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ABSTRACT

To successfully complete a complex project, be it a construction of

an airport or of a backbone IT system or crowd-sourced projects,

agents (companies or individuals) must form a team (a coalition)

having required competences and resources. A team can be formed

either by the project issuer based on individual agents’ offers (cen-

tralized formation); or by the agents themselves (decentralized for-

mation) bidding for a project as a consortium—in that case many

feasible teams compete for the employment contract. In these mod-

els, we investigate rational strategies of the agents (what salary

should they ask? with whom should they team up?) under different

organizations of the market. We propose various concepts allowing

to characterize the stability of the winning teams. We show that

there may be no (rigorously) strongly winning coalition, but the

weakly winning and the auction-winning coalitions are guaranteed

to exist. In a general setting, with an oracle that decides whether a

coalition is feasible, we show how to find winning coalitions with

a polynomial number of calls to the oracle. We also determine the

complexity of the problem in a special case in which a project is a

set of independent tasks. Each task must be processed by a single

agent, but processing speeds differ between agents and tasks.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—

Multiagent systems

Keywords

game theory, co-opetition, cooperative game theory, coalition for-

mation, equilibria, skill games, scheduling

1. INTRODUCTION
Crowd-sourcing and open collaboration systems have become

popular over the last decade [1], and frequently provide cost-effe-

ctive on-demand human resources to carry out a range of tasks,

from simple ones like annotating and disambiguating snippets of

text, to creation of complex software and knowledge repositories.

Oftentimes, isolated simple micro-tasks are outsourced to indi-

viduals, and there is no explicit notion of team-work among them.

In other instances, e.g., collaborative creation of knowledge or soft-

ware repositories like Wikipedia and open-source softwares, sus-

tained interaction among a small set of skilled knowledge workers
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is involved. We are interested in the latter scenarios, that of com-

plex projects that typically require multiple skills and coordination.

However, in contrast to the currently predominant usage of crowd-

sourcing, where contributions are often best effort, we envision that

with the proliferation of maturing crowd-sourcing and collabora-

tion platforms, we will witness in the immediate future the use of

crowd-sourcing in more critical projects, where the owner of a task

may want to achieve better guarantees of delivery of a complete job,

including the integration of the various parts, rather than out-source

the tasks in a piece-meal manner, and likewise, the stakes for the

contributors will be higher as well, so that they will compete for

higher payoffs, even while collaborating.

This paper abstracts such a market-place, where a pool of knowl-

edge workers with specific skill sets will try to bid for complex

tasks, possibly individually, or alternatively as composite teams,

where individuals aim to maximize their revenues - which is af-

fected, depending on whether they manage to attract any tasks at

all, as well as the way the rewards for a complex job are split among

the team members, while the clients would typically aim for timely

completion of their projects in a cost-effective (e.g., based on a

predetermined budget) manner. While motivations of our abstract

model stem from the crowd-sourcing scenarios, it fits well in other

real world scenarios, for instance when consortiums are formed to

bid for a tender of a complex project, and individual organizations

may not have the resources and capacity to fulfill all the needs of the

project, and yet benefit from being part of a coalition, likewise, for

the client proposing the project would/can not distribute the tasks

in a piece-meal manner, and will instead like a single logical entity

(the consortium) to deal with the project as a whole.

The contributions of this paper are as follows: (i) First we iden-

tify and formalize a new class of coalition games. These games

describe the agents gathering into groups and competing with other

teams for the employment in a complex project. In a general set-

ting we consider an oracle that decides which teams of agents (fur-

ther referred to as coalitions) have sufficient skills to complete the

project on time. In this way our games resemble cooperative skill

games [2] and coalitional resource games [3] (these games, how-

ever, consider the problems in the grand coalition and interaction

between its members; our approach is to expose multiple coali-

tions’ competition). Thus, we do not apply the typical coopera-

tive game theory concepts [4], and instead model the cooperation

and the competition of the agents as the non-cooperative games.

Our model also generalizes the coalition formation problems to the

strategic agents (thus, the algorithms for coalition formation [5] can

be used in our setting as the general mechanism to solve the sub-

problem of finding (cheapest/best) feasible coalitions).

Next we explore two organizations of the market. In the central-

ized setting (Section 3), where the agents communicate only with



the client, (ii) we prove that a Strong Nash Equilibrium (SNE) al-

ways exists unless there is no feasible coalition. We show how to

find SNE, and for the client—how to select the best coalition, with

a polynomial number of calls to the orcale. In a decentralized set-

ting (Section 4) (iii) we show two concepts of winning coalitions.

We prove that a strongly winning coalition may not exist, but a

weakly winning coalition is guaranteed to exist (provided there ex-

ists a feasible one). We show how to find weakly/strongly winning

coalitions. In Section 5 (iv) we propose two mechanisms that the

client can apply to find the winning team. We introduce the con-

cept of an auction-winning coalition and show how to find one (this

relates to the works on all-pay auctions in the context of crowds-

sourcing [6]). In Section 6 we propose how the general oracle can

be replaced with a concrete scheduling model and (v) determine the

exact complexity of the problem.

Mapping the abstract model to real applications, including incor-

poration of trust, social relations, skill and historical performance

information, etc., are out of the scope of this paper, and we leave

these out as avenues to extend the current work in future.

2. THE GENERAL MODEL
We consider a model in which a client (an issuer) submits a sin-

gle complex project to be executed. The project has a deadline d.

The client has a certain valuation v of the project, that is the max-

imal price that she is able to pay for completing the project. The

client has no additional utility from completing the project before

the deadline: if she had, it could be expressed by changing the

project description and submitting a project with shorter deadline.

There is a set N = {1, 2, . . . n} of n agents. For each agent

i we define φmin
i > 0 to be the agent’s minimal salary for which

i is willing to work. The agent prefers to work for φmin
i than not

to work (and then to work for higher salary). The value φmin
i is

private to the agent—neither the issuer nor the other agents know

φmin
i . However, in order to construct equilibria of a game, an agent

has to have some beliefs about the minimal salaries of other agents.

