jobs in order to find a job that can fit into the available processors. As

utilization changes whenever a job is started or finished, there are at most

O(n) such time moments. The list of not executed jobs contains at most n

jobs. Consequently, the complexity of LS is O(n2). MOLBA(α) repeats basic

LS two times, thus the complexity remains the same (O(n2)).

Analysis of Approximation Ratio

As no local job is delayed, MOLBA(α) guarantees that no organization Ok

which hosts migrated jobs has its makespan extended beyond C loc
max(Ok). We

now prove that the algorithm reduces Cmax(Ok) for the rest of the organi-

zations (therefore holding the constraint in Eq. 5.1), that MOLBA(2) is a

3−approximation of the global makespan Cmax if the last completed job is

low, and finally, that MOLBA(3) is a 4−approximation in the general case.

We start with a lemma that characterizes the structure of all the resources’

schedules.

In the schedule returned by MOLBA, on each resource, we denote by tstart
L

the first moment when the utilization is lower than or equal to 1
2
. Similarly,

tend
L is the last moment when the utilization is larger than 0 and lower than

or equal to 1
2
.

Lemma 5.2. In the schedule returned by MOLBA(α), on each resource, the

length of the time interval between tstart
L and tend

L (denoted by PL) is shorter

than or equal to pmax.
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Proof: Each resource schedules its local jobs with HF (i.e. according

to non-increasing required number of processors). Then, it may add jobs

from other organizations, also in HF order. Proposition 5.1 shows that, in

a schedule returned by HF, the only zone of low utilization is at the end of

the schedule. Thus, on each resource, there are at most two zones of low

utilization: possibly one at the end of the schedule of the local jobs, and also

possibly one at the end of the schedule.

Let Jk,i be the low job that finishes last on resource Mj . After Jk,i finishes,

utilization is either high, or zero. Thus, by PL definition, Jk,i cannot finish

before tend
L . Jk,i does not start after tstart

L , as utilization at tstart
L is low, so

there are enough free processors to execute a low job. Thus, the length of PL

is smaller than or equal to the length of Jk,i, which is not longer than pmax.

2

The following proposition enables us to place tstart
L , the moment of tran-

sition between the first two zones.

Proposition 5.11. After MOLBA finishes, there is at least one resource

whose tstart
L ≤ 2W̄ .

Proof: The proof is by contradiction. Suppose that there exists ǫ > 0 such

that all the resources have high utilization until time 2W̄ +ǫ. Then, the total

surface of jobs computed by all the resources is greater than 2W̄ ·mN · 0.5 =

W , i.e. greater than the total work available, which leads to a contradiction.

2

In a special case, when the last completed job is low, MOLBA(2) is a 3-

approximation of the optimal makespan. The following proposition formally

states this result.

Proposition 5.12. If the last completed job is low, MOLBA(2) is a 3-

approximation of C∗
max. Moreover, all the organizations have incentive to

cooperate.
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Proof: Let us assume that J i
k is the last completed job. By Proposition 5.11,

there is at least one resource Ml whose tstart
L ≤ 2W̄ . Consequently, if J i

k

started after 2W̄ , scheduling it on Ml would reduce J i
k’s completion time.

Thus, J i
k starts at 2W̄ at the latest (as we use a greedy algorithm to schedule

migrated jobs). J i
k finishes thus before 2W̄ + pi

k ≤ 2W̄ + pmax ≤ 3C∗
max.

As no migrated job can delay a local job, makespans of organizations that

were receiving jobs are not modified. The organizations that were sending

jobs have their makespan reduced because of the global approximation ratio.

The schedule of the rest of organizations is not modified. Thus, the con-

straint in Equation (5.1) is satisfied and all the organizations have incentive

to cooperate. 2

In the general case however, MOLBA(3) is a 4-approximation.

Proposition 5.13. MOLBA(3) is a 4-approximation of C∗
max. Moreover, all

the organizations have incentive to cooperate.

Proof: The proof is by contradiction. Let C∗
max be the makespan of the

optimal schedule, and let us suppose that a job starts after time 3 C∗
max in

the schedule returned by MOLBA(3). This means that this job could not

have been started before, so all the resources are busy until 3 C∗
max, i.e. for

all k ∈ {1, . . . , n}, Cmax(Mk) > 3 C∗
max. Proposition 5.2 shows that, for each

resource, the zone where at most half of the processors are busy is smaller

than or equal to pmax ≥ C∗
max. Thus, on each resource, the zone where

more than the half of the processors are busy is larger than 2 C∗
max. As we

have seen it previously, C∗
max ≥ W

N m
, where W =

∑
pi

kq
i
k. Thus, the total

work which is done until 3 C∗
max in the zones of high utilization is larger than

N m
2

(2 W
N m

) = W , i.e. larger than the total surface of the tasks available. As

tasks are not repeated, this is not possible. Thus, no job starts after 3 C∗
max,

and no job is completed after 4 C∗
max.

The proof that all the organizations have incentive to cooperate is anal-

ogous to the proof of Proposition 5.12. 2
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5.5.3 Iterative Load Balancing Algorithm (ILBA)

MOLBA(3) guarantees that the global makespan Cmax is not higher than

4C∗
max. Nevertheless, the load distribution resulting from running the algo-

rithm can be uneven. For instance, MOLBA(3) does not modify the schedule

of an organization with Cmax(Ok) = 4C∗
max − ǫ. Yet, it is possible that jobs

on Mk start after all the other resources finish. The Iterative Load Balancing

Algorithm (ILBA) presented in this section improves the schedule returned

by MOLBA(α) by balancing the load between resources. ILBA does not

delay any job, thus, given a schedule produced by MOLBA(α), ILBA fulfills

the constraint in Eq. 5.1 and does not worsen the approximation ratio. We

also show that in a restricted case of scheduling sequential jobs, ILBA has

the same approximation ratio as any list-scheduling algorithm.

By starting with the least-loaded resources and iteratively adding the

more loaded ones, ILBA permits also to reduce the makespans on the less

loaded resources.

Note that, as ILBA does not take into account the owner of a job, in this

section we will omit the index of organization, similarly to Section 5.2.

Algorithm

ILBA is described as Algorithm 5.4. Resources are sorted by non-decreasing

makespans. Suppose that Cmax(M1) ≤ Cmax(M2) ≤ · · · ≤ Cmax(MN ). The

algorithm, for all k = 2, . . . , N , reschedules all the jobs executed on Mk on

{M1, . . . , Mk}. Jobs are scheduled sequentially in order of their in the order

of execution of the original schedule. Each job J i is allocated to the resource

that has an earliest strip of free processors of width at least pi and height

at least qi. Thus, similarly to the previous stage of the algorithm, a job

incoming from Mk cannot delay any job already scheduled on {M1, . . . , Mk}.
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Algorithm 5.4: Iterative Load Balancing Algorithm (ILBA).

Input: M = [M1, . . . ,MN ] machines, without loss of generality we assume

that Cmax(M1) ≤ Cmax(M2) ≤ . . . Cmax(MN )

M′ = [M1] ;1

for k = 2 to N do2

J =sort(Ik, start times ր) ;3

foreach J i ∈ J do4

unschedule(J i) ;5

M′.add[Mk] ;6

foreach J i ∈ J do7

BLS(J i, M′) ;8

Computational Complexity

ILBA reschedules each job of all, but first, organizations. For each organiza-

tion, at most n jobs are rescheduled, which involves examining the schedules

on the rest of machines, that, in total, have at most n events. Consequently,

the complexity of the whole algorithm is in O(N log N + Nn2).

Analysis of Approximation Ratio

We start with proving that ILBA does not delay any job, and thus can be

used after MOLBA without deteriorating its approximation ratio. Then, we

prove that when all the jobs are sequential, or all the jobs are high, ILBA

can be used directly after local scheduling with an approximation ratio of,

accordingly, 2 − 1
Nm

and 2 − 1
N

.

Proposition 5.14. ILBA does not delay any job comparing with the base

schedule.

Proof: As ILBA considers resources sequentially, it is sufficient to show

that the proposition holds for any resource Mk (as the jobs from the following

resources do not modify the jobs already scheduled).
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Let us assume that jobs are numbered according to non-decreasing start

times in the base schedule.

