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Abstract—P2P architecture is a viable option for enterprise
backup. In contrast to dedicated backup servers, nowadays a
standard solution, making backups directly on organization’s
workstations should be cheaper (as existing hardware is used),
more efficient (as there is no single bottleneck server) and more
reliable (as the machines are geographically dispersed).

We present the architecture of a p2p backup system that
uses pairwise replication contracts between a data owner and
a replicator. In contrast to standard p2p storage systems using
directly a DHT, the contracts allow our system to optimize
replicas’ placement depending on a specific optimization strategy,
and so to take advantage of the heterogeneity of the machines
and the network. Such optimization is particularly appealing in
the context of backup: replicas can be geographically dispersed,
the load sent over the network can be minimized, or the
optimization goal can be to minimize the backup/restore time.
However, managing the contracts, keeping them consistent and
adjusting them in response to dynamically changing environment
is challenging.

We built a scientific prototype and ran the experiments on
150 workstations in the university’s computer laboratories and,
separately, on 50 PlanetLab nodes. We found out that the main
factor affecting the quality of the system is the availability of
the machines. Yet, our main conclusion is that it is possible to
build an efficient and reliable backup system on highly unreliable
machines (our computers had just 13% average availability).

Keywords—distributed storage, enterprise backup, data repli-
cation, unstructured p2p networks, availability

I. INTRODUCTION

Large corporations, medium and small enterprises, univer-

sities, research centers and common computer users are all

interested in protecting their data against hardware failures.

The most common approach is to keep backup copies on tape

drives, specially designated storage systems, or to buy cloud

storage space. All such solutions are highly reliable, but also

expensive. In 2013 the costs of renting 1TB of cloud storage

per year from Amazon, Google, Rackspace or Dropbox is

approximately $1000. Additionally, for some organizations,

internal data handling policies require that data cannot be

stored externally. The price of a single backup server with raw

capacity of 14TB often exceeds $12,000. A tape-based backup

system for 14TB costs about $7,000. This figures do not

include additional costs of service, maintenance and energy.

With a large number of workstations that must be replicated

at a single server, the server may become a bottleneck not

offering satisfactory throughput; also, performance can be

degraded by network congestion. More scalable solutions

exist, but are even more expensive. Yet, the market for the

backup solutions is vast. DataDomain, a company providing

the modern backup systems, had in 2009 over 3.000 customers

and over 8.000 systems deployed [30]. In the same year the

company was bought by EMC for $2,4 billion.

There is still a need for cheaper alternatives for enterprise

backup. On one hand, a significant research effort focuses on

the optimization techniques for dedicated backup servers, such

as deduplication techniques [13], [19]; or erasure codes [22],

[25]. On the other hand, a p2p architecture can be explored in

the context enterprise backup. Common PCs are cheaper than

reliable servers. Also, in many cases, the unused disk space

on the desktop workstations can be used without additional

costs (Adya et al. [1] shows that the unused disk space on the

desktop workstations is growing every year; the Moore’s law

for hard disks capacities, first formulated by Kryder [39] still

holds). The bandwidth of the nodes connected in a distributed

way scales better than of a single server; the load on the net-

work is more evenly distributed causing less bottlenecks. The

system can take advantage of the geographical dispersion of

the resources, thus offering better protection in case of natural

disasters (e.g., fire, flood) or theft. Finally, p2p solutions have

already proved to work well in the enterprise environment

(GFS [16], MapReduce [11], Astrolabe [27], DHT [10] used

in HYDRAstor [15], etc.).

Indeed, many p2p storage systems have been already

built [2], [5], [6], [8], [17], [18], [20], [21], [32], [38], [41].

The deduplication techniques get adapted for p2p storage

systems [26], [40]. There are new erasure codes more suitable

for p2p systems [22]. Finally, there are many theoretical

models for data placement optimizing data availability [3], [4],

[7], [14], [23], [28], [31] and backup/restore performance [24],

[37]. However, real systems do not fully take advantage

of the p2p architecture. There is a gap between theoretical

models and real implementations. There are systems (e.g.,

OceanStore [17] and Cleversafe) that distribute data between

geographically remote servers. These systems could be used

for backup, but they both use dedicated servers, which stays

in the contrast with our primary goal of creating cheap backup



system based on existing, unreliable machines.

