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ABSTRACT

We consider a multi-organizational system in which each organi-
zation contributes processors to the global pool but also jobs to be
processed on the common resources. The fairness of the scheduling
algorithm is essential for the stability and even for the existence of
such systems (as organizations may refuse to join an unfair system).

We consider on-line, non-clairvoyant scheduling of sequential
jobs. The started jobs cannot be stopped, canceled, preempted, or
moved to other processors. We consider identical processors, but
most of our results can be extended to related or unrelated proces-
sors.

We model the fair scheduling problem as a cooperative game and
we use the Shapley value to determine the ideal fair schedule. In
contrast to the current literature, we do not use money to assess the
relative utilities of jobs. Instead, to calculate the contribution of an
organization, we determine how the presence of this organization
influences the performance of other organizations. Our approach
can be used with arbitrary utility function (e.g., flow time, tardiness,
resource utilization), but we argue that the utility function should
be strategy resilient. The organizations should be discouraged from
splitting, merging or delaying their jobs. We present the unique
(to within a multiplicative and additive constants) strategy resilient
utility function.

We show that the problem of fair scheduling is NP-hard and hard
to approximate. However, for unit-size jobs, we present a fully
polynomial-time randomized approximation scheme (FPRAS). We
also show that the problem parametrized with the number of orga-
nizations is fixed parameter tractable (FPT). In cooperative game
theory, the Shapley value is considered in many contexts as “the”
fair solution. Our results show that, although the problem for the
large number of organizations is computationally hard, this solution
concept can be used in scheduling (for instance, as a benchmark for
measuring fairness of heuristic algorithms).

Categories and Subject Descriptors

C.1.4 [Computer Systems Organization]: Processor Architec-
tures—Parallel Architectures; F.2.2 [Theory of Computation]: Anal-
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1. INTRODUCTION
In multi-organizational systems, participating organizations give

access to their local resources; in return their loads can be pro-
cessed on other resources. The examples of such systems include
PlanetLab, grids (Grid5000, EGEE), or organizationally distributed
storage systems [16]. There are a few incentives for federating
into consortia: the possibility of decreasing the costs of manage-
ment and maintenance (one large system can be managed more
efficiently than several smaller ones), but also the willingness to
utilize resources more efficiently. Peak loads can be offloaded to
remote resources. Moreover, organizations can access specialized
resources or the whole platform (which permits e.g. testing on a
large scale).

In the multi-organizational and multi-user systems fairness of
the resource allocation mechanisms is equally important as its ef-
ficiency. Efficiency of BitTorrent depends on users’ collaboration,
which in turn requires the available download bandwidth to be dis-
tributed fairly [32]. Fairness has been also discussed in storage sys-
tems [4,14,15,17,40,41,44] and computer networks [42]. In schedul-
ing, for instance, a significant part of the description of Maui [19],
perhaps the most common cluster scheduler, focuses on the fair-
share mechanism. Nevertheless there is no universal agreement on
the meaning of fairness; next, we review approaches most com-
monly used in literature: distributive fairness and game theory.

In distributive fairness organizations are ensured a fraction of the
resources according to predefined (given) shares. The share of an
organization may depend on the perceived importance of the work-
load, payments [4,14,15,40]; or calculated to satisfy (predefined)
service level agreements [17,21,44]. The literature on distributive
fairness describes algorithms distributing resources according to
the given shares, but does not describe how the shares should be
set. In scheduling, distributive fairness is implemented through fair
queuing mechanism: YFQ [1], SFQ and FSFQ [10,20], or their
modifications [4,14,15,17,40,41,44,45].

A different approach is to optimize directly the performance (the
utility) of users, rather than just the allocated resources. Kostreva
el al. [23] proposes an axiomatic characterization of fairness based
on multi-objective optimization; Rzadca et al. [34] applies this con-
cept to scheduling in a multi-organizational system. Inoie et al. [18]
proposes a similar approach for load balancing: a fair solution must



be Pareto-optimal and the revenues of the players must be propor-
tional to the revenues in Nash equilibrium.

While distributive fairness might be justified in case of centrally-
managed systems (e.g. Amazon EC2 or a single HPC center), in
our opinion it is inappropriate for consortia (e.g., PlanetLab or non-
commercial scientific systems like Grid5000 or EGEE) in which
there is no single “owner” and the participating organizations may
take actions (e.g. rescheduling jobs on their resources, adding local
resources, or isolating into subsystems). In case of such systems
the shares of the participating organizations should depend both on
their workload and on the owned resources; intuitively an organi-
zation that contributes many “useful” machines should be favored;
similarly an organization that has only a few jobs.

Game theory is an established method for describing outcomes
of decisions made by agents. If agents may form binding agree-
ments, cooperative game theory studies the stability of resulting
agreements (coalitions and revenues). There are well studied con-
cepts of stability [30], like the core, the kernel, the nucleolus, the
stable set or the bargaining set. The Shapley value [35] character-
izes what is a fair distribution of the total revenue of the coalition
between the participating agents.

The Shapley value has been used in scheduling theory but all the
models we are aware of use the concept of money. The works of
Carroll et at. [3], Mishra et al. [27], Mashayekhy and Grosu [26]
and Moulin et al. [28] describe algorithms and the process of form-
ing the coalitions for scheduling. These works assume that each
job has a certain monetary value for the issuing organization and
each organization has its initial monetary budget.

Money may have negative consequences on the stakeholders of
resource-sharing consortia. Using (or even mentioning) money dis-
courages people from cooperating [39]. This stays in sharp con-
trast with the idea behind the academic systems — sharing the
infrastructure is a step towards closer cooperation. Additionaly,
we believe that using money is inconvenient in non-academic sys-
tems as well. In many contexts, it is not clear how to valuate the
completion of the job or the usage of a resource (especially when
workload changes dynamically). We think that the accurate val-
uation is equally important (and perhaps equally difficult) as the
initial problem of fair scheduling. Although auctions [2] or com-
modity markets [22] have been proposed to set prices, these ap-
proaches implicitly require to set the reference value to determine
profitability. Other works on monetary game-theoretical models for
scheduling include [8,9,12,13,31]; monetary approach is also used
for other resource allocation problems, e.g. network bandwidth al-
location [43]. However, none of these works describes how to val-
uate jobs and resources.

In a non-monetary approach proposed by Dutot el al. [6] the
jobs are scheduled to minimize the global performance metric (the
makespan) with an additional requirement — the utility of each
player cannot be worse than if the player would act alone. Such
approach ensures the stability of the system against actions of any
single user (it is not profitable for the user to leave the system and
to act alone) but not to the formation of sub-coalitions.

In the selfish job model [38] the agents are the jobs that selfishly
choose processors on which to execute. Similarly to our model
the resources are shared and treated as common good; however, no
agent contributes resources.

An alternative to scheduling is to allow jobs to share resources
concurrently. In congestion games [5,29,33] the utility of the player
using a resource R depends on the number of the players con-
currently using R; the players are acting selfishly. Congestion
games for divisible load scheduling were analyzed by Grosu and
Chronopoulos [11] and Skowron and Rzadca [36].