A subset of the agent’s population N forms a coalition (a team)

to be awarded the project; the paper’s core contribution is on how

this process should be organized.

A coalition C is a triple 〈NC, φC, cC〉 consisting of the set of

participating agents NC ⊆ N , a salary function φC : NC → N

assigning salaries to member agents, and the total cost of the coali-

tion cC ∈ N—the total amount of money earned by the participants

of C. Salaries are discrete to represent some minimal reasonable

changes in the agents’ compensation (not only money is discrete,

but also it is common in real-world auctions to specify a minimal

difference between two successive bids).

For a coalition, there is a schedule that for each agent i specifies

ti, the time that i needs to spend working on the project; we give

an example of the concrete schedule definition in Section 6)

We consider two models of agents’ compensation. Let φtot

C (i)
denote the total amount of money agent i gets in coalition C (nat-

urally, cC =
∑

i∈NC
φtot

C (i)). In the project salary model φtot

C (i)

is equal to the salary of the agent φC(i) (and thus does not depend

on the amount of work assigned to that agent). In the hourly salary

model φtot

C (i) is equal to the product of the salary φC(i) and the

time ti that i spends on processing her part of the project (ti is

known from the schedule).

In the project salary model the agents are interested in earning as

much money as possible. The hourly salary model represents a dif-

ferent environment in which agents perhaps work on many projects

simultaneously; thus the agents are interested in having maximal

salary per time unit (e.g. an agent prefers to work ti = 1 time unit

with a salary φi = 3 to working ti = 2 time units for φi = 2).

The coalition C is feasible if there exist a schedule such that:

(i) the project can be finished before the deadline (if the coali-

tion does not have some required competences, we model this as

a coalition that never finishes a project); (ii) the project budget is

not exceeded (cC ≤ v); (iii) the cost cC of the coalition C is consis-

tent with the salaries φC . Specifically, in the project salary model

cC =
∑

i∈NC
φC(i). In the hourly salary model there must exist

a schedule in which each member i of the coalition C spends ti
time units on the project and cC =

∑
i∈NC

tiφC(i). Moreover, the

salaries are higher than the minimal salaries, φC(i) ≥ φmin
i .

A coalition C is cheaper than C′ if it has a strictly lower cost cC <
cC′ or if it has the same cost, but it is preferred by a deterministic

tie-breaking rule ≺, NC ≺ NC′ . A tie-breaking rule may take

into account non-economical preferences that are considered to be

second-important to the cost of the coalitions. Using a specific tie-

breaking rule influences the complexity of the problem of finding

the most-preferred coalition. We use a lexicographic tie-breaking

rule (where a coalition is represented by the concatenation of the

sorted list of the names of its members), however the results can be

generalized to any other deterministic rule with the only difference

of the complexity of FCFC (described below).

Throughout the paper we use two following problems: FIND

FEASIBLE COALITION (FFC) and FIND CHEAPEST FEASIBLE

COALITION (FCFC). We reduce other problems to FFC and FCFC

(we will also show that FCFC can be polynomially reduced to

FFC).

PROBLEM 1. (FFC: FIND FEASIBLE COALITION). An instan-

ce of FFC consists of a project (with a deadline d and a budget v)

and the set of the agents N with (known) minimal required salaries

φmin
i . The question is to find any feasible coalition or to claim there

is no such.

PROBLEM 2. (FCFC: FIND CHEAPEST FEASIBLE COALI-

TION). An instance is the same as in the FFC problem. The ques-

tion is to find the cheapest feasible coalition or to claim there is no

such.

We use the general model as defined above in Sections 3, 4, and 5.

In these sections, we assume that there is an oracle solving FFC.

This allows us to study a very general setting of the problem, ab-

stracting from concrete notions of a schedule or a division of labor

in a coalition. To solve FFC, the oracle must know the underlying

model, in particular the minimal salaries of agents and the maximal

price of the project v; we may also assume that the oracle is local

to an agent—the oracle knows the minimal salary of this agent and

agent’s beliefs about minimal salaries of others. Then, to get the

exact computational results, we need to define in a compact form,

e.g. which coalitions are able to complete the project before the

deadline. In Section 6 we consider a specific model of FFC in

which the project is a set of independent, indivisible tasks and the

agents have certain skills, i.e., speeds with which they process the

tasks (a lack of skills is modeled as zero speed).

We consider two models of forming coalitions. First, in Sec-

tion 3, we consider the centralized formation. Agents submit their

bids—(asking) salaries φi—directly to the client (project issuer).

The client chooses the members of the team that is awarded the

project (we will call the winning team the coalition to use the same

vocabulary as in the second part of the paper). Naturally, the client

chooses the members so that the project is completed before the

deadline for the smallest price. The members of the winning coali-

tion are payed according to their asking salaries φi.

Second, in Sections 4 and 5, we consider the decentralized for-

mation of the coalition. Agents communicate and are able to form



coalitions by binding agreements. A coalition sends a bid—the

total cost cC—to the client; the bid represents the compensation

the coalition expects to get for completing the whole project. The

cheapest coalition C∗ wins the project and is payed cC∗ ; then cC∗ is

allotted to the members of C∗ according to the salary function φC∗ .

3. CENTRALIZED FORMATION
In the centralized model we assume that the agents submit their

asking salaries φi directly to the client (the issuer of the project).

The client, having the asking salaries of the agents, wants to form

the cheapest feasible coalition (that is able to complete the project

before the deadline). In this section, we first show that this problem

reduces to FFC, the problem of finding a feasible coalition. Then,

we analyze the optimal bidding strategies of agents.

PROPOSITION 1. The problem FCFC can be solved in time

O((log v + n)ffc), where ffc is the complexity of FFC.

PROOF. Some proofs are ommitted due to space constraint, and

are available in an anonymized full version at www.dropbox.

com/s/74la1mz03x1m9x9/crowdsourcing.pdf

PROPOSITION 2. Having the asking salaries of the agents, the

problem of finding the winning team can be solved in time O(fcfc),
where fcfc is the complexity of FCFC.