There are p2p storage systems designed to work on un-

reliable machines; perhaps the most known such a system

is Farsite [5] – a 6-years long Microsoft’s project. However,

Farsite offers much more than a simple backup. As a complete

distributed file system, Farsite must deal with parallel accesses

to data, must manage the file system namespace, and ensure

that frequently accessed data is highly available. Such re-

quirements force additional complexity and many architectural

limitations that do not exist in case of backup system. On the

other hand, since data backup is not a primary use-case, Farsite

does not focus on implementing replica placement strategies

(e.g. geographical dispersion of replicas, ensuring that data are

backed up within a given time window etc.).

Bridging the gap between many theoretical models [3], [4],

[7], [14], [23], [24], [28], [31], [37] and prototype imple-

mentations, we asked the following question: Is it possible to

implement various data placement strategies especially when

machines are unreliable? Certainly, there are more challenges

than in the case of centralized or highly-available systems.

The machines’ unreliability, and perhaps low availability,

requires data locations to change dynamically. Is it difficult to

continuously optimize data placement with such assumptions?

And, finally, is it difficult to take advantage of the machines

and network heterogeneity?

Our contribution is the following: (i) We present an

architecture of a prototype storage system that uses pairwise

(bilateral) replication contracts for storing data. (ii) We show

that we can efficiently manage the contracts and ensure

efficient backup even under significant peers’ unavailability.

Our scientific prototype is evaluated in a real distributed

environment.

We built a scientific prototype that replicates user data on

different workstations of the organization. In our prototype, the

machines that enter the system besides the standard activities

also keep replicas of data of other machines. We assume that

the workstations are heterogeneous and prone to failures, in

particular: (i) hardware might be heterogeneous and inefficient;

(ii) the workstations may have variable amount of unused

disk space (the space that is available for keeping replicas);

(iii) the workstations are not always available – computers

may stay powered on, or be powered off when not used by

anyone (transient failures) (iv) they may experience permanent

failures after which it is not possible to recover data stored on

a machine.

In contrast with fixed data placement policies (storing data

in a DHT [2], [6], [20], [21], [41]), our replication is based

on storage contracts between an owner of the data and its

replicators. A contract for storing a data chunk of the owner

i on the replicator j is a promise made by j to keep i’s

data chunk for a certain amount of time. Until the contract

expires, it cannot be dropped by j; but it can be revoked

by i. Since every data chunk is associated with a list of

storage contract, each chunk can be placed at any location (the

location depends on the placement strategy). This contract-

based architecture can be exploited in two ways. First, the

contracts form an unstructured, decentralized architecture that

enables to optimize replica placement, making the system

both more robust and able to take advantage of network

and hardware configuration. Second, contracts also allow

strategies for replica placement that are incentive-compatible,

such as mutual storage contracts [9], [31]. To the best of

our knowledge, all previous literature on mutual contracts

focuses on theoretical analysis only. We complement these

theoretical works, by presenting an architecture of a contract-

based storage system. Yet, in this paper, for the sake of

concreteness, we focus on optimization of replica placement

for p2p backup in a single organization, where incentives are

not needed.

Our prototype (with the source code) is available

for download with an open-source lincense at

http://www.mimuw.edu.pl/~krzadca/nebulostore. We tested

our prototype on 150 computers in students’ computer

laboratories; and on 50 machines in Planet-Lab. The lab

environment might be considered as a worst-case scenario

for an enterprise network, as the computers have just 13%

average availability and are frequently rebooted. Moreover,

we assumed that all the local data is modified daily.

The results of our work show that: (i) in a p2p backup

system we are able to efficiently transfer data chunks – the

bandwidth of such a system scales linearly with the number

of machines. (ii) Even on machines with very low availability

we are able to efficiently optimize placement of the replicas.