The proof is by induction on the scheduled jobs. In ILBA, a scheduled job

J i cannot be influenced by jobs J i+1, . . . , Jn scheduled afterwards (nor by jobs

incoming from different resources in the subsequent parts of the algorithm).

Note also that at this phase of the algorithm no new job is allocated to Mk.

Thus, it is sufficient to show that if jobs J1, . . . , J i−1 are completed no later

than in the original schedule, J i is also not delayed.

The proposition trivally holds for J1, as the first job will be started at

t = 0.

Let us now assume that jobs J1, . . . , J i−1 are scheduled no later than their

start times in the original schedule. Consequently, J1, . . . , J i−1 finish no later

than in the original schedule. Thus, at J i’s original start time, the number

of free processors is at least the same as in the original schedule. Hence, J i

can be scheduled at its original start time. J i is migrated only if it can be

started earlier than this orginal start time. Consequently, J i finishes at latest

at time when it finished in the base schedule. 2

Furthermore, in some special cases, ILBA can be run directly after run-

ning local scheduling (i.e. executing MOLBA(α) is not needed). In the

following parts, we will prove approximation ratios in two special cases. If

all the jobs are sequential, ILBA is a (2− 1
N m

)-approximation of the optimal

C∗
max. If all the jobs are high, ILBA is a (2 − 1

N
)-approximation..

Proposition 5.15. If all the jobs are sequential (i.e. qi
k = 1 for all i, k),

then ILBA is a (2 − 1
N m

)-approximate algorithm where all the organizations

have incentive to cooperate.

Proof: In the obtained schedule, no job is delayed comparing with the local

schedule (Proposition 5.14), thus no organization has its makespan increased.

Consequently, all the organizations have incentives to cooperate.

In ILBA schedule, no job starts after any processor (of any resource) be-

comes idle. Thus, the schedule could have been returned by a list scheduling
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algorithm. The approximation ratio of a list algorithm which schedules jobs

on p processors is 2 − 1
p

[Graham, 1969]. Thus, ILBA also has the approxi-

mation ratio of 2 − 1
N m

. 2

The proof in the special case in which all the jobs in the system are high,

i.e. require more than the half of the processors (qi
k > m

2
) is similar. If all

the jobs are high, it is not possible to schedule two jobs at the same time on

the same resource. Consequently, the scheduling problem can be considered

as scheduling sequential jobs on N parallel processors. Each resource cor-

responds to a processor, and each job J i
k corresponds to a sequential job of

length pi
k.

Proposition 5.16. ILBA is a (2− 1
N

)-approximation of the global makespan

Cmax if all the jobs are high (i.e. qi
k > m

2
for all i, k).

Proof: The proof is similar to the proof of Proposition 5.15. In the ob-

tained schedule, no job is delayed comparing with the local schedule (Propo-

sition 5.14), thus no organization has its makespan increased. Consequently,

all the organizations have incentive to cooperate.

Observe that, if all the jobs are high, the schedule returned by ILBA can

be obtained by running a list scheduling algorithm, as no job starts after any

resource becomes idle. Consequently, the approximation ratio of ILBA is the

same as the approximation ratio of the LS, i.e. (2− 1
N

) [Graham, 1969]. 2

5.6 Experiments

In this section, we carry out the experimental evaluation of MOLBA. We

start with performance measures and the methods used to generate workload.

Then, we show the performance of the considered algorithms.
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5.6.1 Methods

We compared three algorithms:

local that, for each organization, schedules its jobs on its local resource with

a list scheduling algorithm;

MOLBA the algorithm presented in Section 5.5.2 as MOLBA(2), that, how-

ever, does not perform the final load balancing of ILBA (Algorithm 5.4);

MOLBA+ILBA the complete algorithm, i.e. ILBA (Section 5.5.3) ran on

schedules returned by MOLBA(2).

Note that MOLBA(2) is an approximation algorithm only when the last

job is low ; the theoretical analysis in the previous section showed that, in the

general case, MOLBA(3) should be used. In our experiments, we were using

the following meta-algorithm. Firstly, we run MOLBA(2). Then, if in the

resulting schedule any organization had its makespan increased, or the global

makespan was greater than 3 max(pmax, W̄ ), the schedule was discarded and

MOLBA(3) was run. However, during our experiments, those conditions were

never fulfilled. Thus, all the presented results were obtained with MOLBA(2).

The algorithms were compared regarding the system-wide makespan that

was produced. As the instances differed e.g. in the number of jobs, or their

sizes, for each instance and each algorithm we computed the factor of the

produced makespan to the lower bounds defined in Section 5.3.3, i.e.

s(alg, I) =
makespan(alg, I)

max(W̄ (I), max pi
k(I))

,

where s(alg, I) is the algorithm alg score on instance I, makespan(alg, I) is

the makespan of the schedule produced by algorithm alg on instance I, W̄ (I)

is the average work in the instance and max pi
k(I) is the length of the longest

job in the instance.

We were testing the algorithms on two sets of randomly-generated in-

stances:
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• uni instances in which the sizes pi
k and the numbers of required proces-

sors qi
k of jobs were produced by two independent, uniform distributions

over, respectively, {1, . . . , 50} and {1, . . . , m};

• swf instances produced by a realistic workload generator

[Lublin and Feitelson, 2003]. We adjusted the generator as follows.

The maximum required number of processors is smaller than m. The

number of generated jobs is set to n. All the release dates are set to 0.

Each instance produced consisted of n (a parameter of the experiments)

jobs. To determine the owner Ok of each job, we used Zipf distribution with

number of elements equal to the total number of organizations (N) and the

exponent of s = 1.4267. This parameters corresponded to the distribution of

Virtual Organizations owning the jobs in data analyzed in [Iosup et al., 2006].

Both uni and swf instances were generated with the total number of or-

ganizations N ∈ {2, 5, 10, 20}, the total number of jobs n ∈ {10, 50, 100, 500}
and the number of processors in each resource m ∈ {32, 128, 512}. N

was chosen to represent academic grids, where the number of participat-

ing laboratories is about 10. The number of processors varied between small

and large clusters currently used in grid systems. For instance, clusters in

Grid’5000 [Bolze et al., 2006] currently have between 32 and 342 nodes.

For each possible values of n, N and m, 50 instances were generated. In

total, 4800 instances were generated.

5.6.2 Results

Results of experiments are presented in Table 5.1 (uni dataset) and in Ta-

ble 5.2 (swf dataset).

Firstly, the performance of all algorithms is much better on the instances

created with realistic workload generator (swf dataset). Because of the

increased heterogeneity of both the sizes of jobs and the number of re-

quired processors, these instances simply schedule better. In swf dataset,

MOLBA+ILBA algorithm was optimal in all smallest instances considered
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Table 5.1: Scores s, or ratios of makespan to lower bound, of local, MOLBA and

MOLBA+ILBA and their standard deviations σ. Each row is an aggregation over 150 random

instances. uni dataset.

local MOLBA MOLBA+ILBA

N n s σ s σ s σ

2 average 1.64 0.19 1.64 0.19 1.19 0.06

10 1.85 0.38 1.85 0.38 1.42 0.17

50 1.63 0.20 1.63 0.19 1.17 0.04

100 1.59 0.13 1.59 0.13 1.12 0.03

500 1.50 0.06 1.50 0.06 1.05 0.02

5 average 2.74 0.40 2.03 0.14 1.21 0.09

10 1.97 0.53 1.84 0.42 1.29 0.26

50 3.11 0.52 2.17 0.09 1.29 0.06

100 3.04 0.39 2.09 0.05 1.19 0.03

500 2.85 0.17 2.02 0.01 1.08 0.01

10 average 4.19 0.65 2.08 0.18 1.27 0.10

10 1.98 0.62 1.76 0.40 1.19 0.22

50 4.69 0.96 2.32 0.18 1.46 0.10

100 5.10 0.71 2.20 0.10 1.31 0.05

500 5.01 0.29 2.04 0.02 1.12 0.02

20 average 5.96 0.97 2.10 0.21 1.32 0.11

10 1.78 0.71 1.53 0.44 1.13 0.20

50 5.72 1.20 2.44 0.23 1.55 0.12

100 7.29 1.30 2.35 0.13 1.43 0.08

500 9.05 0.69 2.10 0.03 1.18 0.02

average 3.64 2.31 1.96 0.37 1.25 0.19
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Table 5.2: Scores s, or ratios of makespan to lower bound, of local, MOLBA and