PROOF. One needs to solve FCFC with the minimal salaries of

the agents set to their asking salaries (φmin
i = φi).

The agents may be strategic and manipulate their asking salaries

to maximize their payoffs. This problem is a strategic game. An

action of the agent i is her asking salary φi ≥ φmin
i . The payoff of

i is φi if and only if i is a member of the cheapest feasible coalition;

otherwise it is equal to 0.

Interestingly, in such setting, in the project salary model there ex-

ist sets which are stable against collaborative actions of the agents.

We recall that a vector of the agents’ actions is a Strong Nash Equi-

librium (SNE, [7]) if no subset of the agents can change its actions

so that all the deviating agents would obtain strictly better payoffs.

For each subset of the agents N ′ ⊆ N , by C∗(N ′) we denote

the cheapest feasible coalition using only the agents from N ′ (the

coalition C∗(N ′) does not exist if there is no feasible coalition con-

sisting of the agents from N ′).

THEOREM 3. In the project salary model, if there exists a fea-

sible coalition then there exists a Strong Nash Equilibrium. In ev-

ery SNE, the set of the agents that get positive payoffs is the set of

agents forming the cheapest feasible coalition, NC∗(N).

PROOF. Let N∗ = NC∗(N) be the set of the agents participating

in the cheapest feasible coalition. We say that the action φi of the

agent i is minimal if and only if φi = φmin
i . We show how to con-

struct the asking salaries φ∗
i of the agents from N∗ that, together

with the minimal actions of the agents outside N∗, form the Strong

Nash Equilibrium. A sketch of proof is as follows. We show the set

of linear inequalities for the variables φi, i ∈ N∗. Let us denote the

maximal values of φi which satisfy the inequalities as φ∗
i (maximal

in the sense that if we increase any value φ∗
i , then the new values

will not satisfy all the inequalities any more). We show that the ac-

tions φ∗
i of the agents from N∗, together with the minimal actions

of the agents outside of N∗, form an SNE and that the set of the

solutions φ∗
i that satisfy all the inequalities is nonempty.

The first inequality states that the values φi must lead to a fea-

sible solution:
∑

i∈N∗ φi ≤ v. Next, as C∗ is the cheapest feasi-

ble coalition, for each feasible coalition C′ (N∗ 6= NC′ ) such that

N∗ ≺ NC′ , C∗ must have (weakly) lower cost:
∑

i∈N∗\N
C′

φi ≤∑
i∈N

C′\N∗ φmin
i . For C′ preferred over C∗ (N∗ 6= NC′ and

NC′ ≺ N∗), C∗ must have strongly lower cost:
∑

i∈N∗\N
C′

φi <∑
i∈N

C′\N∗ φmin
i .

First, if the values φ∗
i satisfy the above inequalities and the agents

outside of N∗ play their minimal actions, then the agents from N∗

will get positive payoffs. If they did not get the positive payoffs, it

would mean that there exists a feasible cheaper coalition C′. How-

ever, the inequalities ensure that the agents from N∗ \ NC′ induce

the lower total cost than the total cost of the agents from NC′ \N∗;

this ensures that agents N∗ with actions φ∗
i form a cheaper coali-

tion than C′.

Next, we show that no set of agents NC′ can make a collabora-

tive action φ after which the payoff of all agents from NC′ will be

greater than previously. For the sake of contradiction let us assume

that there exists such a set of agents NC′ and such an action φ. First

we consider the case when the payoff of some agent i /∈ N∗ would

change. This means that after φ there would be a new cheapest

feasible coalition C′, where i ∈ NC′ . However, we know that the

total cost of the agents from N∗ \ NC′ is lower than the total cost

of the agents from NC′ \N∗. This means that C′ cannot be cheaper

than the coalition consisting of the agents from N∗. Finally, con-

sider the case when only the payoffs of the agents from N∗ change

(and thus NC′ ⊆ N∗). However, if the strict subset of N∗ could

complete the project before the deadline, then C∗(N) would not

be the cheapest. Thus, NC′ = N∗. This means that every agent

from N∗ must have played a higher action (and others must have

not changed their actions). Since φ∗
i were maximal, after the action

φ some inequality, for some feasible coalition C′′, would not hold

any more. Thus, we infer that C′′ is cheaper than C′.

To check that there always exists a solution, we see that the val-

ues φ∗
i = φmin

i satisfy all inequalities.

Finally, by contradiction we prove the N∗ is formed by the same

agents as forming the cheapest feasible coalition. Assume that the

set of the agents that get positive payoffs in some SNE is N ′ 6=
N∗. However, if the agents from (N∗ \ N ′) play their minimal

actions, then the coalition consisting of the agents from N∗ would

be cheaper than the coalition consisting of the agents from N ′ (and

so, it would be feasible). Thus, the agents from (N∗ \ N ′) can

deviate, getting better payoffs. This completes the proof.

There is no analogous result for hourly salary model.

PROPOSITION 4. In the hourly salary model there may not ex-

ist a Strong Nash Equilibrium even though there exists a feasible

coalition.

The proof of Theorem 3 is constructive, however it requires con-

sidering all feasible coalitions, and so, leads to the potentially high

complexity. On the other hand, if the salaries of the agents can

be rational numbers, we can find the salary function in SNE by a

polynomial reduction to the FCFC problem. This result is particu-

larly interesting if the salaries of the agents have high granularity;

rounding such a rational solution gives the integral solution which

might not be exactly correct, but the error has a small magnitude.

PROPOSITION 5. In the project salary model, if the salaries of

the agents are rational, then finding a Strong Nash Equilibrium can

be solved in time O(n3 log(nv)fcfc)), where fcfc is the complexity

of FCFC.