We verified two different placement strategies (where the

optimization goal was either to finish the backup of each data

chunk within a given time, or to enforce a certain geographical

disperison of the replicas). This leads to our main conclusion:

(iii) It is possible to create an efficient p2p backup system and

to take advantage of resources’ heterogeneity. (iv) Hardware

unavailability has a significant impact on the performance of

the backup; because of unavailability the time needed for direct

communication of two peers can be long (on average 20h). We

call this effect the cost of unavailability. Our measurements

confirm the simulation results of Sharma et al. [33] and

Tinedo et al. [35].

Since our results are supported not only by the simulations,

but also by measurements of an implementation on a real

system, we consider them as the proof of the concept that

an efficient p2p backup systems can be created and that

the heterogeneity of the machines in such a system can be

explored.

II. RELATED WORK

HYDRAstor [15] and Data Domain [42] are commercial

distributed storage systems, which use data deduplication to

increase the virtual disk space.

Many papers analyze various aspects of p2p storage by

either simulation or mathematical modeling. Usually, the anal-



ysis focuses on probabilistic analysis of data availability in

presence of peers’ failures (e.g., [3]). Douceur et al. [14],

similarly to our system, optimizes availability of a set of files

over a pool of hosts with given availability: theoretical as

well as simulation results are provided for file availability.

Chun et al. [7] studies by simulation durability and availability

in a large scale storage system. Bhagwan et al. [4] and

Rodrigues and Liskov [28] show basic analytical models and

simulation results for data availability under replication and

erasure coding. Finding the schedule of the transfers which

minimizes the restore time and analysis of the impact of

the size of the set of the replicators on the restore time

is described by Toka et al. [37]. Pamies-Juarez et al. [24]

studies the impact of the redundancy on the data retrieval time.

Our paper complements these works by, first, presenting the

architecture that allows for implementing placement strategies;

second, by considering other measures of efficiency; and,

third, by proving that various optimization strategies can be

accomplished in unreliable environment.

As the context of this work is data backup in a single

organization, we do not analyze incentives to participate in

the system. However, to store the data, our system relies on

agreements (contracts) between peers. In contrast in DHT-

based storage systems contracts are (implicitly) made between

a peer and the system as a whole. Thus, our architecture

naturally supports methods of organization that emphasize

incentives for high availability, such as mutual storage con-

tracts [9], [31] (also these using asymmetric contracts [23]).

It is worth mentioning that some papers explore the social

interconnections while choosing the replica locations [38];

the tradeoffs between redundancy, data availability and the

ability to place data on the trusted nodes is analyzed by

Sharma et al. [33] and Tinedo et al. [35]. These methods can

be adopted in our system.

Many p2p file systems [2], [6], [20], [21], [41], use storage

and routing based on a DHT [10], [29]. The address of the

block, which is a hash of its content, fully determines the

locations of its replicas. Thus, such architecture is less suitable

for balancing the load on replicating workstations, or for

optimizing the placement of replicas. While these solutions

focus on consistency of the data being modified by multiple

users, this paper focuses on the best replication of the data,

which can be modified by its owner.

OceanStore [17] and Cleversafe propose to spread replicas

to geographically remote locations. These systems combine

software solutions with a specially designed infrastructure that

consists of numerous, geographically-distributed servers. The

main contribution of these systems, from our perspective, is

the resignation from a common DHT and the introduction of a

new assumption that any piece of data can be possibly located

at any server. These systems, however, do not discuss the issue

of replicating data on the ordinary workstations (which are,

in contrast to the servers, frequently leaving and joining the

network) and do not present any means allowing to handle

such dynamism.

Wuala [18] provided distributed storage based based not

only on a specially dedicated infrastructure, but also on a

cloud of workstations of users who install Wuala application.

However, since late 2011, Wuala no longer supports p2p

storage. The idea of using a hybrid architecture of central

servers and user machines, called in the context of backup

as peer-assisted backup is also explored by Toka et al. [36].