MOLBA+ILBA and their standard deviations σ. Each row is an aggregation over 150 random

instances. swf dataset.

local MOLBA MOLBA+ILBA

N n s σ s σ s σ

2 average 1.22 0.28 1.22 0.28 1.09 0.11

10 1.03 0.16 1.03 0.16 1.00 0.00

50 1.10 0.27 1.10 0.27 1.02 0.08

100 1.21 0.33 1.21 0.33 1.07 0.15

500 1.53 0.36 1.53 0.36 1.26 0.20

5 average 1.17 0.29 1.10 0.18 1.02 0.05

10 1.02 0.14 1.01 0.08 1.00 0.00

50 1.08 0.24 1.02 0.08 1.01 0.04

100 1.14 0.28 1.07 0.17 1.01 0.05

500 1.46 0.47 1.32 0.38 1.05 0.11

10 average 1.15 0.27 1.03 0.06 1.00 0.01

10 1.01 0.08 1.00 0.02 1.00 0.00

50 1.06 0.22 1.00 0.03 1.00 0.00

100 1.10 0.22 1.01 0.04 1.00 0.00

500 1.44 0.55 1.09 0.16 1.01 0.05

20 average 1.12 0.26 1.01 0.03 1.00 0.00

10 1.02 0.12 1.00 0.00 1.00 0.00

50 1.05 0.18 1.00 0.01 1.00 0.00

100 1.10 0.24 1.00 0.01 1.00 0.00

500 1.32 0.48 1.03 0.08 1.00 0.02

average 1.17 0.35 1.09 0.23 1.03 0.10
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(with n = 10), in which the makespan was determined by the length of the

longest job.

The inefficiency of local scheduling can be observed in uni instances. The

average score of local algorithm is deteriorating quickly with the increased

number of organizations for all but the smallest instances. For larger in-

stances (with n ∈ {50, 100, 500}) , the average score grows from 1.57 (N = 2),

through 3.00 (N = 2) and 4.93 (N = 5), till 7.35 (N = 20). The linear cor-

relation coefficient between the N and the score of local is equal to 0.69

for uni (and 0.38 for the both datasets combined). The scores of MOLBA

and MOLBA+ILBA also deteriorate, but not as quickly (the correlation co-

efficients are 0.36 and 0.27, accordingly). The degradation of local results

indicates that the lack of cooperation negatively influences the performance

of the system.

The load balancing performed by ILBA considerably improves the results.

The average score in uni has been improved from 1.96 to 1.25. In swf, the

improvement is not as significant, but nevertheless important, especially in

smaller grids.

The number of processors on each node m does not influence the per-

formance of the considered algorithms. After averaging over all the other

variables, p-values of two-tailed, type 3 t-test, for m = 32 and m = 128

are 0.35, 0.17 and 0.53, for, respectively, local, MOLBA and MOLBA+ILBA

scores. Similarly, for the difference between m = 128 and m = 512, we have

0.56, 0.62 and 0.35. Consequently, we do not present results averaged over

different values of m.

The worst result for local algorithm was 12.12, for an uni instance with

N = 20 organizations and n = 100 jobs. The makespan is determined by a

number of relatively short jobs executed on one resource. The worst result

of MOLBA was 2.98 for an uni instance with N = 20 and n = 50. In this

instance, the makespan is determined by an organization that does not take

part in the MOLBA algorithm, as its local makespan is between 2W̄ and

2W̄ + pmax. The worst result of MOLBA+ILBA is 1.92 (also for N = 20
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and n = 50), which is significantly lower that the theoretical upper bound of

3. In this instance, the last finished job is a long, high job, started after a

period of low utilization.

The results of our experiments show that MOLBA+ILBA is an efficient

algorithm that considerably improves the performance in comparison with

local scheduling. However, we also observed that the workloads generated

by the realistic workload generator were easier to schedule, and thus the

improvement by MOLBA+ILBA was not as considerable.

5.7 Summary

In this chapter, we applied the multi-organization grid model to extend one of

the classic problems of the scheduling theory. More specifically, we studied a

model of the grid in which selfish organizations minimize the maximum com-

pletion time of locally-produced jobs. We proposed a way of ordering jobs

which achieves homogeneous utilization (Section 5.2.2). Then, we proved that

the performance of classic, list scheduling algorithm is degradated when the

algorithm is scheduling jobs on many resources (Section 5.3.3). We demon-

strated that using list scheduling it is impossible to prefer certain jobs in

order to realize equitable optimization (Section 5.3.4). Using game theory,

we proved that the resulting game has a low price of anarchy (at most 2),

as we suppose that the idle time of machines is free (Section 5.4). Finally,

we demonstrated that it is always possible to respect the selfish goals and

improve the performance of the whole system at the same time. The cooper-

ative solutions produced by proposed algorithm (Section 5.5) have a constant

worst case performance (4 in the general case and 3, 2− 1
Nm

or 2− 1
N

in some

special cases), a significant gain compared to selfish solutions that can be

arbitrary far from the optimum. Although the theoretical worst-case perfor-

mance can be considered high, we showed, through experimental evaluation

(Section 5.6), that the performance on randomly-generated instances is sig-

nificantly better.
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Chapter 6

Summary and Conclusions

In this thesis we proposed a framework model of a system that gathers inde-

pendent individuals (Chapter 2). Each individual grants some resources and,

in return, wants to use a part of the whole system. The resulting model can

be analyzed by mathematical tools such as game theory or equitable opti-

mization. Moreover, the model is generic enough to be adapted to a specific

system, without loosing the possibility of being analyzed. We presented three

applications of the model to the various types of computational grids. Addi-

tionally, it should be possible to adapt the model to other types of modern

systems, such as peer-to-peer systems or web 2.0 communities.

One of the main results of this research is a demonstration that the com-

plete organizational decentralization of a system is costly in terms of per-

formance. In such an organizationally-decentralized system, individual orga-

nizations maintain complete control over their resources. We analyzed such

systems with game-theoretic approach. In resource sharing grids, the worst-

case loss of performance was linear on the number of jobs. In divisible load

model, load balancing between resources was never performed. Only in one

of three models considered, the loss of performance was acceptable. However,

this model required some strong assumptions.

We also demonstrated that it is possible to respect goals of individual

members and to keep satisfactory performance of the whole system at the
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same time. To this end, the members are obliged to grant at least partial con-

trol over their resources to a central entity. Constraints of the optimization

problem guarantee that the goals of the members are respected and realized.

We applied equitable multicriteria optimization to guarantee fairness of

the results regarding individual participants. We characterized properties

of a fair solution through axioms of anonymity, monotony and the principle

of transfers. Equitable optimization turned out to be a convenient tool, as

axiomatic fairness is able to balance the performance of the whole system with

the fairness of individual participants. It was not always possible, however,

to formally guarantee the fairness of results returned by algorithms, because

of either the lack of information (in on-line models) or the lack of algorithmic

means (in parallel job scheduling).

Analyzing the computational grid that shared dedicated resources (Chap-

ter 3) we demonstrated that organizational decentralization causes significant

loss of performance even in an off-line model. Nevertheless, if organizations

grant control over the local schedules to the centralized scheduler, an efficient

and fair solution can be produced.

Computational grid that balanced divisible load across resources (Chap-

ter 4) was also sensitive to the lack of centralized control. In decentralized

systems, load balancing is never performed, even though it would guarantee

an equitable load distribution. We managed to balance the load of the sys-

tem by obliging organizations to commit to their decisions (to balance the

load or not) for some period, regardless of their queue lengths. Moreover,

we proposed an iterative load balancing algorithm that distributes the gains

from load balancing in more equitable manner than the classic, averaging

algorithm.

We also considered the problem of scheduling parallel jobs on multiple

multiprocessor resources (Chapter 5). Here, the decentralization did not

cause a drop of performance of the whole system. The model is off-line,

thus a foreign job executed at the end of the schedule does not worsen the

performance of the resource’s owner. At the same time, the owner of the
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job can reduce its makespan. We proposed a scheduling algorithm that has

a fixed worst-case performance on the system makespan and that do not

increase the makespans of individual organizations.