In this paper we propose fair scheduling algorithms for systems
composed of multiple organizations (in contrast to the case of mul-
tiple organizations using a system owned by a single entity). We
model the organizations, their machines and their jobs as a cooper-
ative game. In this game we do not use the concept of money. When
measuring the contribution of the organization O we analyze how
the presence of O in the grand coalition influences the completion
times of the jobs of all participating organization. This contribu-
tion is expressed in the same units as the utility of the organization.
In the design of the fair algorithm we use the concept of Shapley
value. In contrast to simple cooperative game, in our case the value
of the coalition (the total utility of the organizations in this coali-
tion) depends on the underlying scheduling algorithm. This makes
the problem of calculating the contributions of the organizations
more involved. First we develop algorithms for arbitrary utilities
(e.g. resource utilization, tardiness, flow time, etc.). Next we argue
that designing the scheduling mechanism itself is not enough; we
show that the utility function must be chosen to discourage organi-
zations from manipulating their workloads (e.g. merging or spliting
the jobs — similar ideas have been proposed for the money-based
models [28]). We present an exponential scheduling algorithm for
the strategy resilient utility function. We show that the fair schedul-
ing problem is NP-hard and difficult to approximate. For a simpler
case, when all the jobs are unit-size, we present a fully polynomial-
time randomized approximation scheme (FPRAS). According to
our experiments this algorithm is close to the optimum when used
as a heuristics for workloads with different sizes of the jobs.

Our contribution is the following: (i) We derive the definition
of the fair algorithm. Intuitively, fairness means that the utility for
an organziation is close to its contribution i.e., its Shapley value.
(ii) The Shapley value for an organization is derived based on the
resources and the jobs the organization contributes — how the pres-
ence of the organization influences the processing times of the jobs
of all organizations. The Shapley value is computed without any
notion of money. (iii) We present an algorithm that computes a fair
schedule for an arbitrary utility function (that might be a classical
scheduling metric such as flow time, resource allocation, tardiness
etc.). (iv) We observe that many utility functions are not strategy
resistant, i.e. an organization can affect its utility by e.g. splitting
its jobs into smaller pieces. We define the notion of strategy resis-
tance and derive a strategy resistant utility function. (v) We show
that the problem of calculating a fair schedule is NP-complete and
hard to approximate. However, the problem parametrized by the
number of organizations is fixed parameter tractable (FPT).

2. PRELIMINARIES
Organizations, machines, jobs. We consider a system built by a

set of independent organizations O = {O(1), O(2), . . . O(k)} [6].

Each organization O(u) owns a computational cluster consisting

ofm(u) machines (processors) denoted asM
(u)
1 ,M

(u)
2 , . . .M

(u)

m(u)

and produces its jobs, denoted as J
(u)
1 , J

(u)
2 , . . . . Each job J

(u)
i has

release time r
(u)
i ∈ T, where T is a discrete set of time moments.

We consider an on-line problem in which each job is unknown un-
til its release time. We consider a non-clairvoyant model i.e., the
job’s processing time is unknown until the job completes (hence
we do not need to use imprecise [24] run-time estimates). For the
sake of simplicity of the presentation we assume that machines are

identical, i.e. each job J
(u)
i can be executed at any machine and

its processing always takes p
(u)
i time units; p

(u)
i is the processing

time. Most of the results, however, can be extended to the case
of related machines, where p

(u)
i is a function of the schedule – the

only exception make the results in Section 5.1, where we rely on the



assumption that each job processed on any machine takes exactly
one time unit. The results even generalize to the case of unrelated
machines, however if we assume non-clairvoyant model with un-
related machines (i.e., we do not know the processing times of the
jobs on any machine) then we cannot optimize the assignment of
jobs to machines.

The jobs are sequential (this is a standard assumption in many
scheduling models and, particularly, in the selfish job model [38];
an alternative is to consider the parallel jobs, which we plan to do
in the future). Once a job is started, the scheduler cannot preempt
it or migrate it to other machine (this assumption is usual in HPC
scheduling because of high migration costs). Finally, we assume
that the jobs of each individual organization should be started in
the order in which they are presented. This allows organizations to
have an internal prioritization of their jobs.

Cooperation, schedules. Organizations can cooperate and share
their infrastructure; we say that organizations form a coalition. For-
mally, a coalition C is a subset of the set of all organizations, C ⊆
O. We also consider a specific coalition consisting of all organiza-
tions, which we call a grand coalition and denote as Cg (formally,
Cg = O, but in some contexts we use the notation Cg to emphasize
that we are referring to the set of the organizations that cooperate).
A coalition must agree on the schedule of the jobs of its partici-

pants. A schedule σ =
⋃

(u)∈C

⋃

i{(J
(u)
i , s

(u)
i ,M(J

(u)
i ))} is a set

of triples; a triple (J
(u)
i , s

(u)
i ,M(J

(u)
i )) denotes a job J

(u)
i started

at time moment s
(u)
i ≥ r

(u)
i on machine M(J

(u)
i ). Additionally,

a machine executes at most one job at any time moment and each

jobs is scheduled exactly once. We often identify a job J
(u)
i with a

pair (s
(u)
i , p

(u)
i ); and a schedule with

⋃

(u)

⋃

i{(s
(u)
i , p

(u)
i ))} (we

do so for a more compact presentation of our results). The coalition
uses all the machines of its participants and schedules consecutive
tasks on available machines. We consider only greedy schedules:
at any time moment if there is a free machine and a non-empty
set of ready, but not scheduled jobs, some job must be assigned to
the free machine. Since we do not know neither the characteristics
of the future workload nor the duration of the started but not yet
completed jobs, any non-greedy policy would be suboptimal. Also,
such greedy policies are used in real-world schedulers [19].

Let J denote the set of all possible sets of the jobs. An on-

line scheduling algorithm (in short a scheduling algorithm) A :
J×T→ O is an online algorithm that continuously builds a sched-
ule: for a given time moment t ∈ T such that there is a free ma-
chine in t and a set of jobs released before t but not yet scheduled:
J ∈ J, A(J , t) returns the organization the task of which should
be started. The set of all possible schedules produced by such al-
gorithms is the set of feasible schedules and it is denoted by Γ. We
recall that in each feasible schedule the tasks of a single organiza-
tion are started in a FIFO order.

Objectives. We consider a utility function ψ : Γ×O × T→ R

that for a given schedule σ ∈ Γ, an organization O(u), and a time
moment t gives the value corresponding to the O(u) organization’s
satisfaction from a schedule σ until t. The examples of such utility
functions that are common in scheduling theory are: flow time,
resource utilization, turnaround, etc. Our scheduling algorithms
will only use the notions of the utilities and do not require any
external payments.