Other p2p backup software include Backup P2P, Zoogmo, or

ColonyFs.

FreeNet [8] is a p2p application that exposes the interface

of a file system. Its main design requirement is to ensure

anonymity of both authors and readers. The underlying pro-

tocol relies on proximity-based caching. When a data item is

no longer used, it can be removed from a caching location.

Similarly, in Pangea [32] a replica is created whenever and

wherever a data is accessed.

Farsite [5] was a Microsoft’s 6-years long project aimed

at creating distributed file system for sharing data between

thousands of users. The retrospective from the project [5]

gave us the feeling of following a good direction. Firstly, the

authors emphasize that real scalability must face the problem

of constant failures in the network. Secondly, they claim

that in a scalable system, manual administration must not

increase with the size of the network; we followed the both

requirements when formulating our hypothesis.

There are a few substantial differences between Farsite

and our prototype implementation. Most importantly, Farsite’s

architecture does not rely on mutual contracts, which allow

us to implement both incentives and mechanisms ignoring the

black listed peers. Farsite is a distributed file system and many

of its use cases cause the greater complexity of the system.

On the other hand, as Farsite is not a backup system, it does

not support backup-specific requirements like placing replicas

in geographically distributed locations, optimization of the

backup/restore time, etc.

III. SYSTEM ARCHITECTURE

Our system uses a mixed architecture that stores control

information, meta-data and data in three different ways. The

control information that allows peers to locate and to connect

to each other must be located efficiently — hence we use

a DHT as a storage mechanism. In contrast, each peer is

responsible for finding and managing peers who replicate its

data (its replicators). Such replication contracts enable us to

optimize replica placement and thus to tune replication to

a specific network configuration. The meta-data describing

replication contracts are kept by both the data owner and the

replicator. Chunks of data are kept in an unstructured overlay;

concrete locations are described by the meta-data.

A. Control information

The basic attributes of a peer are kept in a structure called

PeerDescriptor. For each peer, its PeerDescriptor contains:



• identification information (public key);

• information needed to connect to this peer (its current IP

address and a port of an instance of our software running

on a workstation) and user account name in the operating

system (account name is required by the current implemen-

tation of data transmission layer — see Section III-C);

• identifiers of synchro-peers (see Section III-D).

PeerDescriptors of all peers are kept in a highly replicated

DHT: peer’s ID (a hash of its public key) is hashed to its

PeerDescriptor. As the size of the control information is small,

we are able to afford strong replication (compared to a generic

DHT). Thus, instead of a single peer, many peers keep the data

hashed to a part of the key-space.

B. Replication contracts

The main goal of our prototype is to support nontrivial

replica placement strategies; we need to be able to store any

replica at any peer. This architecture contrasts with content

addressable storage systems that put each chunk of data under

an address that is fully determined by the chunk’s unique

identifier (e.g. hash of its content). As a trade-off for flexibility

of placing replicas at any location, we need a mechanism to

locate data.

In our system each peer keeps information about replica

placement of its data chunks in an index structure called Dat-

aCatalog. For each data chunk, the catalog stores information

about: (i) identifiers of the peers that keep replicas of the data

chunk (hereinafter chunk replicators); (ii) size of the chunk;

(iii) version number of the chunk.

Additionally, each peer keeps information about data chunks

it replicates. As each storage contract is kept in exactly two

places (the owner and the replicator), contracts are consistent

and it is easy to retrieve lost metadata (the DataCatalog).

Because peers are unreliable, the process of contracts negoti-

ation can break at any point, possibly leading to two types of

inconsistency: an owner o believes j is its replicator, while j

is not aware of such a contract; or a peer j believes to be o’s

replicator, while o is not aware of such a contract. Contracts

negotiation is however idempotent and because the contracts

are kept both by owner and replicator, such inconsistencies

can be easily fixed. Each peer periodically sends messages

to its replicators with the claimed contracts (and versions of

data chunks, which allows the replicators to update out-of-date

chunks). Each replicator periodically sends similar information

to the appropriate owners. Detected inconsistencies can be

resolved either by adopting the owner’s state; or by always

accepting a replication agreement.