The results presented in this work required many assumptions. For in-

stance, we assumed that the scheduler possesses information about the exact

size of each job (clairvoyance) or that all the jobs in the system are known

and ready to be executed before the scheduling algorithm starts (off-line).

Such assumptions are common in scheduling theory, as they allow to de-

rive some precise mathematical results on the simplified models. Clearly,

at the same, such assumptions simplify complex reality, so algorithms in

the form presented in this work cannot be directly implemented in grid

scheduling software. However, the algorithms that turned out to be effi-

cient on simplified models can be ported in future to the real environments.

In this case, clairvoyance would be replaced with user run-time estimates.

Jobs that are produced during the lifetime of the system (on-line setting)

would be considered in batches, inside which an off-line algorithm can be

run [Shmoys et al., 1995]. Similarly, algorithms for scheduling divisible load

could be easily adapted to bag-of-tasks applications, by fixing the minimal

size of the grain.

This theorized approach allowed us to derive some precise, mathematical

results on the performance of the considered systems and algorithms. We

modeled what we consider the essence of the grid. Afterward, we used this

simplified model to validate our algorithms. The alternative approach would

be to build a much more realistic model of a grid and then to evaluate the

algorithms by simulation. We claim that it is not possible to prepare an

accurate simulation as grids are considerably complex systems and, thus,

they deal with phenomena spanning through almost every computer science

discipline. A realistic grid simulator would model the reliability of nodes,

sites and interconnection network; network links, along with the background

load; applications with their usage patterns for computational power, network

and other resources; users that submit applications based on the observed
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load of the system; etc. Clearly, it is not possible to build accurate models

for all these phenomena, specifically as they additionally interact with each

other. Moreover, at this stage of development of grids, it is not yet clear

which phenomena are crucial, and which can be omitted without loosing the

realism of simulation. Thus, one cannot have realistic expectations on the

performance of a scheduling algorithm evaluated solely through simulation.

The main conclusion of this study is that grids without any form of cen-

tralized control or coordination work inefficiently. The resulting loss of per-

formance can be proportional to the system usage. Yet, with some level

of coordination, it is possible to share the pool of available resources fairly

amongst participants, so that no-one loses by cooperating.
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Chapter 7

Résumé étendu en français

Ce texte est un résumé étendu écrit en français du document complet de

thèse. Le lecteur intéressé pourra se référer aux articles publiés suivants:

• Rzadca K., Trystram D., Promoting Cooperation in Selfish Compu-

tational Grids, European Journal of Operational Research, Special Is-

sue on Cooperative Combinatorial Optimization, Elsevier (accepted for

publication, April 2007)

• Rzadca K., Scheduling in Multi-Organization Grids: Measuring the In-

efficiency of Decentralization, PPAM 2007 (International Conference

on Parallel Processing and Applied Mathematics) Proceedings, LNCS,

Springer (in print)

• Pascual F., Rzadca K., Trystram D., Cooperation in Multi-Organization

Scheduling, Euro-Par 2007 Conference Proceedings, LNCS 4641, Springer

2007, pp. 224–233

• Rzadca K., Trystram D., Wierzbicki A., Fair Game-Theoretic Resource

Management in Dedicated Grids, IEEE CCGrid 2007 (International

Symposium on Cluster Computing and the Grid) Proceedings, IEEE

Computer Society, pp. 343-350
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• Rzadca K., Trystram D. Brief Announcement: Promoting Cooperation

in Selfish Grids, SPAA 2006 (Annual ACM Symposium on Parallelism

in Algorithms & Architectures) Proceedings, ACM Press 2006, pp. 332.

7.1 Introduction

Les grappes et grilles de calcul sont des super-ordinateurs à grande échelle

qui permettent l’utilisation coordonnée de ressources possédées et contrôlées

par différentes organisations. Les grappes introduisent de nouvelles questions

au problème de l’ordonnancement et de la gestion des ressources. Dans le

même temps, un grand nombre d’applications importantes a besoin d’une

puissance du calcul qui, aujourd’hui peut être fournie que par des grilles.

Les grappes et grilles sont un exemple d’un système informatique mod-

erne fondée sur le partage. Ainsi, les études, méthodes et résultats menés

dans cette thèse peuvent être adaptés à des domaines connexes, tels que les

systèmes pair à pair, et dans une certyaine mesure, les systèmes embarqués.

Le problème de la gestion des ressources dans les grappes est difficile.

Même au niveau d’un seul super-ordinateur, la performance dépend de la

gestion efficace de ses ressources, et en particulier de l’ordonnancement des

tâches qu’il exécute. La plupart de ces problèmes sont des problèmes al-

gorithmiques difficiles. Une grappe, par son caractère décentralisé, ajoute

de nouvelles difficultés à ces problèmes, comme par exemple assurer l’équité

entre les participants, ou faire face à leur comportement égöıste.

Les approches actuelles pour la gestion des ressources dans les grilles

ont d’importants inconvénients. Un certain nombre de travaux antérieures

ignorent la décentralisation dans l’organisation de la grille. Les approches

qui utilisent les intermédiaires (en anglais, les brokers) sont incapables de

modéliser la grille dans son ensemble, car ils sont basés sur des tarifs (fixés

à l’extérieur du modèle) pour contrôler l’accès aux ressources. Enfin, dans

les approches économiques, même si le prix fait partie du modèle, elle est

généralement exprimée en une sorte de monnaie, ce qui peut avoir une inci-
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dence négative sur le partage et la coopération, et donc la communauté des

utilisateurs qui participent à la grille.

Le but de ce travail de thèse est d’étudier les effets de la décentralisation

sur le problème d’ordonnancement dans les grappes et grilles de calcul, et

ce grâce à des modèles mathématiques simples capturant les caractéristiques

fondamentales qui distinguent les grappes des ordinateurs parallèles clas-

siques. Nous faisons notamment appel à la théorie des jeux afin de mesurer

les conséquences de la prise de décision décentralisée par les participants

égöıstes. Nous utilisons également la théorie de l’optimisation équitable pour

garantir que toutes les parties sont traitées de manière équitable.

Les grappes se composent de ressources des différents domaines adminis-

tratifs. Nous prétendons que les grappes et grilles doivent être étudiés avec

des approches capables de voir cette hétérogénéité. Nous ainsi proposons

deux types de cadres de mathématiques: la théorie des jeux dans les systèmes

où les propriétaires des ressources individuelles ont un contrôle complet sur

leurs machines; l’optimisation multicritère équitable dans des systèmes plus

centralisés, dans laquelle un gestionnaire de ressources peut ordonnancer des

tâches sur les ressources, mais les différentes parties prenantes doivent être

traités équitablement.

Notre but n’est pas de proposer un logiciel riche en fonctionnalités pour

ordonnancer les tâches, pour un certain nombre de raisons. Tout d’abord,

bon nombre de ces logiciels sont déjà disponibles. Deuxièmement, au niveau

actuel de développement des grappes, un Ordonnanceur ne peut pas être

utilisé dans des systèmes autres que précisément celui pour lequel il a été

créé. Troisièmement, la relative nouveauté des grappes et, par conséquent,

l’absence des techniques de la validation largement adoptés rend difficile

la validation scientifique de ces logiciels. Au lieu de cela, nous analysons

nos modèles, avec des moyens similaires à ceux utilisées dans la théorie

d’ordonnancement. Nous fournissons une analyse théorique des scénarios

dans le pire cas, des bornes inférieures sur les performances des algorithmes

et des résultats de simulation, le cas échéant.
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7.2 Modèle de grilles Multi-Organizations

La notion centrale du modèle proposé dans cette thèse est celle d’organisation:

un établissement participant, une entité qui regroupe une ressource donnée à

la grappe et les utilisateurs locaux qui veulent utiliser l’ensemble du système.