Since a schedule σ is fully determined by a scheduling algo-
rithm A and a coalition C, we often identify ψ(A, C, O(u), t) with

appropriate ψ(σ,O(u), t). Also, we use a shorter notation ψ(u)(C)

instead of ψ(A, C, O(u), t) whenever the A and t are known from
the context. We define the characteristic function v : Γ × T → R

describing the total utility of the organizations from a schedule:
v(A, C, t) =

∑

O(u)∈C ψ(A, C, O
(u), t). As above, we can use an

equivalent formulation: v(σ, t) =
∑

O(u)∈C ψ(σ,O
(u), t), also us-

ing a shorter notations v(C) whenever it is possible. Note that the

utilities of the organizations ψ(u)(C) constitute a division of the
value of the coalition v(C).

3. FAIR SCHEDULING BASED ON THE

SHAPLEY VALUE
In this section our goal is to find a scheduling algorithm A that

at each time t ensures a fair distribution of the coalition value v(C)
between the organizations. We will denote this desired fair divi-
sion of the value v as φ(1)(v), φ(2)(v), . . . , φ(k)(v) meaning that

φ(u)(v) denotes the ideally fair revenue (utility) obtained by orga-

nizationO(u). The goal of the algorithm is to produce a schedule in
which the actual utilities ψ(1)(C), ψ(2)(C), . . . ψ(k)(C) are close to

the desired fair division φ(1)(v(C), φ(2)(v(C), . . . , φ(k)(v(C) (we
formalize this in Definitions 3.1 and 3.2).

We would like the values φ(u)(v) to satisfy the following fairness
properties (proposed by Shapley [35]):

1) efficiency: the total value v(C) is distributed:

∑

O(u)∈C

φ(u)(v(C)) = v(C).

2) symmetry: organizationsO(u) andO(u′) having indistinguish-
able contributions obtain the same profits:

(

∀
C′⊂C:O(u),O(u′) /∈C′ v(C

′ ∪ {O(u)}) = v(C′ ∪ {O(u′)})
)

⇒
(

φ(u)(v(C)) = φ(u′)(v(C))
)

.

3) additivity: for any two characteristic functions v and w and a
function (v+w): ∀C′⊆C (v+w)(C′) = v(C′)+w(C′) we have that

∀C′⊆C ∀u: φ(u)((v+w)(C)) = φ(u)(v(C)) + φ(u)(w(C)).
Consider any two independent schedules σ1 and σ2 that together
form a schedule σ3 = σ1 ∪ σ2 (σ1 and σ2 are independent iff
removing any subset of the jobs from σ1 does not influence the
completion time of any job in σ2 and vice versa). The profit of an
organization that participates only in one schedule (say σ1) must
be the same in case of σ1 and σ3 (intuitively: the jobs that do not
influence the current schedule, also do not influence the current
profits). The profit of every organization that participates in both
schedules should in σ3 be the sum of the profits in σ1 and σ2.
Intuitively: if the schedules are independent then the profits are
independent too.

4) dummy: an organization that does not increase the value of any
coalition C′ ⊂ C gets nothing:

(

∀C′⊂C : v(C′ ∪ {O(u)}) = v(C′)
)

⇒ φ(u)(v(C)) = 0.

Since the four properties are actually the axioms of the Shap-
ley value [35], they fully determine the single mapping between
the coalition values and the profits of organizations (known as the
Shapley value). In game theory the Shapley value is considered
the classic mechanism ensuring the fair division of the revenue of
the coalition. The Shapley value can be computed by the following



formula [35]:

φ(u)(v(C)) =

∑

C′⊆C\{O(u)}

‖C′‖!(‖C‖ − ‖C′‖ − 1)!

‖C‖!
(v(C′ ∪ {O(u)})− v(C′)) (1)

Algorithm 1: Fair algorithm for arbitrary utility function ψ.

Notation:
jobs[C][O(u)] — list of waiting jobs of organization O(u).

φφφ[C][O(u)] — the contribution of O(u) in C, φ(u)(C).

ψψψ[C][O(u)] — utility of O(u) from being in C, ψ(C, O(u)).
v[C] — value of a coalition C.
σσσ[C] — schedule for a coalition C.
FreeMachine (σ, t) — returns true if and only if there is a
free machine in σ in time t.

1

2 ReleaseJob(O(u), J):

3 for C : O(u) ∈ C do

4 jobs[C][O(u)].push(J)
5

6 Distance(C, O(u), t):
7 old← σ[C];

8 new ← σ[C] ∪ {(jobs[C][O(u)].first, t)};

9 ∆ψ ← ψ(new,O(u), t)− ψ(old,O(u), t);

10 return

∣

∣

∣
φ[C][O(u)] + ∆ψ

‖C‖
− ψ[C][O(u)]−∆ψ

∣

∣

∣

11 +
∑

O(u′)

∣

∣

∣
φ[C][O(u′)] + ∆ψ

‖C‖
− ψ[C][O(u′)]

∣

∣

∣
;

12

13 SelectAndSchedule(C, t):

14 u← argminO(u)(Distance(C, O(u), t)) ;
15 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

16 ψ[C][O(u)]← ψ(σ[C], O(u), t);
17

18 UpdateVals(C, t):

19 foreach O(u) ∈ C do

20 ψ[C][O(u)]← ψ(σ[C],O(u), t);

21 φ[C][O(u)]← 0;

22 v[C]←
∑

O(u) ψ(σ[C], O
(u), t);

23 foreach Csub: Csub ⊆ C do

24 foreach O(u) ∈ Csub do

25 φ[C][O(u)]← φ[C][O(u)]+

26 (v[Csub]− v[Csub \ {O
(u)}])

27 · (‖Csub‖−1)!(‖C‖−‖Csub‖)!
‖C‖!

;

28

29 FairAlgorithm(C):
30 foreach time moment t do

31 foreach job J
(u)
i : r

(u)
i = t do

32 ReleaseJob(O
(u)
i , J

(u)
i );

33 for s← 1 to ‖C‖ do
34 foreach C′ ⊂ C, such that ‖C′‖ = s do
35 UpdateVals(C′, t);

36 while FreeMachine(σ[C′], t) do
37 SelectAndSchedule(C′, t);

38 v[C]←
∑

O(u) ψ(σ[C],O
(u), t);

Let LC denote all orderings of the organizations from the coali-
tion C. Each ordering ≺C can be associated with a permutation of
the set C, thus ‖LC‖ = ‖C‖!. For the ordering ≺C∈ LC we define

≺C (O(i)) = {O(j) ∈ C : O(j) ≺C O(i)} as the set of all orga-

nizations from C that precede O(i) in the order ≺C. The Shapley

value can be alternatively expressed [30] in the following form:

φ(u)(v(C)) =

1

‖C‖!