The DataCatalog is persisted in a file but it is not replicated

between peers. In this way we avoid an additional overhead

of updating the catalog at remote locations, when the contract

for any chunk is changed; because machines are unreliable,

in many cases we even would not be able to update the

DataCatalog at the remote peers as they can be simply

unavailable. On the other hand, both owners and replicators

are aware of all their storage contracts. When the local data of

any peer is lost, the peer (the owner) gossips the information

about the failure. The replicators answer the gossip message

with the information about the contracts; the owner uses this

information to rebuild the DataCatalog. Once the DataCatalog

is reconstructed, the owner locates and rebuilds all missing

data. Since the DataCatalog is persistent, its reconstruction is

required only in case of non-transient failure; thus it does not

cause much overhead.

Alternatively, in an enterprise environment where a (repli-

cated) server is an affordable option, the meta-data can be kept

centrally (in primary memory for faster access). This solution

is, however, less scalable.

We designed the mechanism that is responsible for relo-

cating or additionally replicating data chunks that are weakly

replicated according to the given abstract metric. The spe-

cific metric used in our evaluation takes into account peers’

availability, bandwidth and geographic distribution; it tries to

keep all but one replicas as close as possible not to overload

the network and to keep one replica in remote location for

additional safety (for location-dependent failures, such as fire,

flood, etc.) . The metric also balances the load on the machines

so that each data chunk can be replicated within the required

backup window (the time requirement for each chunk to be

backed up). The precise metric is described in the full version

of this paper [34]). The optimization mechanism is based

on hill-climbing — in consecutive steps, each peer performs

locally optimal changes of the contracts. The optimization

can proceed even if large fraction of peers is unavailable; to

perform a single step we require only 3 peers to be available.

Thus the mechanism is suitable for unreliable environments.

When nodes parameters (e.g. availability) change, or when a

large number of nodes is added to the system, the contracts are

renegotiated. If each such change resulted in data migration,

the network and the hosts could easily become overloaded.

Therefore the process of changing a contract is more elaborate.

The contracts are allowed to change frequently but such

changes do not require data migration. Such temporary con-

tracts are periodically (e.g., daily) committed; after a contract

is committed, the data is migrated. The complete mechanism

involves some additional details as it must take into account

also possible communication failures (see [34]).

C. Data Transmission and Updates

Every member of the network, before placing its replicas at

a remote peer, must obtain this peer’s permission. Once the

peers reach an agreement, they mutually authorize each other

using identities (public keys) available in peers’ PeerDescrip-

tors (stored in the DHT).

The data is transmitted in an encrypted connection. In the

current implementation, we use standard Linux tools for data

transfers. Each peer runs a ssh daemon that acts as a server



that accepts connections of data owners. A peer uses scp to

transfer its data.

When an owner modifies its local copy, the updated chunk

must be propagated to the network. The replicators are in-

formed of the changed versions of the data chunks through

periodic control messages (the versions numbers are attached

to the messages containing contracts sent between the owner

and the replicator, described in the previous subsection).

The unavailable peers are informed about the changes of

data chunks through asynchronous messages, described below.

Once the replicator finds there is a new version of the data

chunk it replicates, it downloads the new version either from

the owner or from the other replicators. Note that if the data

owner were responsible for uploading the new version to the

replicators, a successful transfer would require both the owner

and the replicator to be available. In our solution, the replicator

is responsible for keeping replicas up to date so we only

require that the replicator and any other replicator or the owner

is available.

Unlike common backup systems, our system stores only

the last version of each data chunk. A system storing many

previous versions may be built in the same way as e.g. version

control software (svn, git) uses a standard filesystem; more

specifically, the previous versions (or the deltas) can be kept

in the same data chunk; or the deltas can be kept in separate

data chunks.