PROOF. First, we solve a single instance of the FCFC problem

to find N∗ = NC∗(N). Next, similarly as in the proof of The-

orem 3, we introduce the variables φi, i ∈ N∗ and the inequali-

ties (also the same as in the proof of Theorem 3). If we find the



values φi, i ∈ N∗ satisfying all the inequalities, then the values

φi, i ∈ N∗, together with the minimal salaries of the agents out-

side of N∗, will form a Strong Nash Equilibrium.

The set of inequalities given in the proof of Theorem 3 is a lin-

ear program; there are, however, exponentially many constraints

(a constraint for each possible coalition). We construct a separa-

tion oracle by a polynomial reduction to the FCFC problem. Since

ellipsoid method [8] requires O(n3L) calls to the separation ora-

cle [9] (where L is the size of the representation of the problem;

here L = O(log(nv))), this allows us to solve the linear program

in time O(n3 log(nv)fcfc).
To check whether all the inequalities are satisfied, it is suffi-

cient to solve FCFC with the following parameters. The minimal

salaries of the agents from N∗ are set to the values of the vari-

ables φi (∀i∈N∗φmin
i := φi). The minimal salaries of the agents

outside of N∗ are left unmodified. Let C denote the solution of

such instance of the FCFC problem. There exists a not-satisfied

inequality if and only if NC 6= N∗. The not-satisfied inequality

is the inequality that corresponds to the coalition C 6= C∗. This

completes the proof.

PROPOSITION 6. Checking whether a given vector of the ask-

ing salaries 〈φi〉, i ∈ N is a Strong Nash Equilibrium can be

solved in time O(fcfc), where fcfc is the complexity of FCFC.

4. DECENTRALIZED FORMATION
Assume that the agents can communicate and agree their strate-

gies. Consequently, they can form coalitions and bid for the project

as consortiums. We show the concept of a (rigorously) strongly

winning coalition, where no subset of agents can successfully de-

viate. We show how to characterize (rigorously) strongly winning

coalitions and how to reduce the problem of finding them to the

FCFC problem. We show that the strongly winning coalitions may

not exist, and so we introduce the concept of a weakly winning

coalition. We prove that a weakly winning coalition always exist

and demonstrate how to reduce the problem of finding them to the

FCFC problem.

We model the behavior of the agents as a game. Agent i’s action

is a triple 〈NC, φC, bC〉. Intuitively, such an action means that the

agent i decides to enter the coalition C = 〈NC, φC, bC〉. The payoff

of the agent is equal to φC(i) if (i) C is feasible, (ii) each agent

j ∈ NC agrees to participate in C (i.e. they all play C), and (iii)

there is no feasible cheaper coalition C′ such that all the agents

from NC′ agree to participate in C′. Otherwise, the payoff of i is 0.

4.1 Strongly winning coalitions
In this game the payoffs depend on whether the others agree to

cooperate, thus the Strong Nash Equilibrium (SNE) rather than the

Nash Equilibrium [10] should be considered. In the following def-

inition we propose an even more stable equilibrium concept than

the SNE—the Rigorously Strong Nash Equilibrium (RSNE). The

RSNE requires that no subset of agents can deviate so that each

would get a payoff at least as good (instead of strictly better). Our

approach is motivated by considering a risk-averse agents. In a

SNE, the agents have no incentive to deviate if they get the same

payoff; however they also have no incentive not to deviate. Yet,

any deviation will result in a serious payoff loss for some agents

(changing their payoffs from a positive φ to zero). A risk-averse

agent will prefer not to be exposed to the possibility of such loss.

DEFINITION 1. The vector of actions π is a Rigorously Strong

Nash Equilibrium (RSNE) if and only if there is no subset of the

agents NC such that the agents from NC can make a collaborative

action C (a set of actions played by agents) after which the payoff

of each agent i from NC would be at least equal to her payoff under

π and the payoff of at least one agent i ∈ N would change.

In the above definition the requirement that the payoff of at least

one agent i ∈ N must change after the coalition deviates ensures

that we treat as equivalent the coalitions with the same payoffs. For

instance, assuming a system with three agents, a, b and c, if the

coalition {a, b} gets a positive payoff, it does not matter whether c
plays 〈{c}, v + 1〉 or 〈∅, v + 1〉: in both cases all payoffs are the

same.

Below we introduce additional definitions that help to character-

ize the RSNE in our game.

DEFINITION 2. A feasible coalition C is explicitly endangered

by a coalition C′ if (i) C′ is feasible, (ii) NC ∩NC′ = ∅ and (iii) C′

is cheaper than C.

A feasible coalition C is implicitly endangered by a coalition C′

if (i) C′ is feasible, (ii) NC∩NC′ 6= ∅ and each agent from NC∩NC′

gets in C′ at least as good salary as in C, and (iii) either NC 6= NC′

or φC 6= φC′ .

If there are agents belonging to both coalitions (NC ∩NC′ 6= ∅),

we do not consider the total cost of the alternative coalition C′, as

the decision whether C′ will be formed depends solely on the agents

from NC ∩ NC′ : if they decide to form C′, C will not be formed,

thus the client won’t be able to choose between C and C′.

Informally, a coalition is (rigorously) strongly winning if it con-

stitutes a (rigorous) Strong Nash Equilibrium, i.e., the members

will not deviate to other coalitions.

DEFINITION 3. The feasible coalition C is rigorously strongly

winning if and only if there is an RSNE in which the agents from

NC get positive payoffs φC .

DEFINITION 4. The feasible coalition C is strongly winning if

and only if there is an SNE in which the agents from NC get positive

payoffs φC .

The following theorem connects the intuitive notion of endan-

germent with the notion of a winning coalition.

THEOREM 7. The coalition C is rigorously strongly winning

if and only if C is not explicitly nor implicitly endangered by any

coalition.

PROOF. ⇐= Assume that there exists a rigorously strongly win-

ning coalition C; thus there exists a Rigorously Strong Nash Equi-

librium RSNE in which the agents from NC get positive pay-

offs. This implies that the agents from NC agree on the action

〈NC , φC, bC〉; other agents (N\NC) have zero payoffs. For the sake

of contradiction let us assume that there exists a feasible coalition

C′ such that C is explicitly or implicitly endangered by C′.