Ainsi, une grille de calcul interconnecte logiquement plusieurs ressources

telles que les grappes d’ordinateurs, mais aussi des pièces de matériel spécial-

isé comme des dispositifs d’affichages sophistiqués, des microscopes, ou des

séquenceurs d’ADN. Les utilisateurs du réseau sont regroupés dans des or-

ganisations, comme les laboratoires ou les facultés. Chaque organisation est

propriétaire de l’une des ressources, qui est la contribution de l’organisation

à la grappe. En contribuant, une organisation s’attend à ce que ses utilisa-

teurs soieont traités de façon équitable lors de l’accès à d’autres ressources.

Nous partons du principe que les organismes sont indépendants les uns des

autres. En conséquence, chaque organisation ne s’intéresse qu’à la perfor-

mance des tâches produites par ses membres. En outre, les ressources locales

peuvent avoir leurs ordonnanceurs qui ordonnancent les tâches en fonction

de certains critères particuliers. Un ordonnanceur centralisé coordonne ces

ordonnanceurs locaux. Toutefois, comme les ressources appartiennent à des

organisations locales, un ordonnanceur local n’est pas obligé de suivre les

conseils de l’ordonnanceur de grappe. Par exemple, une organisation peut

modifier localement la solution proposée ou même quitter complètement la

grappe, si l’organisation trouve sa performance inacceptable.

Nous supposons aussi qu’il n’y a pas de moyens extérieurs de compensa-

tions pour l’accès aux ressources. Une organisation ne peut pas explicitement

”payer” autre organisation ni sous forme d’argent, ni sous frome de troc.

Dans ce travail, nous considérons la minimisation des délais d’achèvement

des tâches dans la grappe. Nous introduisons un ordonnanceur centralisé au

niveau de la grappe qui propose un ordonnancement pour chaque ressource.

Cependant, la puissance de l’ordonnanceur centralisé et, par conséquent, le

type de solutions qu’il peut imposer sur les différents processeurs, dépend
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en grande partie du niveau de contrôle qu’ont les différentes organisations

sur leurs ressources. Nous étudions les problèmes de trois points de vue, ce

qui conduit à trois approches différentes pour l’optimisation: l’optimisation

multi-critères, la théorie des jeux et l’optimisation multi-critères avec con-

traintes.

Tout d’abord, dans le cas le plus restreint, on peut supposer que l’or-

ganisation n’est pas en mesure d’imposer un quelconque ordonancement sur

ses ressources locales, ni qu’elle est en mesure de quitter la grappe. Cette

hypothèse reflète les modèles de toutes les ressources qui sont détenues et

contrôlées directement par la grille. Le problème se transforme alors en op-

timisation multi-critères de mesures de la performance des organisations.

Deuxièmement, chaque organisation peut avoir un contrôle complet sur

l’ordonnancement dans la ressource locale. Dans une telle situation, l’or-

donnanceur de la grappe agit seulement comme un conseiller. La solution

proposée doit être rentable pour chaque organisation. Cependant, chaque

organisation est tentée de le modifier localement, si cela augmente la perfor-

mance de l’organisation. Par conséquent, un tel problème doit être analysé

avec la théorie de jeux.

La troisième situation est une combinaison des deux premières. Nous

supposons que chaque organisation décide de joindre ou de quitter la grille

de la façon indépendante. Cependant, une fois à l’intérieur, l’organisation

accorde un contrôle total sur ses ressources à l’ordonannceur de la grappe.

Pourtant, une organisation va quitter le système, si le profit expérimenté est

inférieur à la performance de l’organisation pourrait parvenir à se trouver à

l’extérieur. Par conséquent, afin de maintenir le réseau, le système de ges-

tion des ressources doit obtenir une performance acceptable, non seulement

au niveau de la communauté des utilisateurs (comme en l’ordonnancement

classique), mais aussi sur le niveau entre les organisations. Ce problème peut

être défini comme l’optimisation multi-critères avec contraintes du vecteur

de mesures du rendement de leurs organisations respectives.
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7.3 Partage de Resources

Dans ce chapitre, nous considérons la grappe comme un outil pour accéder à

des ressources spécialisées. Nous supposons que des ressources sont dédiées.

Chaque tâche dans le système doit être calculée sur une ressource déterminée,

pas nécessairement celui appartenant au propriétaire de la tâche. Le principal

problème est alors de déterminer quand ces tâches étrangères doivent être exé-

cutées. La solution proposée par les approches classiques est d’exécuter des

tâches en vue de l’accroissement de leur temps de calcul sur chaque processeur

(Shortest Processing Times, SPT). Cependant, cette solution peut être inef-

ficace pour les organisations possédant des équipements très demandés. Une

autre solution possible est de mélanger l’exécution avec des tâches ”́etrangers”

sur chaque processeur, mais il est généralement globalement inefficace.

Nous étudions trois modèles qui diffèrent par le niveau de contrôle de

l’ordonnanceur de la grappe sur les ressources.

Tout d’abord, nous analysons le problème de l’ordonnancement équitable

dans les systèmes de planification des ressources qui sont la propriété de la

communauté et dont le ordonnanceur céntralisé a un contrôle complet. Nous

formulons le problème comme l’optimisation multi-critères. Nous étudions la

complexité du problème en comptant le nombre possible des solutions Pareto-

optimale existent pour une instance donnée. Un algorithme optimal devrait

retourner toutes les solutions optimales, entre lesquelles un choix peut être

fait par un gérant la grappe. Cependant, nous montrons que le nombre des

solutions Pareto-optimale peut être exponentielle en fonction du nombre des

tâches. Par conséquent, il n’existe aucun algorithme efficace énumérant tous

les meilleurs ordonnancements.

Comme la production de l’ensemble des solutions n’est pas efficace, nous

étudions le problème de trouver un seul ordonnancement avec les perfor-

mances données de chaque organisation. Nous considérons comme un cas

limité une ressource et deux organisations. Nous montrons que même dans

ce cas limité, le problème de décision est NP-complet. Ainsi, le problème
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d’ordonnancement dans la grappe défini dans le présent chapitre est égale-

ment NP-dur.

Ensuite, nous proposons trois algorithmes d’optimisation multicritères:

une recherche exhaustive qui essaye de tous ordonnancements possibles et

supprime celles qui sont équitablement dominés; la programmation dynamique

qui trouve l’ensemble des ordonnancements Pareto-optimales par la construc-

tion partielle des ordonnancements (en précisant les propriétaires des pre-

mières i tâches sur une ressource) et les élargit pour contenir toutes les tâches

sur l’ensemble des ressources; et une heuristique gourmande qui modifie les

ordonnancements de la façon itérative par changer l’ordre de deux tâches

exécutés l’un après l’autre sur la même ressource.

Deuxièmement, nous étudions le problème de l’ordonnancement dans le

cas décentralisé, dans laquelle l’ordonnanceur de la grappe suggère seulement

un calendrier, qui peut être modifié ultérieurement par le propriétaire d’une

ressource. Ce problème sera analysé avec la théorie de jeux. Nous montrons

que le jeu correspondant à la planification décentralisée est analogue au prob-

lème connu du dilemme du prisonnier. Bien que les organisations puissent

gagner en suivant les conseils de l’ordonnanceur de la grappe, chaque organ-

isation est tentée de changer l’ordonnancement local et d’exécuter ses tâches

locales au début. On note que cette stratégie par My First Job (MJF). Dans

l’équilibre de Nash, toutes les organisations utilisent les stratégies MJF. Cela

se traduit par d’importantes (O(n)) baisses de performance. Par conséquent,

une forte communauté qui excerce un contrôle est nécessaire pour rendre la

performance acceptable.

Troisièmement, nous analysons le problème de l’ordonnancement réalis-

able en cas semi-décentralisée. Ici, les organisations ne peuvent pas modifier-

localement le calendrier, mais ils peuvent quitter la grappe, si le rendement

est insatisfaisant. Ce problème correspond à l’approche multi-critères avec

contraintes. Pour trouver une solution faisable, nous utilisons des algorithmes

similaires à ceux utilisés dans l’optimisation multi-critères.
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Avec un vaste validation expérimentale nous montrons que ces heuris-

tiques produisent des résultats qui ne sont pas loin de l’optimum et, en

même temps, leur temps d’exécution et plus rapide de quelques ordres de

grandeur. Nos expériences montrent également que les contraintes pesant

sur l’optimisation n’aggravent pas les résultats de façon significative. C’est

pourquoi un fort contrôle exercé de façon communautaire par la grappe est

indispensable pour atteindre une bonne performance.