D. Asynchronous/Off-line Messaging

We assume that the workstations may be unavailable for

some time just because they are temporarily powered off. In

contrast to many distributed storage systems (e.g., GFS [16]),

in such a case our system does not rebuild the missing replica

immediately, in order not to generate unnecessarily load on

other machines nor on the network. Instead, when the un-

available peer eventually joins back the network, it efficiently

updates its replicas. To inform the unavailable peers about the

new version numbers of their replicas and about the contracts,

we use asynchronous messaging. The control messages sent to

the peer that is currently unavailable are cached at, so called,

synchro-peers. We use group communication to synchronize

the messages within each (small) group of synchro-peers. As

opposed to Defrance et al. [12], who present the mechanism

of caching the messages on routers, we chose to design the

concept of synchro-peers to limit the costs of the additional

hardware.

An asynchronous message from i to j is sent to the synchro-

peers of j. Synchro-peers is a set of peers, defined for every

peer j (j is called in this context a target peer) that keep

asynchronous messages for j. Synchro-peers of j include j,

so every message will be delivered to the target peer by the

same means as it is delivered to the other synchro-peers.

Each synchro-peer periodically tries to send the asynchronous

message to the synchro-peers that have not yet received the

message; the IDs of synchro-peers that have not yet received

the message are attached to the message (see [34] for details).

Using asynchronous messages has two advantages. First,

the asynchronous message is delivered with high probability

even when the sender is unavailable. Second, the data may be

downloaded concurrently from multiple replicators.

IV. EXPERIMENTAL EVALUATION OF THE PROTOTYPE

A. Experimental environment

We performed the experiments in two environments:

(i) computers in the faculty’s student computer labs; and

(ii) the PlanetLab. We ran our prototype software for over

4 weeks in the labs and over 3 weeks in PlanetLab. Each

computer acted as a full peer: it owned some data and also

acted as a replicator. The data was considered as modified

at the beginning of each day; thus each day we expected

the system to perform a complete backup. If the transfer of

a particular data chunk did not succeed within a day, the

following day we transferred a newer version of the chunk.

We used chunks of equal size – 50MB.

1) Students computer lab: We run our prototype software

on all 150 machines of the students’ computer lab. The avail-

ability pattern might be considered as a worst case scenario for

an enterprise (or a pessimistic one for an academic system).

The lab is open from Mondays to Fridays between 8:30am

and 8pm and on Saturdays between 9am and 2:30pm (however

we did not use this information in our placement strategies).

The students frequently (i) switch off or (ii) reboot machines

to start Windows; each day at 8pm the computers are (iii)

switched off by the administrators (the machines are not

automatically powered on the next day).

The amount of local data was sampled from the distribution

of storage space used by the students on their home directories

(scaled so that the average value was 3GB); the resulting

distribution is similar to uniform between 0 and 8 GB.

The local storage space depended on machines’ local hard

disks; and varied between 10GB (50% machines), 20GB (10%

machines), and 40GB (40% machines).

The computers in students lab have very low average

availability (the median is equal to 13%). Figure 1 presents

the distribution of the availabilities of the computers in lab.

Figure 2 presents the distribution of the up time of the

computers and the time between their consecutive availability

periods within a single day (the nights are filtered out). Low

availability coupled with long session times constitute a worst-

case scenario for a backup application: in contrast to short,

frequent sessions, here machines are rather switched on for a

day, then switched off when the lab closes and then remain

off during the next week.

2) PlanetLab: The experiments on PlanetLab were using

50 machines scattered around Europe. Each machine was

provided 10GB of storage space and had 1GB of local data

intended to be backed up. The machines were almost contin-
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uously available (availability equal to 0.91: it is not 100% as

some machines were overloaded for some time).

B. Asynchronous messages

In this subsection we present how the asynchronous mes-

saging influence message delivery time and the probability

that the message is delivered. For our analyzes we used the

availability traces from the students’ computer lab. We varied

the number of synchro-peers per peer between 0 and 30.