∑

≺C∈LC

(

v(≺C (O(u)) ∪ {O(u)}) − v(≺C (O(u))
)

.
(2)

This formulation has an interesting interpretation. Consider the
organizations joining the coalition C in the order ≺C . Each or-
ganization O(u), when joining, contributes to the current coalition

the value equal to
(

v(≺C (O(u)) ∪ {O(u)}) − v(≺C (O(u))
)

. In-

tuitively, this value measures how the joining organization influ-
ences (decreases or increases) the total completion time of the jobs;
φ(u)(v(C)) is the expected contribution to the coalition C, when
the expectation is taken over the order in which the organizations
join C. Thus, we can identify the ideally fair utilities with the con-
tributions of the organizations. Hereinafter we will call the value
φ(u)(v(C) (or using a shorter notation φ(u)) as the contribution of

the organization O(u).
Informally speaking, we would like the utility of each organiza-

tion ψ to be as close to its contribution φ as possible. Ideally, the
utilities of the organizations should be equal to the reference fair
values, ∀u ψ

(u)(C) = φ(u)(v(C)), but our scheduling problem is
discrete so an algorithm guaranteeing this property may not exist.
Thus, we will call as fair an algorithm that results in utilities close
to contributions. We recall that the contribution is defined without
a notion of money – the contribution of the organization measures
how the presence of this organization affects the completion time
of the jobs.

The following definition of a fair algorithm is in two ways recur-
sive. First, we require an algorithm to be fair in all time moments t.
Formally, a fair algorithm in time t must also be fair in all previous
time moments t′ < t (point 1.) 1. Second, to assess the contribution
of the organization to the coalition C (its Shapley value) we need to
know how this organization, when joining, changes the schedule of
each subcoalition C′ ⊂ C. However, to determine the schedule for
a subcoalition C′ we need to know how a fair scheduling algorithm
works for C′. In other words, to define what is a fair algorithm
for a coalition C we need to know what is a fair algorithm for all
subcoalitions C′ ⊂ C (point 4.). Finally, assuming we know the
fair algorithms for all subcoalitions and we have the contributions
of the organizations calculated (point 3.), we look for an algorithm
that minimizes the distance between the utilities and the contribu-
tions of the organizations (the argmin expression).

Definition 3.1 Set an arbitrary metric ‖ · ‖d : 2k × 2k → R≥0;

and set an arbitrary time moment t ∈ T. A is a fair algorithm in t
for coalition C in metric ‖ · ‖d if and only if:

A ∈ argminA′∈F(<t)‖~φ(A
′, C, t)− ~ψ(v(A′, C, t)‖d , where:

1. F(< t) is a set of algorithms fair in each point t′ < t;
F(< 0) is a set of all greedy algorithms,

2. ~ψ(v(A′, C) is a vector of utilities 〈ψ(u)(v(A′, C))〉,

3. ~φ(A′, C) is a vector of contributions 〈φ(u)(v(A′, C))〉, where

φ(u)(v(A′, C)) is given by Equation 1,

4. In Equation 1, for any C′ ⊂ C, v(C′) denotes v(Af , C
′),

where Af is any fair algorithm for C′.

1An alternative to being fair for all t′ < t would be to ensure
asymptotic fairness; however, our formulation is more responsive
and relevant for the online case. We want to avoid the case in which
an organization is disfavored in one, possibly long, time period and
favored in the next one.



Definition 3.2 A is a fair algorithm for coalition C if and only if it

is fair in each time t ∈ T.

Further on, we consider algorithms fair in the Manhattan met-
ric (our analysis can be generalized to other distance functions):
‖~v1, ~v2‖M =

∑k
i=1 |v1[i]− v2[i]|.

Based on Definition 3.2 we construct a fair algorithm for an ar-
bitrary utility function ψ (Algorithm 1). The algorithm keeps a
schedule for every subcoalition C′ ⊂ C. For each time moment
the algorithm complements the schedule starting from the subcoali-
tions of the smallest size. The values of all smaller coalitions v[Cs]
are used to update the contributions of the organizations (lines 23-
27) in the procedure UpdateVals). Before scheduling any job
of the coalition C′ the contribution and the utility of each organi-
zation in C′ is updated (procedure UpdateVals). If there is a
free machine and a set of jobs waiting for execution, the algorithm
selects the job according to Definition 3.1, thus it selects the orga-

nization that minimizes the distance of the utilities ~ψ to their ideal

values ~φ (procedure SelectAndSchedule). Assuming the first
job of the organization O(u) is tentatively scheduled, the proce-
dure Distance computes a distance between the new values of
~ψ and ~φ. The procedure Distance works as follows. Assum-
ing O(u) is selected the value ∆ψ denotes the increase of the util-
ity of O(u) thanks to scheduling its first waiting job. This is also
the increase of the value of the whole coalition. When procedure
Distance(C,O(u), t) is executed, the schedules (and thus, the
values) in time t for all subcoalitions C′ ⊂ C are known. The sched-
ule, for coalition C is known only in time (t − 1), as we have not
yet decided which job should be scheduled in t. Thus, scheduling
the job will change the schedule (and the value) only for a coali-
tion C. From Equation 1 it follows that if the value v(C) of the
coalition C increases by ∆ψ and the value of all subcoalitions re-

mains the same, then the contribution φ(u′) of each organization

O(u′) ∈ C to C will increase by the same value equal to ∆ψ/‖C‖.

Thus, for each organization O(u′) ∈ C the new contribution of

O(u′) is (φ[C][O(u′)]+ ∆ψ
‖C‖

). The new utility for each organization

O(u′) ∈ C, such that O(u′) 6= O(u) is equal to ψ[C][O(u′)]. The

new utility of the organizationO(u) is equal to (ψ[C][O(u)]|+∆ψ).

Theorem 3.3 Algorithm 1 is a fair algorithm.

PROOF. Algorithm 1 is a straightforward implementation of Def-
inition 3.2.

Proposition 3.4 In each time moment t the time complexity of Al-

gorithm 1 is O(‖O‖(2‖O‖
∑

m(u) + 3‖O‖)).

PROOF. Once the contribution is calculated, each coalition in t
may schedule at most

∑

m(u) jobs. The time needed for selecting
each such a job is proportional to the number of the organizations.
Thus, we get the ‖O‖2‖O‖

∑

m(u) part of the complexity. For

calculating the contribution of the organization O(u) to the coali-
tion C the algorithm considers all subsets of C – there are 2‖C‖ such
subsets. Since there are

(

‖O‖
k

)

coalitions of size k, the number of
the operations required for calculating the contributions of all orga-
nizations is proportional to:

∑

(u)

‖O‖
∑

k=0

(

‖O‖

k

)

2k = ‖O‖

‖O‖
∑

k=0

(

‖O‖

k

)

1‖O‖−k2k =

‖O‖(1 + 2)‖O‖ = ‖O‖3‖O‖
.

This gives the ‖O‖3‖O‖ part of the complexity and completes the
proof.

Corollary 3.5 The problem of finding fair schedule parametrized

with the number of organizations is FPT.

4. STRATEGY-PROOF UTILITY

FUNCTIONS
There are many utility functions considered in scheduling, e.g.

flow time, turnaround time, resource utilization, makespan, tardi-
ness. However, it is not sufficient to design a fair algorithm for an
arbitrary utility function ψ. Some functions may create incentive
for organizations to manipulate their workload: to divide the tasks
into smaller pieces, to merge or to delay them. This is undesired as
an organization should not profit nor suffer from the way it presents
its workload. An organization should present their jobs in the most
convenient way; and should not play against other organizations.
We show that in multi-organizational systems, as we have to take
into account such manipulations, the choice of the utility functions
is restricted.