7.4 Tâches Divisibles

Dans ce chapitre, nous considérons la grappe comme un outil pour calculer

les tâches divisibles (divisible load). Suite à notre modèle général de la grille,

nous supposons que chaque tâche a été préparée par une organisation. Pour-

tant, elle peut être calculée en parallèle sur des ressources des autres organi-

sations, si ces organisations conviennent d’accepter la tâche. Nous étudions

quelle décision devraient prendre les organisations en présence d’incertitude.

On considère un modèle en ligne (on-line), dans laquelle les tâches sont pro-

duites pendant la durée de vie du système et sont inconnus avant d’avoir été

produite.

Tant qu’il n’y a pas de tâches locales, le calcul de la tâche étrangère ne

causer aucun coût supplémentaire. Toutefois, si une nouvelle tâche locale

est produite, la tâche étrangère bloque les ressources nécessaires et retarde

la nouvelle tâche locale. Dans tel cas, la tâche étrangère est habituellement

suspendue. En conséquence, le propriétaire de cette tâche ne peut pas avoir

des garanties sur leur temps de l’achèvement.

Par opposition à cette approche, nous supposons que le système doit

garantir le définitif temps de fin de chaque tâche soumise, qui est annoncé

à l’utilisateur pendant que le travail est soumis. Nous réclamons que telle

garantie donne la meilleure qualité de service que l’exécution de meilleur-

effort, normalement utilise dans le calcul distribuée des tâches divisibles.
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Afin d’analyser précisément l’équité du modèle, nous commençons avec

calculant le retard prévu EG causé par une tâche étrangere de longueur

Φk dans le calcul d’une prochaine tâche local, donné la taille de file d’attend

actuel Lk. Après quelques suppositions, nous calculons EG comme

EG(Lk, Φk) = Φk + e−λkLk

λk

(
e−λkΦk − 1

)
. Le retard prévu EG(Lk, Φk) n’est

pas linéaire avec le chargement étranger Φk. De plus, Φk − EG (Lk, Φk) > 0

pour tous possible (positif) valeurs de Φk et Lk. Par conséquent, le gain que

l’expéditeur obtient de l’envoi d’une partie de son chargement est toujours

plus grande que le retard prévu des tâches locales futurs du récepteur

Cette fonction nous permet d’analyser un cas simplifié avec l’approche

d’optimisation. Nous étudions un algorithme classique de répartition de

charge, Averaging Load Balancing, qui distribue le chargement pour que

chaque ressource finit le calcul au même moment. Nous montrons que la

solution proposée est non seulement globalement optimale, mais aussi le

plus juste, mais il détériore toujours la performance de la ressource le moins

chargée.

Avec l’approche de théorie des jeux, nous démontrons que la solution juste

ne sera jamais réalisable. Bien que la balance du chargement a pour résultat

la solution globalement optimale, cette action est dominée par aucune balance

de chargement par l’organisation qui reçoit la charge.

Dans le cas de ressources chargées pareillement, nous montrons que,

si nous obligeons les organisations à collaborer pendant les périodes plus

longues, Averaging Load Balancing devient la stratégie dominante pour chaque

organisation. La probabilité d’être le récepteur est similaire à cela d’être

l’expéditeur, si les ressources sont chargées pareillement et si le système force

les organisations à commettre à leurs décisions pour quelque période, au lieu

d’eux permettre de coopérer seulement instantanément. Par conséquent, les

deux organisations doivent profiter de la coopération.

Nous validons le modèle proposé empiriquement en construisant un sim-

ulateur de la grappe avec les participants qui apprennent automatiquement.

Dans le simulateur, chaque ressource mesure le temps d’exécution de ses
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CHAPTER 7. RÉSUMÉ ÉTENDU EN FRANÇAIS

tâches locales et ajuste en conséquence sa complaisance pour joindre la coali-

tion de la répartition de charge. Dans la coalition, l’algorithme de la réparti-

tion de charge est périodiquement exécuté. L’algorithme équilibre la charge

en déplaçant des tâches ou leurs fragments entre les ressources. Dans les

expériences, si les ressources ont été chargées pareil et leur chargement était

haut, les travaux ont été accélère de 50% à 237%. Les résultats sont mieux

quand il y a plus d’organisations dans la grappe. Ceci est parce que s’il y a

plus de ressources, plus de ressources en fait peut envoyer leur chargement

et profiter de la répartition.

Pourtant, quand la charge est inégale parmi les ressources, le simple al-

gorithme de la répartition de charge devient inadmissible pour les ressources

moins chargées. Pendant que les tâches des organisations surchargées sont

considérablement accélères, les autres organisations perdent constamment en

coopérant.

De plus, nous montrons que si les organisations prendre des décisions

dépendent de leur longueur de file actuelle, la répartition de charge ne sera

jamais exécutée. Une organisation Ok prévoit qu’il envoie ses tâches seule-

ment si sa file actuelle est plus longue que la longueur de file prévue de

l’autre organisation Ol. Seulement dans ce cas, la répartition de charge est

profitable pour Ok. L’organisation Ol, cependant, est capable de la même

analyse. Si la longueur de file Ll de Ml est moins que le moyen ρ

γ
, Ml ne par-

ticipera pas dans la répartition de charge. Afin d’équilibrer la charge, nous

avons besoin de deux organisations qui vont participer. Par conséquent, si

Ok veut participer, il doit savoir que si Ol participe, la longueur de file de

Ml sera plus longue que ρ

γ
. Ceci modifie la fonction de distribution de prob-

abilité de Ml. Par conséquent, la répartition de charge devient profitable

pour l’organisation Ok seulement si sa longueur de file est plus longue que
ρ+1
γ

. Nous pouvons itérer ce raisonnement plus. Il fait la répartition de

charge d’une étape analogue au jeu d’un concours de beauté. Le plus de

répétitions de ce raisonnant font les joueurs, le plus long la longueur de file

minimum qui fait la répartition de charge profitable. Comme les joueurs sont
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complètement rationnels, la longueur de file profitable minimum augmente

indéfiniment. Ainsi, la volonté de participation à la répartition de charge

n’arrive jamais.

Nous résolvons ce problème en introduisant un autre algorithme de dis-

tribution de chargement (appelé la répartition de charge limitée et itérative,

Bounded Iterative Load Balancing, BILB), qui emploie les idées générales de

l’optimisation équitable contrainte. L’algorithme utilise deux mécanismes :

la répartition de charge itérative, dans laquelle premièrement les ressources

de moindre-chargé sont équilibrées, alors les ressources sont itérativement

ajoutées dans l’ordre de leur charge locale; et la répartition de charge limitée,

dans laquelle aucune ressource est forcée d’accepter la charge étrangère qui

augmenterait sa file locale trop. La première technique favorise les ressources

moins charges, le deuxième utilise directement des conclusions du modèle de

coût proposé, où nous avons montré qu’acceptant la charge étrangère coût

moins quand la file locale est courte. Dans les expériences, cet algorithme

livre de meilleurs résultats que l’algorithme précédent dans tous les cadres

considérés. De plus, on est capable de produire le gain même pour les organ-

isations moins chargés.

7.5 Tâches parallèles

Dans ce chapitre nous étudions l’extension multi-organisationnel du prob-

lème classique de l’ordonnancement de tâches parallèles. La version clas-

sique du problème consiste en l’ordonnancer les tâches sur une ressource

multiprocesseur. Chaque tâche doit être exécutée en parallèle sur un nombre

spécifique de processeurs. Le but est de minimiser le makespan, la date de

terminaison de la dernière tâche. Ce modèle adapte bien à un scénario pop-

ulaire de l’usage d’un super-ordinateur, dans lequel une grappe de serveurs

(un cluster) est partagé entre des tâches MPI.

Nous étendons le modèle classique aux organisations multiples. Dans

notre modèle, chaque organisation possède une ressource de multi-processeur
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et produit des tâches qui sont localement ordonnancées sur sa ressource.