For each number of synchro-peers, we generated 100,000

messages with random source, destination and sent time.

Figure 3 presents the dependency between the number of

synchro-peers and the delivery time of a message. Because the

message delivery can be accomplished only when the receiver

is active, we present the delivery time measured from the first

availability of the receiver after the message was sent. Ideally,

the message should be delivered just after the receiver goes

online. The results show that synchro-peers significatly reduce

delivery time measured from the perspective of the receiver.

For the number of synchro-peers higher than 5, the advantage

becomes less significant – 5 synchro-peers ensure low delivery

time and induce low overhead to the system.

Figure 4 presents the dependency between the number of

synchro-peers and the probability of a successful delivery a

message to any synchro-peer. We are interested in calculating

such probability because a message delivered to a synchro-peer

is, in fact, a replica of the original message. Thus, synchro-

peers should enable message delivery even in case of long

term absence of the sender. The results show that synchro-

peers significantly increase this probability – with 5 synchro-

peers the system delivers 90% of the messages, while without

synchro-peers, more than half of the messages are lost.

C. Placement strategies

1) Students’ computer lab: The goal of tests on the labs

was to verify how the system copes with low availability of

the machines. We set the placement strategy to optimize the

backup/restore time of data and we set the available bandwidth

of the all machines to be equal. This reduced to the strategy

that places on each peer the amount of data proportional to its

availability (see full version [34] for more details).

During the first 3 days of experiments we measured the

ratio: the total size of data replicated by a peer (in MB) to

the peer availability. For each day, we considered only the

peers that were switched on at least once. We also restricted

the measurements only to peers with at least 9GB storage

space (that could accommodate, on the average, 3 replicas),

to separate the effect of insufficient storage space. The average

values and the standard deviations of the ratios for the 3

days are presented in Table I. The standard deviation is low

in comparison to the average (the deviations are 18%, 13%

and 8% of the corresponding average) which shows that the

replicas were distributed according to our expectations (the

load was balanced correctly).

2) PlanetLab: The goal of PlanetLab tests was to verify

how our system handles other placement strategies (including



TABLE I
THE RATIO: TOTAL SIZE OF REPLICATED DATA (IN MB) TO THE

AVAILABILITY FOR THE FIRST 3 DAYS OF EXPERIMENTS IN THE LAB.

Utility (weighted replicated data) [MB/avail.]

day average standard deviation

1 34487 6086
2 60489 8141
3 69658 5496

specific geographic distribution requirements). We used the

strategy that requires one replica to have TTL distance from

the owner in range 〈3, 8〉 and other replicas to be as close to the
owner as possible. Additionally, to simulate the heterogeneity

of the bandwidth of the machines, we set the limit on the

bandwidth for half of the machines to 500 KB/s, and for the

other half to 1000 KB/s. We set the backup window to 4500s.

Each machine had the same amount of local data (1GB); the

disk space limit was 4GB. We expected that the low-bandwidth

machines will be less loaded than those from the high-

bandwidth group. Assuming that machines are continuously

available, a low-bandwidth machine should replicate at most

2.25GB; and a high-bandwidth machines at most 4.5GB.

There is a tradeoff between the backup time and the geo-

graphic distribution of data. We tested two parameter settings

that assigned different weights to geographical distribution of

replicas (see [34] for details). We used the parameter M that

means that increasing the backup duration of a single chunk

by M seconds is equally unwanted as increasing the TTL

distance of this chunk by 1 outside of required range 〈3, 8〉. As
PlanetLab is highly geographically distributed, it is difficult to

find machines with low TTL distances. For M = 1 the average

TTL distance between the replica and the owner was equal

to 11.6 (standard deviation equal 3.7). In this case only two

machines exceeded their backup window (by at most 108 s).

For M = 100, the replicas had better geographic distribution:

mean TTL equals 8.1 (standard deviation equal 3.8). However,

the backup duration was increased – 13 machines exceeded

their backup window. The average excess of the backup

window was equal to 222s (5% of the backup window) and

the maximal 415s (9% of the backup window).