For the sake of this section we introduce additional notation: let
us fix an organzation O(u) and let σt denote a schedule of the jobs
of O(u) in time t. The jobs Ji(si, pi) of O(u) are characterized
by their start times si and processing times pi. We are consider-
ing envy-free utility functions that for a given organization O(u)

depend only on the schedule of the jobs of O(u). This means that
there is no external economical relation between the organization
(the organization Ou cares about Ov only if the jobs of Ov influ-
ence the jobs of Ou – in contrast to looking directly at the utility
of Ov). We also assume the non-clairvoyant model – the utility in
time t depends only on the jobs or the parts of the jobs completed
before or at t. Let us assume that our goal is to maximize the util-
ity function2. We start from presenting the desired properties of
the utility function ψ (when presenting the properties we use the
shorter notation ψ(σt) for ψ(σt, t)):

1) Tasks anonymity (starting times) — improving the completion
time of a single task with a certain processing time p by one unit
of time is for each task equally profitable – for s, s′ ≤ t− 1, we
require:

ψ(σt ∪ {(s, p)})− ψ(σt ∪ {(s+ 1, p)}) =

ψ(σ′
t ∪ {(s

′, p)})− ψ(σ′
t ∪ {(s

′ + 1, p)}) > 0.

2) Tasks anonymity (number of tasks) — in each schedule in-
creasing the number of completed tasks is equally profitable –
for s ≤ t− 1, we require:

ψ(σt ∪ {(s, p)})− ψ(σt) = ψ(σ′
t ∪ {(s, p)})− ψ(σ

′
t) > 0.

3) Strategy-resistance — the organization cannot profit from merg-
ing multiple smaller jobs into one larger job or from dividing a
larger job into smaller pieces:

ψ(σt ∪ {(s, p1)}) + ψ(σt ∪ {(s+ p1, p2)}) =

ψ(σt ∪ {(s, p1 + p2)}).

In spite of dividing and merging the jobs, each organization can
delay the release time of their jobs and artificially increase the
size of the jobs. Delaying the jobs is however never profitable
for the organization (by property 1). Also, the strategy-resistance
property discourages the organizations to increase the sizes of
their jobs (the utility coming from processing a larger job is al-
ways greater).

2We can transform the problem to the minimization form by taking
the inverse of the standard maximization utility function



Algorithm 2: Function SelectAndSchedule for utility
function ψsp.

1 SelectAndSchedule(C, t):

2 u← argminO(u)(ψ[C][O(u)]− φ[C][O(u)]) ;
3 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

4 ψ[C][O(u)]← ψ(σ[C], O(u), t);

To within a multiplicative and additive constants, there is only
one utility function satisfying the aforementioned properties.

Theorem 4.1 Let ψ be a utility function that satisfies the 3 prop-

erties: task anonymity (starting times); task anonymity (number of

tasks); strategy-resistance. ψ is of the following form:

ψ(σ, t)=
∑

(s,p)∈σt

min(p, t−s)(K1−K2
s+min(s+p−1, t−1)

2
)+K3

where

1. K1 = ψ(σ ∪ {(0, 1)}, t)− ψ(σ) > 0,

2. K2 = ψ(σ ∪ {(s, p)}, t)− ψ(σ ∪ {(s+ 1, p)}, t) > 0,

3. K3 = ψ(∅).

PROOF. Proof is in the full version of this paper [37].

We set the constants K1,K2,K3 so that to simplify the form
of the utility function and ensure that the utility is always positive.
With K1 = 1, K2 = t and K3 = 0, we get the following strategy-
proof utility function:

ψsp(σ, t) =
∑

(s,p)∈σ:s≤t

min(p, t− s)

(

t−
s+min(s+ p− 1, t− 1)

2

)

(3)

ψsp can be interpreted as the task throughput. A task with pro-
cessing time pi can be identified with pi unit-sized tasks starting
in consecutive time moments. Intuitively, the function ψsp assigns
to each such unit-sized task starting at time ts a utility value equal
to (t − ts); the higher the utility value, the earlier this unit-sized
task completes. A utility of the schedule is the sum of the utilities
over all such unit-sized tasks. ψsp is similar to the flow time ex-
cept for two differences: (i) Flow time is a minimization objective,
but increasing the number of completed jobs increases its value.
E.g., scheduling no jobs results in zero (optimal) flow time, but of
course an empty schedule cannot be considered optimal (breaking
the second axiom); (ii) Flow time favors short tasks, which is an in-
centive for dividing tasks into smaller pieces (this breaks strategy-
resistance axiom). The differences between the flow time and ψsp
is also presented on example in Figure 1. The similarity of ψsp to
the flow time is quantified by Proposition 4.2 below.

Proposition 4.2 Let J be a fixed set of jobs, each having the same

processing time p and each completed before t. Then, maximization

of the ψsp utility is equivalent to minimization the flow time of the

jobs.

PROOF. Proof is in the full version of this paper [37].

5. FAIR SCHEDULING WITH STRATEGY-

PROOF UTILITY
For the concrete utility ψsp we can simplify the SelectAnd-

Schedule function in Algorithm 1. The simplified version is pre-
sented in Algorithm 2.

J7, p7 = 3

J1p1 = 3

J2, p2 = 4

J3, p3 = 3

J4, p4 = 6

J6, p6 = 6

J5, p5 = 3

J8, p8 = 3

J9, p9 = 4

M1

M2

M3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J
(2)
1 , p

(2)
1 = 5

Figure 1: Consider 9 jobs owned byO(1) and a single job owned

byO(2), all scheduled on 3 processors. We assume all jobs were

released in time 0. In this example all jobs finish before or at

time t = 14. The utility ψsp of the organization O(1) in time

13 does not take into account the last uncompleted unit of the

job J9, thus it is equal to: 3 · (13 − 0+2
2

) + 4 · (13 − 0+3
2

) +

· · · + 3 · (13 − 9+11
2

) + 3 · (13 − 10+12
2

) = 262. The utility

in time 14 takes into account all the parts of the jobs, thus it

is equal to 3 · (14 − 0+2
2

) + 4 · (14 − 0+3
2

) + · · · + 3 · (14 −
9+11

2
) + 4 · (14 − 10+13

2
) = 297. The flow time in time 14

is equal to 3 + 4 + · · · + 14 = 70. If there was no job J
(2)
1 ,

then J9 would be started in time 9 instead of 10 and the utility

ψsp in time 14 would increase by 4 · ( 10+13
2
− 9+12

2
) = 4 (the

flow time would decrease by 1). If, for instance, J6 was started

one time unit later, then the utility of the schedule would de-

crease by 6 (the flow time would decrease by 1), which shows

that the utility takes into account the sizes of the jobs (in con-

trast to the flow time). If the job J9 was not scheduled at all, the

utilityψsp would decrease by 10, which shows that the schedule

with more tasks has higher (more optimal) utility (the flow time

would decrease by 14; since flow time is a minimization metric,

this breaks the second axiom regarding the tasks anonymity).