Après avoir exécuté un algorithme de répartition de charge dans la grille, ces

tâches peuvent être alors exécutés sur les autres ressources. Dans ce chapitre

nous étudions les algorithmes d’approximation qui donnent une garantie sur

la performance dans le pire des cas. Nous visons à mesurer l’impact de dé-

centralisation organisationnelle et de matériel sur le rapport d’approximation

de l’algorithme d’ordonnancement.

Nous ne permettons pas à une tâche d’être exécutée en parallèle sur deux,

ou plus de ressources. Cette supposition vient l’hétérogénéité implicite de

liens de réseau. Comme une tâche doit être exécutée en parallèle, nous sup-

posons que les fragments de la tâche exécutée sur les processeurs différents

communiqueront activement l’un avec l’autre. Dans une ressource, telle com-

munication est rapide. Cependant, les liens entre les ressources sont quelques

ordres de magnitude plus lente, donc communication entre les ressources aug-

menterait le temps d’exécution du travail.

Avec la supposition que chaque organisation mesure le temps de ter-

minaison de ses tâches localement produites et pas le temps de terminai-

son sur la ressource locale, l’exécution d’une tâche étrangère à la fin de

l’ordonnancement ne cause pas de coût pour le propriétaire. Ceci est une

conséquence directe de la supposition que le modèle est différé (off-line).

Nous commençons sur le cas simple de l’ordonnancement des tâches par-

allèles rigides sur une ressource avec m processeurs identiques. Nous utilisons

l’algorithme classique de l’ordonnancement de liste (list scheduling), qui a un

rapport d’approximation 2 − frac1m. Nous montrons que si les tâches sont

triées selon le nombre décroissant de processeurs exigés, l’ordonnancement ré-

sultant peut être divisé au plus en deux périodes en ce qui concerne l’utilisation

de la ressource. Au commencement, plus que la moitié des processeurs est

utilisée. Alors, moins que la moitié des processeurs est utilisée, pendant au

plus le temps de pmax.

Nous montrons que, même si l’ordonnanceur de la grappe retient le con-

trôle complet sur toutes les ressources, la discontinuité de ressources conduit
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à un rapport d’approximation de 3 pour l’algorithme d’ordonnancement de

liste. De plus, l’équité des résultats ne peut pas être garantie. Comme

l’ordonnancement de liste mélange toutes les tâches, nous ne pouvons pas

avoir de garantie sur l’impartialité entre makespans des organisations. Nous

analysons brièvement deux façons dont l’ordonnancement de liste peut être

étendu pour améliorer l’impartialité des ordonnancements résultants.

L’algorithme juste doit favoriser des travaux d’organisations les moins-chargent

(en ce qui concerne le travail total de l’organisation W (Ok) ou la longueur de

la tâche la plus longue pmax(Ok)). Cependant, telles priorités sont impossibles

de s’appliquer dans un algorithme de liste. Premièrement, la priorité d’une

tâche peut être exprimée en commandant la tâche plus tôt possible dans la

première phase d’algorithme d’ordonnancement. Cependant, le comporte-

ment avide d’algorithme de liste dans la deuxième phase peut résulter en or-

donnancer les tâches ayant la priorité plus basse, mais exigeant moins de pro-

cesseurs avant les plus hauts travaux de priorité. Deuxièmement, l’algorithme

de liste peut planifier des tâches d’organisations différentes dans la mode de

backfilling. Si on suppose que O1 a la priorité par-dessus O2, qui a la pri-

orité par-dessus O3,. . . , toutes les tâches de O1 seraient ordonnancées sur

toutes ressources disponibles. Alors, les tâches de O2 seraient ordonnancées

entre eux avec une restriction supplémentaire qui une tâche de O2 ne peut

pas retarder une tâche de O1. L’algorithme ordonnance alors les tâches de

O3,. . . ,ON d’une façon similaire. Malheureusement, tel un algorithme n’a

pas la garantie fixée sur le rapport d’approximation.

Alors, nous montrons que le coût de décentralisation organisationnelle

n’est pas aussi haute que dans les grappes précédemment considérées, parce

que le Prix d’Anarchie est entre 3/2 et 2. Pour une organisation, une stratégie

avide appelé mes tâches premierèment (My Job First, MJF), ordonnance

premièrement ses tâches locales avec un algorithme de liste. Alors, les tâches

étrangères sont ordonnancées ou à la fin de l’ordonnancement, ou dans les

écarts pour qu’ils ne retardent pas de tâches locales. Telles stratégies forment

le seul équilibre de Nash dans le jeu d’ordonnancement. Nous montrons que
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le prix d’anarchie est au plus 2 en construisant un ordonnancement MJF

d’un ordonnancement optimal en étendant le makespan sur chaque ressource

au plus deux fois.

Finalement, nous proposons un algorithme d’ordonnancement qui a un

rapport d’approximation fixe sur le makespan de système et ne dégrade pas

en même temps les makespans des locales d’organisations.

A cause de la contrainte qu’aucun makespan local ne peut être augmenté,

quelques solutions globalement-optimaux ne sont pas faisables. Nous mon-

trons que n’importe quel algorithme d’ordonnancement résolvant le problème

contraint a un rapport d’approximation d’au moins 3
2

en ce qui concerne la

solution optimale de la minimisation de Cmax du système.

L’algorithme de repartition de charge des organisations multiples (Multi-

Organisational Load Balancing Algorithm, MOLBA), indiqué par MOLBA(α)

(αgeq1), calcule une borne inferieuré du makespan global, choisit toutes les

organisations dont makespan est plus grand que (α + 1), et ordonnance alors

certains de leurs tâches sur les ressources moins chargées. α est un paramètre

de l’algorithme qui exprime le compromis entre l’efficacité globale et les con-

traintes sur les makespans locales.

Dans le cas spécial où la dernière tâche terminée est basse (la tâche

utilise moins que la moitié des processeurs), MOLBA(2) est un algorithme

3-approché. Dans le cas général MOLBA(3) est 4-approché.

MOLBA(3) garanties que le makespan global Cmax n’est pas pire que qua-

tre fois l’optimum, 4C∗
max. Néanmoins, la distribution de chargement résul-

tant d’exécution de l’algorithme peut être inégal. Par exemple, MOLBA(3)

ne modifie pas l’ordonnancement d’une organisation avec Cmax(Ok) = 4C∗
max−

epsilon. Pourtant, c’est possible qu’il y ait des tâches sur Mk qui commencent

après toutes les autres ressources ont fini.

Nous proposons un autre algorithme, l’algorithme itératif de reparti-

tion de charge (Iterative Load Balancing Algorithm, ILBA), qui améliore

l’ordonnancement retourné par MOLBA(α) en équilibrant la charge entre les

ressources. ILBA ne retarde pas de tâches, ainsi, donné un ordonnancement
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produit par MOLBA(α), ILBA remplit la contrainte et n’empire pas le rap-

port d’approximation. Nous montrons aussi que dans un cas d’ordonnancement

des tâches séquentiels, ILBA a le même rapport d’approximation que n’importe

quel algorithme d’ordonnancement de liste. En commençant avec les ressources

moins chargées et en ajoutant itérativement les plus chargées, ILBA permet

aussi de réduire les makespans sur les ressources moins chargé.

ILBA trie les ressources par des makespans non-diminuant. Suppose que

Cmax(M1) ≤ Cmax(M2) ≤ · · · ≤ Cmax(MN ). L’algorithme, pour tout k =

2, . . . , N , re-ordonnance toutes les tâches exécutées sur Mk sur {M1, . . . , Mk}.

Les tâches sont ordonnancées de façon séquentielle dans l’ordre de leur exé-

cution d’ordonnancement original. Chaque tâche J i est ordonnancée à la

ressource qui a la plus première bande de processeurs libres de largeur au

moins pi et la hauteur au moins qi. Ainsi, de même à l’étape précédente

de l’algorithme, une tâche reçue de Mk ne peut pas retarder des tâches déjà

planifiées sur {M1, . . . , Mk}.