If NC∩NC′ is empty (C is explicitly endangered by C′), then NC′

must be cheaper. This however contradicts the assumption that the

agents from NC get positive payoffs.

Assume thus that NC ∩ NC′ is non-empty (i.e., C is implicitly

endangered by C′). Consider the following collaborative action of

agents (N \NC) ∪NC′ . All the agents from NC′ make action C′.

Each agent i from N \(NC∪NC′) makes an action 〈{}, φ∅〉, where

φ∅ is an empty function. We show that after playing this action no

agent from (N \ NC) ∪ NC′ will get lower payoff and that some

agents will get a strictly better payoff (which will contradict the

assumption that RSNE is a Rigorously Strong Nash Equilibrium).

Clearly each agent from N \ (NC ∪ NC′ ) does not decrease her

payoff (as previously it was equal to 0). Now, we show that the



agents from NC′ will get at least the same payoff as before. Since

we know that C is implicitly endangered by C′ (and thus the agents

from NC ∩ NC′ get in C′ at least as good payoff as in C) it is suf-

ficient to show that the agents from NC′ will get positive payoffs.

Indeed, there is no feasible coalition that includes some agents from

N \ (NC ∪ NC′ ) (as these agents play {}). Also, the agents from

NC \NC′ do not agree on the collaborative action (they still play C)

and thus, cannot form a feasible coalition. Thus, after such change

of played actions C′ is the only feasible coalition that the members

agreed on. Finally, we can show that at least one agent will get

a strictly better payoff. Either NC = NC′ (and since φC 6= φC′ ,

some agent must get a different payoff) or NC 6= NC′ (and the

agents from NC′ \NC will get a positive payoff).

=⇒ Assume that C is not explicitly nor implicitly endangered by

any coalition. First, if the agents from NC make the collaborative

action C, then they will all get positive payoffs. Indeed, the agents

in NC could not get positive payoffs only if there would exist a

cheaper feasible coalition C′ such that NC ∩NC′ = ∅. This would,

however mean that C is explicitly endangered by C′. Next, we show

that the state in which the agents from NC make the collective de-

cision C and the other agents play arbitrary actions is RSNE. For

the sake of contradiction let us assume that there exists a subset of

agents NC′ which can make a collaborative action C′ after which

the payoff of everyone from NC′ would be at least equal to her pay-

off in C. This would, however mean that C is either implicitly or

explicitly endangered by C′. This completes the proof.

The result in Theorem 8 stated for RSNE transfers to SNE with

a slight modification of the model that associates some small costs

of preparing a bid by agents. To state the result for SNE we also

need to use the definition of a coalition C being strictly implicitly

endangered by C′ (here we do not require the agents from NC∩NC′

to have at least as good payoffs, but strictly better payoffs in C′ than

in C).

THEOREM 8. If there are small but positive costs of preparing

the offer by the agents then the coalition C is strongly winning if

and only if C is not explicitly nor strictly implicitly endangered by

any coalition.

PROOF. Analogous to the proof of Theorem 7.

Theorems 7 and 8 give us better understanding of the concept

of Rigorously Strong Nash Equilibrium (and Strong Nash Equi-

librium) in our model. They also lead to a simple brute-force al-

gorithm for checking whether the coalition can be a part of some

RSNE. Below, we provide the analysis that allows to characterize

RSNE in the project salary model even more precisely.

THEOREM 9. In the project salary model the set of agents par-

ticipating in a rigorously strongly winning coalition is the same as

the set of agents participating in the cheapest feasible coalition.

There is no analogous result for the hourly salary model.

PROPOSITION 10. In the hourly salary model the set of the

agents participating in a rigorously strongly winning coalition may

not be the same as the set of the agents participating in the cheapest

feasible coalition.

PROPOSITION 11. In the project salary model the bid of a stro-

ngly winning coalition is equal to the maximal allowed price v.

Theorem 9 and Proposition 11 show that the problem of finding

a strongly winning coalition collapses to the problem of finding

a feasible coalition. The problem thus becomes an optimization

problem; the strategic behavior of agents does not have an influence

on this procedure.

PROPOSITION 12. Checking whether a coalition is rigorously

strongly winning can be solved in time O(n2 · fcfc), where fcfc is

the complexity of the problem FCFC.

PROPOSITION 13. In the project salary model, if the salaries of

the agents can be rational numbers, finding a rigorously strongly

winning coalition can be solved in time

O(n5 log(nv)fcfc), where fcfc is the complexity of FCFC.

It is desired to know Rigorously Strong Nash Equilibrium pro-

vided they exist. However a RSNE (and even a Strong Nash Equi-

librium) may not exist in some instances.

PROPOSITION 14. Both in the project salary and in the hourly

salary model, there may not exist a strongly winning coalition even

though there exists a feasible coalition.

PROOF. Consider a project with budget v = 5; and three iden-

tical agents a, b, c with minimal salaries φmin
i = 2 (in the hourly

salary model, assume that each agent spends exactly 1 time unit on

the project). The deadline is d = 1; a coalition of any two agents

is feasible (able to complete the project before the deadline and

within the budget).

For the sake of contradiction assume there exists a coalition C
that gets positive payoffs. Without loss of generality we assume

that NC = {a, b}. At least one of the agents, let us say a has to

get salary equal to 2. However, the agents a and c, with the salaries

equal to 3 and 2 respectively, can form a feasible coalition in which

both a and c get better payoffs (note that we use here the fact that

the payoffs are discrete).

4.2 Weakly winning coalitions
We are not fully satisfied with the example from Proposition 14.

Indeed the coalition {a, c} can profit by deviating, but a should not

be wiling to deviate. The reason is that {a, c} is not stable by its

own, and can be successfully deviated by {b, c}. Thus, we propose

a weaker notion.