The algorithm selects the organization O(u) that has the largest
difference (φ(u)−ψ(u)) that is the organization that has the largest
contribution in comparison to the obtained utility. One can wonder
whether we can select the organization in polynomial time – with-
out keeping the 2‖C‖ schedules for all subcoalitions. Unfortunately,
the problem of calculating the credits for a given organization is
NP-hard.

Theorem 5.1 The problem of computing the contribution φ(u)(C, t)

for a given organization O(u) in coalition C in time t is NP-hard.

PROOF. We present the reduction of the SUBSETSUM problem
(which is NP-hard) to the problem of calculating the contribution
for an organization. Let I be an instance of the SUBSETSUM prob-
lem. In I we are given a set of k integers S = {x1, x2, . . . , xk}
and a value x. We ask whether there exists a subset of S with the
sum of elements equal to x. From I we construct an instance Icon
of the problem of calculating the contribution for a given organiza-
tion. Intuitively, we construct the set of (‖S‖ + 2) organizations:
‖S‖ of them will correspond to the appropriate elements from S.
The two dummy organizations a and b are used for our reduction.
One dummy organization a has no jobs. The second dummy or-
ganization b has a large job that dominates the value of the whole
schedule. The instance Icon is constructed in such a way that for
each coalition C such that b ∈ C and such that the elements of
S corresponding to the organizations from C sum up to the value
lower than x, the marginal contribution of a to C is L + O(L),
where O(L) is small in comparison with L. The marginal con-
tribution of a to other coalitions is small (O(L)). Thus, from the
contribution of a, we can count the subsets of S with the sum of
the elements lower than x. By repeating this procedure for (x+1)
we can count the subsets of S with the sum of the elements lower
than (x + 1). By comparing the two values, we can find whether



there exists the subset of S with the sum of the elements equal to
x. The precise construction is described below.

Let S<x = {S′ ⊂ S :
∑

xi∈S
′ si < x} be the set of the sub-

sets of S, each having the sum of the elements lower than x. Let
n<x(S) =

∑

S′∈S<x
(‖S′‖+ 1)!(‖S‖ − ‖S′‖)! be the number of

the orderings (permutations) of the set S ∪ {a, b} that starts with
some permutation of the sum of exactly one element of S<x (which
is some subset of S such that the sum of the elements of this subset
is lower than x) and {b} followed by the element a. In other words,
if we associate the elements from S∪{a, b} with the organizations
and each ordering of the elements of S∪{a, b}with the order of the
organizations joining the grand coalition, then n<x(S) is the num-
ber of the orderings corresponding to the cases when organization a
joins grand coalition just after all the organizations from S′ ∪ {b},
where S′ is some element of S<x. Of course S<x ⊆ S<(x+1).
Note that there exists S′ ⊂ S, such that

∑

xi∈S
′ xi = x if and only

if the set S<x is a proper subset of S<(x+1) (i.e. S<x ( S<(x+1)).
Indeed, there exists S′ such that S′ /∈ S<x and S′ ∈ S<(x+1) if
and only if

∑

xi∈S
′ xi < x+1 and

∑

xi∈S
′ xi ≥ x from which it

follows that
∑

xi∈S
′ xi = x. Also, S<x ( S<(x+1) if and only if

n<(x+1)(S) is greater than n<(x)(S) (we are doing a summation
of the positive values over the larger set).

In Icon there is a set of (k+2) machines, each owned by a differ-
ent organization. We will denote the set of first k organizations as
OS , the (k+1)-th organization as a and the (k+2)-th organization as
b. Let xtot =

∑k
j=1 xj + 2. The i-th organization from OS has 4

jobs: J
(i)
1 , J

(i)
2 , J

(i)
3 and J

(i)
4 , with release times r

(i)
1 = r

(i)
1 = 0,

r
(i)
3 = 3 and r

(i)
4 = 4; and processing times p

(i)
1 = p

(i)
2 = 1,

p
(i)
3 = 2xtot and p

(i)
4 = 2xi. The organization a has no jobs;

the organization b has two jobs J
(b)
1 and J

(b)
2 , with release times

r
(b)
1 = 2 and r

(b)
2 = (2x+3); and processing times p

(b)
1 = (2x+2)

and p
(b)
2 = L = 4‖S‖x2

tot((k + 2)!) + 1 (intuitively L is a large
number).

Until time t = 2 only the organizations from OS have some
(unit-size) jobs to be executed. The organization b has no jobs till
time t = 2, so it will run one or two unit-size jobs of the other
organizations, contributing to all such coalitions that include b and
some other organizations from OS . This construction allows to
enforce that in the first time moment after t = 2 when there are
jobs of some of the organizations from OS and of b available for
execution, the job of b will be selected and scheduled first.

Let us consider a contribution of a to the coalition C such that
a /∈ C and b ∈ C. There are (‖C ∩ OS‖ + 2) machines in the
coalition C ∪ {a}. The schedule in C ∪ {a} after t = 2 looks
in the following way (this schedule is depicted in Figure 2). In
time t = 2 one machine (let us denote this machine as M ′) starts

the job J
(b)
1 In time t = 3 some ‖C ∩ OS‖ machines start the

third jobs (the one with size 2xtot) of the organizations from C ∩
O and one machine (denoted as M ′′) starts the fourth jobs of the
organizations from C∩OS ; the machineM ′′ completes processing
all these jobs in time 2y+4, where y =

∑

i:O(i)∈C∧O(i)∈OS
xi (of

course 2y+4 ≤ 2xtot). In time (2x+3), if y < x the machineM ′′

starts processing the large job J
(b)
2 of the organization b; otherwise

machine M ′′ in time (2x + 3) still executes some job J
(i)
4 (as the

jobs J
(i)
4 processed on M ′′ start in even time moments). In time

2x + 4, if y ≥ x, the large job J
(b)
2 is started by machine M ′

just after the job J
(b)
1 is completed, (J

(b)
1 completes in (2x + 4));

here we use the fact that after t = 2, b will be prioritized over the

organizations fromOS . To sum up: if y < x then the large job J
(b)
2

is started in time (2x+ 3), otherwise it is started in time (2x+ 4).

||
O

S
∩
C
||

m
a

ch
in

e
s

M ′

M ′

M ′′

M ′′

t
2 3 2x+ 3

· · ·

· · ·

4

J
(1)
3 (p

(1)
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J
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(2)
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J
(ℓ)
3 (p

(ℓ)
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··
·

J
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(b)
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J
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1 = 2x+ 2)

J
(1)
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(1)
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(b)
2 (Large)

J
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(ℓ)
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Figure 2: The schedules for the coalition C ∪ {a} for two cases:

a)
∑

i:O(i)∈C∧O(i)∈OS
xi ≤ x, b)

∑

i:O(i)∈C∧O(i)∈OS
xi > x.