D. Duration of backup of a data chunk

We measured the time needed to achieve the consecutive

redundancy levels (the required number of replicas) for each

data chunk. The time is measured relative to the data chunk

owner online time: we multiplied the absolute time by the

owner’s availability. We consider the relative time as a more

fair measure because: (i) the transfer to at least the first replica

requires the owner to be available; (ii) data can be modified

(and thus, the amount of data for backup grows) only when the

owner is available; (iii) we are able to directly compare results

from machines having different availabilities. The distribution

of time needed to achieve the consecutive redundancy levels

is presented in Figure 5 (lab) and Figure 6 (PlanetLab).

1) Lab: The average time of creating the first, the second

and the third replica of a chunk are equal to, respectively, 1.1h,

2.7h and 5.5h (the average time needed to create any replica is

equal to 3.1h). We consider these values to be satisfactory as

the average relative time for transferring a single asynchronous

message holding no data (a message with no synchro-peers),

calculated based on availability traces, is equal to 2.6h.

The maximal values, though, are higher: 24h, 29h and

32h. These high durations of replication are almost entirely

the consequence of peers’ unavailability. The maximal time

needed to deliver an asynchronous message with 3 synchro-

peers is of the same order (21.5h, measured relatively to source

online time, see Section IV-B). Moreover, if we measure only

the nodes with more than 20% average availability, the times

needed to create the replicas are equal to 1h, 1.6h and 3h and

maximal values are equal to 12h, 18h and 20h.

2) PlanetLab: The average times needed for creating the

first, the second and the third replica are equal to, respectively,

0.5h, 0.7h and 1.1h. The maximal values are equal to 4.0h,

4.2h, and 4.2h. These values are significantly lower than in

the case of the students’ lab even though the distance between

the machines is higher and the computers in students lab are

connected with a fast LAN. This result once again proves that

the unavailability of the machines is the dominating factor

influencing the backup duration.

The average time needed for transferring a data chunk is

equal to 0.76h. This corresponds to the throughput of 4.49Mb/s

(Planet-Lab uses standard Internet connections).

V. CONCLUSIONS

We present an architecture of a p2p backup system based on

pair-wise replication contracts. In contrast to storing the data

in a DHT, in our approach the placement can be optimized to

a specific network topology, which allows to take into account

e.g. the geographical dispersion of the nodes. We implemented

a prototype and tested it on 150 computers in our faculty and

50 computers in PlanetLab.

During implementation and initial tests we encountered

numerous issues we did not expect: e.g., updating data catalog

remotely whenever any contract is changed is highly ineffi-

cient; revoking the contracts cannot be done asynchronously;

changing contracts too often is inefficient; each contract must

be kept by both the data owner and the replicator and the

two versions have to be kept consistent. We think that these

problems should motivate others researchers to verify their

ideas, in addition to simulations, by constructing prototype

implementations.

Our most important result is that the backup time in-

creases significantly if machines are weakly-available: from

0.76h for nearly always-available Planet-Lab nodes to 3.1h

for our lab with just 13% average availability. This cost of

unavailability makes some environments less suitable for p2p

backup. The irregular environments negatively influence the

maximal durations of data transfer. Choosing machines with

better availability strongly reduces this effect (for instance, by

restricting our lab environment to machines with more than



20% availability, the average backup time decreases from 3.1h

to 1.9h). Moreover, in enterprise environments such irregular

availabilities should not be the case. There, however, the

machines may have their specific, regular availability patterns.

In such case it may be valuable to use more sophisticated

availability models.

Yet we must stress that it is possible to build an efficient and

reliable backup system, even using weakly-available machines

with irregular session times. We managed to run our prototype

on 150 machines, showing that it is possible to take advantage

of the heterogeneity of the p2p environment, in particular: the

geographic dispersion of the machines, the network connec-

tions between the machines, different bandwidths, disk spaces

and availabilities.
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