DEFINITION 5. A feasible coalition C is weakly winning if it

is not explicitly endangered by any coalition and for each feasible

coalition C′ such that C is implicitly endangered by C′, there ex-

ists a feasible coalition C′′ such that C′ is explicitly or implicitly

endangered by C′′.

Another way of weakening the notion of the (rigorously) strongly

winning coalition is to consider Coalition-Proof Equilibria [11].

We also believe that it is an interesting open question to find whether

there is some relation between the concept of the weakly winning

coalition and CPE.

PROPOSITION 15. There exists a weakly winning coalition if

and only if there exists a feasible coalition.

PROOF. Consider a feasible coalition C that is not explicitly en-

dangered (such a coalition exists provided there exists a feasible

coalition). Let E denote a set of feasible coalitions implicitly en-

dangering C. If E = ∅, C is strongly winning and, thus also, weakly

winning. If there exists C′ ∈ E such that C′ is not (implicitly or ex-

plicitly) endangered by any feasible coalition, then C′ is strongly

winning (and, thus also, weakly winning). Otherwise, C is weakly

winning.

If there is no feasible coalition then there is no weakly winning

coalition.

PROPOSITION 16. In the project salary model, if the salaries of

the agents can be rational numbers, the problem of finding a weakly

winning coalition can be solved in time O(n5 log(nv)fcfc), where

fcfc is the complexity of FCFC.



PROPOSITION 17. In the project salary model, if the salaries of

the agent can be rational numbers, the problem of checking whether

a coalition C′ is weakly winning coalition can be solved in time

O(n5 log(nv)fcfc), where fcfc is the complexity of FCFC.

5. MECHANISM DESIGN
In this section we take a look at two mechanisms that a project

issuer can apply to find a winning team: the first one sets the job’s

budget v; the second one uses an English auction.

First, we show that if the client is allowed to change the value

v there exists a simple mechanism ensuring the existence of the

strongly winning coalition.

THEOREM 18. If there exists a feasible coalition, then there ex-

ists a budget v∗ for which there exists a strongly winning coalition.

The problem of finding such v∗ can be solved in time O(log v · ffc),
where ffc is the complexity of FFC.

PROOF. Let v∗ be the smallest value such that there exists a

feasible coalition. We show that for v∗ there exists a strongly win-

ning coalition. Let C∗ be the most preferred (according to the tie-

breaking rule ≺) feasible coalition for v∗. For the sake of con-

tradiction let us assume that there exists a coalition C′ such that

C∗ is strictly implicitly or explicitly endangered by C′. Of course

bC′ ≤ v∗ (otherwise C′ would not be feasible). If C∗ is explicitly

endangered by C′ (NC∗ ∩ NC′ = ∅), it means C′ is cheaper than

C∗; and we get a contradiction with the definition of v∗. Otherwise

(C∗ is strictly implicitly endangered by C′), let i ∈ NC∗ ∩ NC′ .

Now, i must get strictly better salary in C′ than in C∗. Thus if we

change the salary of i in the coalition C′ to φC′(i) = φC∗(i) we get

a contradiction—a cheaper feasible coalition.

In the second approach we use the English auction in which

coalitions participate. As in a standard English auction, the auc-

tion starts from the least preferred outcome for the client (the orig-

inal budget v); the asking price is gradually decreased. Coalitions

place bids for the current asking price. The auction stops if there

is no feasible coalition that can propose a lower bid than the cur-

rent asking price. This leads to the concept of an auction-winning

coalition.

DEFINITION 6. A coalition C is auction-winning if and only if

there is no feasible coalition C′ such that bC′ < bC and for each

agent i ∈ NC ∩NC′ , i gets better salary in C′, φC′(i) ≥ φC(i).

PROPOSITION 19. The problem of checking whether a feasible

coalition C is auction-winning can be solved in time O(ffc). The

problem of finding an auction-winning coalition can be solved in

time O(v · ffc); ffc is the complexity of FFC.

The summary of our results in general model is given in Table 1.

We believe that the computational results favor the concept of the

auction winning coalition (or the centralized model). First, the

weakly winning coalition is guaranteed to exist. Second, the com-

putational power needed to find an auction winning coalition seems

much smaller in comparison with other concepts. In the centralized

model, finding the winning coalition (when we already have the

asking salaries of the agents) has also a straightforward reduction

to FCFC.

6. FFC IN A SCHEDULING MODEL
In Sections 3, 4 and 5 we show that many problems of finding

the (weakly/strongly) winning coalitions or determining whether a

given coalition is (weakly/strongly) winning required solving the

Exist Checking Finding

D
ecen

tr.

RSW no O(n2 · fcfc) O(n5 log(nv)fcfc) (*-)

SW no open problem

WW yes O(n5 log(nv)fcfc) (*-)

AW yes O(ffc) O(v · ffc)

C
en

tr.

WC N/A O(fcfc)

SNE
yes (*)

no (+)
O(fcfc) O(n3 log(nv)fcfc)) (*-)

Table 1: The summary of the results in general model. The

column “Exist” contains the information whether a coali-

tion/equilibrium always exists. The column “Checking” con-

tains the complexity of checking whether a given coalition satis-

fies the definition corresponding to the row. The column “Find-

ing” contains the complexity of finding a coalition/equilibrium

(ffc and fcfc are the complexities of the problems FFC and

FCFC, respectively). The values marked as (*) are valid only

in the project salary model; marked as (+) only in the hourly

salary model; marked as (-) only if the salaries of the agents

can be rational numbers. In the table: (R)SW = (rigorously)

strongly winning, WW = weakly winning, AW = auction win-

ning, WC = winning (provided we have asking salaries) coali-

tion, SNE = Strong Nash Equilibrium.

subproblem of finding the feasible coalition. The general model

(Section 2) assumed that given a coalition there is an oracle de-

ciding whether the coalition can finish the project before the given

deadline. In this section, we show a possible concrete instance of

this model in which a project is a set of indivisible, independent

tasks; and agents are processors who process these tasks with vary-

ing speeds.