Dans quelques cas spéciaux, ILBA peut être exécuté directement après

avoir exécuté l’ordonnancement local (il n’y a pas besoin d’exécuter

MOLBA(α)). Nous prouvons les rapports d’approximation dans deux cas

spéciaux. Si toutes les tâches sont séquentielles, ILBA est un (2 − 1
N m

)-

approximation de l’optimal C∗
max. Si toutes les tâches sont hautes (ont besoin

de plus de la moitié des processeurs disponibles sur chaque ressource), ILBA

est un (2 − 1
N

)-approximation..

Nous fournissons une évaluation expérimentale des algorithmes. Les al-

gorithmes ont été comparés en ce qui concerne le makespan du système qui

a été produit. Comme les instances ont différé par exemple dans le nom-

bre de tâches, ou leurs tailles, pour chaque instance et chaque algorithme

nous avons calculé le rapport entre le makespan produit et les bornes in-

férieurs (la longueur de la tâche la plus longue et le chargement moyen).

Les résultats de nos expériences montrent que MOLBA avec ILBA est un

algorithme efficace qui améliore considérablement l’exécution en comparai-

son de l’ordonnancement local. Cependant, nous avons observé aussi que les
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charges de travail produites par le générateur réaliste étaient plus faciles à

ordonnancer.

7.6 Conclusions

Dans cette thèse nous avons proposé un modèle de système qui rassemble

des organisations indépendantes. Chaque organisation dispose de quelques

ressources et, en échange, veut utiliser une partie du système entier. Le

modèle résultant peut être analysé par les outils mathématiques telles que

la théorie des jeux ou l’optimisation équitable. De plus, le modèle est assez

générique pour être adapté à un système spécifique, sans perdre la possibilité

d’être analysé. Nous avons présenté trois applications du modèle aux divers

types des grappes de calcul. En plus, le modèle doit être possible d’adapter

aux autres types de systèmes modernes, tels que les systèmes pair-à-pair ou

les communautés web 2.0.

Un des résultats principaux de cette recherche est une démonstration que

la décentralisation organisationnelle complète d’un système est coûteux sur

le plan de la performance. Dans tel un système organisationnellement décen-

tralisé, des organisations individuelles maintiennent le contrôle complet par-

dessus leurs ressources. Nous avons analysé de tels systèmes avec l’approche

jeu-théorique. Dans les grappes qui partagent les ressources dédiées, dans le

pire cas la perte était linéaire sur le nombre de tâches. Dans le modèle des

tâches divisibles, la répartition de charge entre les ressources n’a jamais été

exécutée. Seulement dans un de trois modèles considérés, la perte de perfor-

mance était acceptable. Cependant, ce modèle a exigé quelques suppositions

fortes.

Nous avons démontré aussi qu’il était impossible de respecter des buts des

membres individuels tout en gardant la performance satisfaisante du système

entier en même temps. A cette fin, les membres sont obligés d’accorder un

contrôle même partiel sur leurs ressources par rapport à une entité centrale.
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Les contraintes du problème d’optimisation garantissent que les buts des

membres sont respectés et accomplis.

Nous avons appliqué l’optimisation multicritère équitable pour garantir

l’équité des résultats entre les participants individuels. Nous avons carac-

térisé des propriétés d’une solution juste par les axiomes d’anonymat, de la

monotonie et du principe de transferts. L’optimisation équitable s’est avérée

être un outil commode, comme l’équité axiomatique peut équilibrer la perfor-

mance du système entier avec l’équité entre des participants individuels. Ce

n’était pas toujours possible, cependant, formellement garantir l’équité des

résultats retournés par les algorithmes, à cause soit du manque d’information

(dans les modèles en ligne) soit du manque de moyens algorithmiques (dans

l’ordonnancement des tâches parallèles).

En analysant le cas d’une grappe qui partage des ressources dédiées, nous

avons démontré que la décentralisation organisationnelle cause la perte sig-

nificative de la performance même dans un modèle différé. Néanmoins, si les

organisations contrôlent les ordonnancements locales, une solution efficace et

juste peut être produite.

Le cas de la répartition de la charge des tâches divisibles est aussi sensible

au manque de contrôle centralisé. Dans les systèmes décentralisé, la répar-

tition de charge n’est jamais exécutée, bien qu’il garant̂ıt une distribution

équitable des tâches. Nous avons géré pour répartir la charge du système en

obligeant les organisations à pendre leurs décisions pour quelques périodes

de temps, sans tenir compte des longueurs des files d’attente. De plus, nous

avons proposé un algorithme de répartition itérative de charge qui distribue

les profits de façon plus équitable que l’algorithme classique.

Nous avons considéré aussi le problème de l’ordonnancement des tâches

parallèles sur des ressources multiprocesseurs. Ici, la décentralisation n’a pas

causé de baisse de la performance du système entier. Le modèle est différé,

ainsi une tâche étrangère exécutée à la fin de l’ordonnancement n’empire

pas la performance du propriétaire de la ressource. En même temps, le

propriétaire de la tâche peut réduire son makespan. Nous avons proposé
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un algorithme de l’ordonnancement qui a la performance dans le pire des

cas fixe sur le makespan de système et qui n’augmente pas les makespans

d’organisations individuelles.

Les résultats présentés dans ce travail ont exigé beaucoup d’hypothèses.

Par exemple, nous avons supposé que l’ordonnanceur connâıt la taille ex-

acte de chaque tâche (la clairvoyance) ou que toutes les tâches dans le sys-

tème sont connues et prêtes à être exécutées avant le début d’algorithme

d’ordonnancement (des modèles différés). De telles suppositions sont com-

munes dans la théorie d’ordonnancement, elles permettent de dériver quelques

résultats mathématiques précis sur les modèles simplifiés. Clairement, en

même temps, elles simplifient la réalité complexe, donc les algorithmes dans

la forme présentée dans ce travail ne peuvent pas être directement appliqués

dans un logiciel d’ordonnancement de grappe. Cependant, les algorithmes qui

se sont avéré être efficaces sur les modèles simplifiés peuvent être transférés

aux vrais environnements. Dans ce cas, la clairvoyance serait remplacée par

les estimations du temps d’exécution fournis par l’utilisateur. Les tâches qui

sont produites pendant la vie du système (en ligne) seraient considérées dans

les groupes (batches), dans lesquels un algorithme différé peut être utilisé.

De même, les algorithmes pour ordonnancer des tâches divisibles pourraient

être facilement adaptés pour des applications des groupes des tâches (bag-

of-tasks), en fixant la taille minimale du grain.

Cette approche théorisée nous a permis de dériver quelques résultats pré-

cis et mathématiques sur la performance des systèmes et des algorithmes con-

sidérés. Nous avons modélisé ce que nous considérons l’essence de la grappe.

Après, nous avons utilisé ce modèle simplifié pour valider nos algorithmes.

L’approche alternative serait de construire un modèle beaucoup plus réaliste

de grappe et alors d’évaluer les algorithmes par simulation. Nous préten-

dons cependant que ce n’est pas possible de préparer une simulation précise

des grappes, qui sont des systèmes considérablement complexes et, ainsi, ils

font intervenir des phénomènes traverses à presque toutes les disciplines de

l’informatique. Un simulateur réaliste de la grappe modèliserait la fiabilité de
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noeuds, les sites et le réseau; les liens de réseau, avec le chargement de fond ;

les applications avec leurs modèles d’usage pour le pouvoir computationnel,

le réseau et les autres ressources ; les utilisateurs qui soumettent des applica-

tions en fonction du chargement observé du système ; etc. , Ce n’est pas pos-

sible clairement de construire des modèles précis pour tous ces phénomènes,

en particulier comme ils réagissent réciproquement l’un avec l’autre. De plus,

à cette étape de développement des grappes, ce n’est pas encore clair quels

phénomènes sont cruciaux, et qui peut être omis sans la détérioration du réal-

isme de simulation. Ainsi, l’un ne peut pas avoir d’espérances réalistes sur la

performance d’un algorithme d’ordonnancement qui a été évalué uniquement

par la simulation.

La conclusion principale de cette étude est que les grappes sans aucune

forme de coordination ou contrôle centralisé fonctionnent inefficacement. La

perte résultante de performance peut être proportionnelle à l’usage de sys-

tème. Pourtant, en rajoutant un quelconque niveau de coordination, il est

possible de partager le groupe de ressources disponibles parmi les participants

pour que personne ne perde en coopérant.
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