The two cases a) and b) differ only in the schedules on machines

M ′ andM ′′. In the case a) the large job J
(b)
2 (marked as a light

gray) is started one time unit earlier than in case b).

If y < x then by considering only a decrease of the starting time
of the largest job, the contribution of a to the coalition C can be
lower bounded by c1:

c1 =L

(

t−
(2x+ 3) + (2x+ 3 + L)

2

)

−

L

(

t−
(2x+ 4) + (2x+ 4 + L))

2

)

= L,

The organization a causes also a decrease of the starting times of
the small jobs (the jobs of the organizations from OS); each job of
size smaller or equal to 2xtot. The starting time of each such small
job is decreased by at most 2xtot time units. Thus, the contribution
of a in case y < x can be upper bounded by c2:

c2 ≤ L+ 4‖S‖x2
tot.

If y ≥ x then a causes only a decrease of the starting times of
the small jobs of the organizations from OS , so the contribution of
a to C in this case can be upper bounded by c3:

c3 ≤ 4‖S‖x2
tot.

By similar reasoning we can see that the contribution of a to any
coalition C′ such that b /∈ C′ is also upper bounded by 4‖S‖x2

tot.

The contribution of organization a, φ(a), is given by Equation 1,
with u = a and C = {O(1) . . . O(k+2)}. Thus:

φ(a) =
∑

C′⊆C\{a}

‖C′‖!(k + 1− ‖C′‖)!

(k + 2)!
marg_φ(C′, a),

where marg_φ(C′, a) is the contribution of a to coalition C′. All
the coalitions C′ such that a /∈ C′, b ∈ C′ and

∑

i:O(i)∈C′∩OS
xi <

x will contribute to φ(a) the value at least equal to
n<x(S)
(k+2)!

c1 =
n<x(S)L
2(k+2)!

(as there is exactly n<x(S) orderings corresponding to

the case when a is joining such coalitions C′) and at most equal to
n<x(S)
(k+2)!

c2 ≤
n<x(S)(L+8‖S‖x2

tot
)

2(k+2)!
. The other (k+2)!−n<x(S) or-

derings will contribute to φ(a) the value at most equal to
((k+2)!−n<x(S))

(k+2)!
c3 =

((k+2)!−n<x(S))(4‖S‖x2
tot

)

(k+2)!
. Also:

((k + 2)!− n<x(S))(4‖S‖x
2
tot)

(k + 2)!
+
n<x(S)(4‖S‖x

2
tot)

(k + 2)!
=



4‖S‖x2
tot <

L

(k + 2)!
,

which means that φ(a) can be stated as φ(a) = n<x(S)L
(k+2)!

+R, where

0 ≤ R ≤ L
(k+2)!

. We conclude that ⌊ (k+2)!φ(a)

L
⌋ = n<x(S). We

have shown that calculating the value of φ(a) allows us to find the
value n<x(S). Analogously, we can find n<(x+1)(S). By com-
paring n<x(S) with n<(x+1)(S) we find the answer to the initial
SUBSETSUM problem, which completes the proof.

We propose the following definition of the approximation of the
fair schedule (similar definitions of the approximation ratio are
used for multi-criteria optimization problems [7]):

Definition 5.2 Let σ be a schedule and let ~ψ be a vector of the util-

ities of the organizations in σ. We say that σ is an α-approximation

fair schedule in time t if and only if there exists a truly fair schedule

σ∗, with the vector ~ψ∗ = 〈ψ(u),∗〉 of the utilities of the organiza-

tions, such that:

‖~ψ − ~ψ∗‖M ≤ α‖~ψ
∗‖M = α

∑

u

ψ(u),∗ = α · v(σ∗, C).

Unfortunately, the problem of finding the fair schedule is dif-
ficult to approximate. There is no algorithm better than 1/2 (the
proof below). This means that the problem is practically inapprox-
imable. Consider two schedules of jobs of m organizations on a
single machine. Each organization has one job; all the jobs are
identical. In the first schedule σord the jobs are scheduled in order:

J
(1)
1 , J

(2)
1 , . . . J

(m)
1 and in the second schedule σrev the jobs are

scheduled in exactly reverse order: J
(m)
1 , J

(m−1)
1 , . . . J

(1)
1 . The

relative distance between σord and σrev tends to 1 (with increas-
ing m), so ( 1

2
)-approximation algorithm does not allow to decide

whether σord is truly better than σrev. In other words, ( 1
2
)-appro-

ximation algorithm cannot distinguish whether a given order of the
priorities of the organizations is more fair then the reverse order.

Theorem 5.3 For every ǫ > 0, there is no polynomial algorithm

for finding the ( 1
2
− ǫ)-approximation fair schedule, unless P =

NP.

PROOF SKETCH. Intuitively, we divide time in a number of inde-
pendent batches. The jobs in the last batch are significantly larger
than all the previous ones. We construct the jobs in all first batches
so that the order of execution of the jobs in the last batch depends
on whether there exists a subset S′ ⊂ S such that

∑

xi∈S
′ xi = x.

If the subset does not exist the organizations are prioritized in some
predefined order σord; otherwise, the order is reversed σrev . The
sizes of the jobs in the last batch are so large that they dominate
the values of the utilities of the organizations. The relative dis-
tance between the utilities in σord and in σrev is (1 − ǫ) so any
( 1
2
− ǫ)-approximation algorithm A would allow to infer the true

fair schedule for such constructed instance, and so the answer to the
initial SUBSETSUM problem. The precise construction is described
the full version of this paper [37]. ✷

5.1 Special case: unit-size jobs
In case when the jobs are unit-size the problem has additional

properties that allow us to construct an efficient approximation (how-
ever, the complexity of this special case is open). However, the
results in this section do not generalize to related or unrelated pro-
cessors. For unit-size jobs, the value of each coalition v(C) does
not depend on the schedule:

Proposition 5.4 For any two greedy algorithms A1 and A2, for

each coalition C and each time moment t, the values of the coali-

tions v(A1, C, t) and v(A2, C, t) are equal, provided all jobs are

unit-size.

PROOF. We prove the following stronger thesis: for every time
moment t any two greedy algorithmsA1 andA2 schedule the same
number of the jobs till t. We prove this thesis by induction. The
base step for t = 0 is trivial. Having the thesis proven for (t − 1)
and, thus knowing that in t in both schedules there is the same
number of the jobs waiting for execution (here we use the fact that
the jobs are unit-size), we infer that in t the two algorithms schedule
the same number of the jobs. Since the value of the coalition does
not take into account the owner of the job, we get the thesis for t.
This completes the proof.

As the result, we can use the randomized approximation algo-
rithm for the scheduling problem restricted to unit-size jobs (Al-
gorithm 3). The algorithm is inspired by the randomized approx-
imation algorithm for computing the Shapley value presented by
Liben-Nowell et al [25]. However, in our case, the game is not su-
permodular (which is shown in Proposition 5.5 below), and so we
have to adapt the algorithm and thus obtain different approximation
bounds.