6.1 The scheduling model
A project consists of a set T = {t1, t2, . . . , tq} of q independent

tasks. The tasks can be processed sequentially or in parallel. The

tasks are indivisible: a task must be processed on a single proces-

sor. Once started, a task cannot be interrupted. All tasks must be

completed before d, the project’s deadline.

Agents correspond to machines (processors) processing tasks T
(in this section we use the words the agent and the machine inter-

changeably). Each agent has certain skills which are represented as

the speed of executing the tasks. Thus, for each agent i we define

the skill vector si = 〈si,1, si,2, . . . si,q〉 which has the following

meaning: agent i is able to finish task tj within si,j time units (with

si,j = ∞ when an agent is unable to finish the task). We assume

that si is known (it can be well approximated from e.g. past behav-

ior of the agent certified by clients in form of reviews). An agent

can process only a single task at each time moment—if she wants

to process more than one task, she must execute the tasks sequen-

tially. We assume that only a single agent can work on a given task.

This assumption is not as restrictive as it may appear; if the task

ti is large and can be processed by multiple agents in parallel, the

project client will rather replace ti by a number of smaller tasks.

For a coalition C we define ΦC : T → NC to be an assign-

ment function (assigning tasks to agents). The assignment func-

tion ΦC enables us to formalize the notion of a coalition complet-

ing the project before the deadline and also the total cost of the

coalition. Specificaly, a project is finished before the deadline d
if and only if all the agents finish their assigned tasks before d,

∀i ∈ NC

∑
ℓ:Φ(tℓ)=i si,ℓ ≤ d. In the hourly salary model, the cost

of the coalition is equal to cC =
∑

i∈NC
φC(i)

∑
ℓ:Φ(tℓ)=i

si,ℓ.

In the scheduling model the problem of finding a feasible coali-

tion can be defined as follows.



PROBLEM 3. (FFCSM: FIND FEASIBLE COALITIONS,

SCHEDULING MODEL). Let T be the set of q tasks and N be the

set of machines (or equivalently, agents). For each task tj ∈ T and

each machine (agent) i ∈ N we define si,j as the processing time

of tj on i. Let φmin
i be the cost of renting machine i (hiring agent

i). The budget of the project is v and the deadline is d. The FFCSM

problem consists of selecting a subset of the machines N ′ ⊆ N and

the assignment function Φ : T → N ′ such that the budget is not

exceeded (cN′,Φ ≤ B) and the project’s makespan does not exceed

the deadline d.

In the hourly salary model, the problem of finding the feasible

coalition reduces to the problem of scheduling on unrelated ma-

chines with costs [12]. Specifically, Shmoys and Tardos [12] show

a 2-approximation algorithm for approximating the makespan (the

deadline d in our model).

PROBLEM 4. (FFCHS: FIND FEASIBLE COALITIONS, HO-

URLY SALARY). The instance of the problem is the same as in

the FFCSM problem. In the FFCHS problem we additionally

specify that the cost of the coalition cN′,Φ is defined as cC =∑
i∈NC

φC(i)
∑

ℓ:Φ(tℓ)=i si,ℓ.

The project salary model is a generalization of the problem of

minimizing makespan on unrelated machines [13]. To the best of

our knowledge this problem has not been stated before; thus we

formally define it below.

PROBLEM 5. (FFCPS: FIND FEASIBLE COALITIONS, PRO-

JECT SALARY). The instance of the problem is the same as in the

FFCSM problem. In the FFCPS problem we additionally specify

that cN′ ,Φ is defined as cN′,Φ =
∑

i∈N′ φ
min
i .

FFCPS is similar to the problem of fiding a fully proportional

representation [14, 15]. Fiding a fully proportional representation

is connected to resource allocation [16]; in fact, its utilitarian ver-

sion can be viewed as a special case of FFCPS, where the goal

is to minimize the flow time of the tasks instead of a makespan.

An easier problem in which the goal is to optimize the assign-

ment only (assuming that the machines are already selected) has

a 2-approximation algorithm [13]. However, adding the notion of

the budget usually significantly increases the complexity. E.g., in

case of fully proportional representation, the problem of the find-

ing optimal assignment is polynomial [17], but the full problem is

computationally hard. However, there are good approximation al-

gorithms known [18, 16, 19]. Thus, we ask for the approximability

of FFCPS too.

6.2 FFCPS: Hardness Results
First, we show the NP-hardness of FFCSM in restricted special

cases.

THEOREM 20. FFCPS and FFCHS are NP-hard even for two

agents.

THEOREM 21. FFCPS is NP-hard even if the agents can be

assigned no more than 3 tasks, if each agent has no more than 3

skills (for each j we have that ‖{i : si,j 6= ∞}‖ ≤ 3), if the

deadline is constant, and if the minimal salaries of the agents are

equal to 1.

THEOREM 22. FFCHS is NP-hard even if the agents can be

assigned no more than 4 tasks, if each agent has no more than 4

skills (for each j we have that ‖{i : si,j 6= ∞}‖ ≤ 4), if the

deadline is constant, and if the minimal salaries of the agents are

equal to 1.

PROOF. The proof is by reduction from the exact set cover prob-

lem. We are given a set of elements T = {t1, t2, . . . , tq} and fam-

ily S = {S1, S2, . . . , Sn} of 3-element subsets of T . We assume

that each member of T appears in at most 3 sets from S .

We build an instance I of the feasible coalition problem in the

following way. There are q + n tasks and 2n agents. The first q
tasks t1, t2, . . . , tq correspond to the elements in T . The next n
tasks tq+1, tq+2, . . . tq+n are the dummy tasks needed by our con-

struction. The first n agents 1, 2, . . . , n correspond to the subsets

from S and the next n agents (n + 1), (n + 2), . . . , 2n are the

dummy agents. The minimal salaries of all agents are equal to 1.