Proposition 5.5 In case of unit-size jobs the cooperation game in

which the value of the coalition C is v(C) =
∑

O(u)∈C ψ(O
(u)) is

not supermodular.

PROOF. Proof is in the full version of this paper [37].

In this algorithm we keep simplified schedules for a random
subset of all possible coalitions. For each organization O(u) the

set Subs[O(u)] keeps N = ‖C‖2

ǫ2
ln
(

‖C‖
1−λ

)

random coalitions not

containingO(u); for each such random coalition C′ which is kept in
Subs[O(u)], Subs′[O(u)] contains the coalition C′ ∪ {O(u)}. For

the coalitions kept in Subs[O(u)] we store a simplified schedule
(the schedule that is determined by an arbitrary greedy algorithm).
The simplified schedule allows us to find the value v(C′) of the
coalition C′. Maintaining the whole schedule would require the
recursive information about the schedules in the subcoalitions of
C′. However, as the consequence of Proposition 5.4 we know that
the value of the coalition v(C′) can be determined by an arbitrary
greedy algorithm3.

The third foreach loop in procedure FairAlgorithm (line 26
in Algorithm 3) updates the values of all coalitions kept in Subs
and Subs’. From Equation 3 it follows that after one time unit if
no additional job is scheduled, the value of the coalition increases
by the number of completed unit-size parts of the jobs (here, as the
jobs are unit size, finPerCoal[C′] is the number of the completed
jobs). In time moment t, all waiting jobs (the number of such jobs
is ‖jobs[C][O(u)]‖) are scheduled provided there are enough pro-

cessors (the number of the processors is
∑

O(u)∈C′ m
(u)). If n ad-

ditional jobs are scheduled in time t then the value of the coalition
in time t increases by n.

In the fourth foreach loop (line 32 in Algorithm 3), once again
we use the fact that the utility of the organization after one time unit
increases by the number of finished jobs (finPerOrg[O(u)]). In the
last foreach loop (line 35) the contribution of the organization

3In this point we use the assumption about the unit size of the jobs.
The algorithm cannot be extended to the general case. In a general
case, for calculating the value for each subcoalition we would re-
quire the exact schedule which cannot be determined polynomially
(Theorem 5.1).



Algorithm 3: Fair algorithm for arbitrary utility function for
utility function ψsp and for unit-size jobs.

Notation:
ǫ, λ — as in Theorem 5.6

1

2 Prepare(C):

3 N ← ⌈ ‖C‖
2

ǫ2
ln
(

‖C‖
1−λ

)

⌉;

4 Γ← generate N random orderings (permutations) of the
set of all organizations (with replacement);

5 Subs← Subs′ ← ∅ ;
6 foreach ≺∈ Γ do
7 for u← 1 to ‖C‖ do

8 C′ ← {O(i) : O(i) ≺ O(u)} ;

9 Subs← Subs ∪ {C′};

Subs′ ← Subs′ ∪ {C′ ∪ {O(u)}} ;
10

11 ReleaseJob(O(u), J):

12 for C′ ∈ Subs ∪ Subs′ : O(u) ∈ C′ do

13 jobs[C′][O(u)].push(J)
14

15 SelectAndSchedule(C, t):

16 u← argminO(u)(ψ[C][O(u)]− φ[C][O(u)]) ;
17 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

18 finPerOrg[O(u)]← finPerOrg[O(u)] + 1;

19 φ[O(u)]← φ[O(u)] + 1;
20

21 FairAlgorithm(C):
22 Prepare(C) ;
23 foreach time moment t do

24 foreach job J
(u)
i : r

(u)
i = t do

25 ReleaseJob(O
(u)
i , J

(u)
i );

26 foreach C′ ⊂ Subs ∪ Subs′ do
27 v[C′]← v[C′] + finPerCoal[C′] ;

28 n← min(
∑

O(u)∈C′ m
(u), ‖jobs[C][O(u)]‖) ;

29 remove first n jobs from jobs[C][O(u)] ;

30 finPerCoal[C′]← finPerCoal[C′] + n ;

31 v[C′]← v[C′] + n ;

32 foreach O(u) ∈ C do

33 ψ[O(u)]← ψ[O(u)] + finPerOrg[O(u)];

34 φ[O(u)]← 0;

35 foreach C′ ∈ Subs : O(u) /∈ C′ do

36 marg_φ← v[C′ ∪ {O(u)}]− v[C′] ;

37 φ[O(u)]← φ[O(u)] + marg_φ · 1
N

;

38 while FreeMachine(σ[C], t) do
39 SelectAndSchedule(C, t);

is approximated by summing the marginal contributions marg_φ
only for the kept coalitions. Theorem 5.6 below gives the bounds
for the quality of approximation.

Theorem 5.6 Let ~ψ denote the vector of utilities in the schedule

determined by Algorithm 3. If the jobs are unit-size, thenAwith the

probability λ determines the ǫ-approximation schedule, i.e. gives

guarantees for the bound on the distance to the truly fair solution:

‖~ψ − ~ψ∗‖M ≤ ǫ|~ψ
∗|.

PROOF. Proof is in the full version of this paper [37].

The complexity of Algorithm 3 is ‖O‖·N = ‖O‖ ‖C‖
2

ǫ2
ln
(

‖C‖
1−λ

)

times the complexity of the single-organization scheduling algo-
rithm. As a consequence, we get the following result:

Corollary 5.7 There exists an FPRAS for the problem of finding

the fair schedule for the case when the jobs are unit size.

In the full version of this paper [37] we show that Algorithm 3
can be used as a heuristic for the general case and that it produces
more fair schedules than the round robin algorithm.

6. CONCLUSIONS
In this paper we define the fairness of the scheduling algorithm in

terms of cooperative game theory which allows to quantify the im-
pact of an organization on the system. We present a non-monetary
model in which it is not required that each organization has accurate
valuations of its jobs and resources. We show that classic utility
functions may create incentives for workload manipulations. We
thus propose a strategy resilient utility function that can be thought
of as per-organization throughput.

We analyze the complexity of the fair scheduling problem. The
general problem is NP-hard and difficult to approximate. Neverthe-
less, the problem parametrized with the number of organizations is
FPT. Also, the FPT algorithm can be used as a reference for com-
paring the fairness of different algorithms on small instances. For
a special case with unit-size jobs, we propose a FPRAS. In the full
version of this paper [37] we show that the FPRAS can used as a
heuristic algorithm; we also show another efficient heuristic. Our
experimental evaluation indicates that the two algorithms produce
reasonably fair schedules.

Since we do not require the valuation of the jobs, and we con-
sider an on-line, non-clairvoyant scheduling, we believe the pre-
sented results have practical consequences for real-life job sched-
ulers. In our future work we plan to use our fairness metric to ex-
perimentally assess standard scheduling algorithms, such as FCFS
or fair-share. Also, we want to extend our model to parallel jobs.
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