For each agent i, i ≤ n and each task tj , j ≤ q, we set si,j = 2
if and only if tj ∈ Si; otherwise si,j = ∞. Also, for each agent

i, i ≤ n and each task tj , j > q we set si,j = 5 if and only if

i = j − q; otherwise si,j = ∞. For each agent i, i > n and each

task tj we set si,j = 6 if and only if i − n = j − q; otherwise

si,j = ∞. The deadline d is equal to 6 and the budget v is equal to

v = 7
3
q+5n. Clearly, each agent has no more than 4 skills and so,

in any feasible solution, cannot be assigned more than 4 tasks.

We will show that the answer to the original instance of the ex-

act set cover problem is “yes” if and only if there exists a feasible

coalition in the our constructed instance I .

⇐= Let us assume there exists a feasible coalition C. The cost

of this coalition is at most equal to v = 7
3
q + 5n. Each non-

dummy task (there are q such tasks) takes 2 time units, and thus

implies the cost equal to 2. The dummy tasks can be assigned either

to non-dummy agents (implying the cost 5) or to dummy agents

(implying the cost 6). Thus, we infer that at most q

3
dummy agents

are assigned a task (2q+ 1
3
q · 6+ (n− 1

3
q) · 5 = v). As the result

at least (n − q

3
) dummy tasks must be assigned to non-dummy

agents. A non-dummy agent, who is assigned a dummy task cannot

be assigned any other task (otherwise the completion time would

exceed the deadline). Thus, at most q

3
non-dummy agents can be

assigned non-dummy tasks. The non-dummy tasks can be assigned

only to non-dummy agents. We see the subsets corresponding to

these non-dummy agents who are assigned non-dummy tasks form

the solution to the initial exact set cover problem.

=⇒ Let us assume that there exists the exact set cover in the

initial problem. The agents correponding to the subsets from the

cover can be assigned tasks so that the deadline is not exceeded

and the total cost of completing these tasks is equal to 2q. The

other (n− q

3
) non-dummy agents can be assigned one dummy task

each. Finally, not-yet assigned dummy tasks can be assigned to

dummy agents. The total cost of such assignment is equal to 2q +
(n− 1

3
q) · 5 + 1

3
q · 6 = v.

This completes the proof.

Unfortunately, FFCPS is not approximable for makespan, for

budget, and even for the combination of both parameters.

THEOREM 23. For any α, β ≥ 1 there is no polynomial α-β-

approximation algorithm for FFCPS that approximates makespan

with the ratio α and budget with the ratio β, unless P=NP. This

result holds even if the costs of all machines are equal 1.

Theorems 20, 21, and 22 show that the problems FFCPS and

FFCHS remain NP-hard even if various parameters are constant.

Although Theorem 20 give us NP-hardness even for 2 agents, it is

somehow not satisfactory as we used the fact that the deadline d can

be very large. If the deadline is given in unary encoding, we can

solve the case for 2 agents by dynamic programming. Thus, we

asked the question, whether we can solve the problem efficiently

for small number of agents, if the size of the input is given in unary



encoding. We used the parametrized complexity theory [20] to ap-

proach this problem: we asked whether FFCPS and FFCHS be-

long to FPT for the parameter n—the number of the agents, pro-

vided the input is given in unary encoding. Unfortunately, FFCPS

and FFCHS are also hard for the parameter n.

THEOREM 24. Consider the number of the agents as the pa-

rameter. FFCPS and FFCHS are W[1]-hard, even if the agents

are the same, if for minimal salaries of the agents equal to 1, and if

the size of the input is given in unary encoding.

PROOF. The proof is by reduction from Unary Bin Packing (which

is W[1]-hard [21]).

6.3 Integer programming formulation
In the hourly salary model, Shmoys and Tardos [12] show an

integer programming formulation. In this subsection we state the

FFCPS problem as an integer program.

minimize d (1)
∑

i∈N

aiφ
min
i ≤ v (2)

∀i∈N;tj∈T xi,j ≤ ai (3)

∀i∈N

∑

tj∈T

xi,jsi,j ≤ d (4)

∀i∈N;tj∈T xi,j ∈ {0, 1} (5)

∀i∈N ai ∈ {0, 1} (6)

In the above formulation, a binary variable ai denotes whether

agent i is a part of the solution (is assigned some tasks, Equation 6).

A binary variable xi,j is equal to 1 if and only if the task tj is

assigned to the agent i (Equation 5). We minimize the makespan

d (Equation 1), which is the maximal completion time of the tasks

over all the agents (Inequation 4). We cannot exceed the budget v
(Inequation 2), and the tasks can be assigned only to the selected

agents (Inequation 3).

7. CONCLUSIONS
In this paper we present a new class of the coalition games that

model cooperation and competition between agents for the employ-

ment in a complex project. We believe that this is an interesting set-

ting that relates to other natural problems, like coalition formation,

coalitional auctions, auctions for sharable items, etc. We consider

two models of the organization of the market. First, the winning

coalition is selected by a central mechanism; the agents are strate-

gic about the salaries they ask. Second, the coalition formation

process is decentralized—the already-formed coalitions bid for the

project, thus the agents are strategic both about the salaries and

their cooperation partners.

We propose the concepts of stability in each model. These con-

cepts are of interest both to the agents and to the client. The client

gains an insight into agents’ strategies and can thus establish a re-

lation between the cost of organizing the market and the cost of the

winning coalition. The agents can optimize their strategies accord-

ing to their beliefs (an agent can ask e.g. whether she can increase

her asking salary and still participate in the winning coalition). In

the centralized model we show that the Strong Nash Equilibrium al-

ways exist. In the decentralized model the SNE may not exist, but

we prove the existence of a weakly winning coalition. We show

how to reduce the problem of finding a winning coalition to the

problem of finding a feasible one. Finally, we show a concrete

model in which the project is represented as a set of independent

tasks and the agents have certain skills (expressed as the processing

speeds). We prove the hardness of the problems in restricted cases.

All the omitted proofs are available in the full version of the pa-

per, which we provide in an anonymized manner at: www.dropbox.

com/s/74la1mz03x1m9x9/crowdsourcing.pdf
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