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Abstract

Current real-time collaborative application implementations use dedicated infrastructure to carry out all
communication and synchronization activities. Specifically, they require all end nodes to communicate
directly with and through the central server. In this paper, we investigate scenarios in which the most
resource intensive functionality of continuous communication among collaborators to disseminate changes is
decentralized, utilizing the end users themselves as relays. We observe that communication characteristics
of real-time collaboration makes use of existing multicast mechanisms unsuitable. As collaborative editing
sessions are typically long and repeated, it is possible to gather and leverage node behavior (their insta-
bilities and frequency of sending updates) and communication links (latencies and average costs). Several
criteria to determine the quality of a multicast tree can be identified: cost, latency and instability. In this
paper we analyze the complexity of the problem of finding optimal communication topologies, and propose
approximate algorithms to optimize the same. We also consider the multiobjective problem in which we
search for a topology that provides good trade-off between these sometimes conflicting measures. Validation
of our proposed algorithms on numerous graphs shows that it is important to consider the multiobjective
problem, as optimal solutions for one performance measure can be far from optimal for the other metrics.
Finally, we briefly present an implementation of a communication library that uses the proposed algorithms
to periodically adjust the dissemination tree.
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traditionally single user applications—from text ed-
itors like Word [6] to multimedia content creation
tools like Maya [7]—into groupware for real time
collaborative editing.

1. Introduction

Complex projects are carried out in a collabora-
tive manner involving multiple participants. There
are numerous ways in which such collaborative work

can be supported, depending both on the applica-
tion need as well as how consistency of shared ob-
jects is maintained. While some consistency main-
tenance mechanisms allow asynchronous collabora-
tion (for example, cvs/svn) others like operational
transformation [1, 2] or WOOT (3, 4] significantly
simplify collaboration tasks by facilitating real time
group editing. Furthermore, techniques like trans-
parent adaptation[5] facilitate adoption of diverse
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Real-time collaboration groupware systems re-
quire four logical functions, namely, a repository
manager to store the shared content, a session man-
ager to keep track of the members involved at any
time (session) in the collaborative editing activi-
ties, a synchronization mechanism — for example
using a centralized synchronizer to carry out opera-
tional transformations, or vector clocks to carry out
synchronization in a decentralized manner—and, fi-
nally, a communication mechanism among the users
(and the central synchronizer, when applicable).

Collaborative applications may extend beyond
traditional groupware. For instance, while very dif-
June 5, 2010



ferent at the surface, multiuser groupware, social
software, even massively multi-player online games
(MMOGsS) all are essentially multi-user collabora-
tive applications. All these applications propa-
gate users’ actions and maintain consistency of the
shared states, be it a document or a game environ-
ment. For the users’ experience to be acceptable,
these applications have stringent constraints on la-
tencies and interruptions they may tolerate.

Current implementations of such groupware,
from desktop based CoWord [6] and CoMaya [7],
to Web based Google Wave [8] rely on a dedicated
infrastructure to carry out all these functions, and
require all end nodes to communicate directly with
and through a central server.

While there are many advantages in supporting
all these functions in a centralized manner using
dedicated infrastructure, there are also several mo-
tivating factors for using decentralized or hybrid ap-
proaches.

Consider moderately large sized collaborative
groups carrying out communication intensive re-
altime collaborative editing: for instance, in com-
plex civil engineering designs (such as hospitals, air-
ports), dozens of engineers, architects and special-
ists of different branches work on the same project
in parallel. During a session when an object is be-
ing edited, all the members involved in the session
need to communicate their updates to all the other
users. Likewise, in massively multi-player online
games (MMOG) the game universe is typically split
into small regions in each of which tens to hundreds
of users interact. The users in a game region are
interested in actions and updates for the game re-
gion, rather than the whole game universe. Thus,
all users within each game region may be consid-
ered as a single session. An alternative scenario is
a smaller-scale online multiplayer game, involving
tens of players in a single session, but many inde-
pendent sessions played in parallel.

Figure 1: Approximate physical network structure with
peers grouped in two physical locations. Two groups of peers
are behind firewalls.

Even if the individual groups are not very large, if
there are many object sessions and all users use the
same infrastructure, it can generate heavy commu-
nication load at the server when all the communica-
tion messages need to go through such a server, as
is the case with current implementations of several
groupware [6, 7, 8].

Such an overload is not only undesirable but also
easy to avoid, by allowing the users involved in a
collaborative session to communicate in a peer-to-
peer manner. In multi-player gaming, using peer-
to-peer mechanisms to alleviate infrastructure load
is already a relatively mainstream idea [9, 10, 11].
Another advantage of such a decoupling of the com-
munication from infrastructure based solutions is
that participants can collaborate in an ad-hoc man-
ner, even if they do not have connectivity to the
central infrastructure. For example, if all the users
are traveling by train, or if the users are working
within a university with fast LAN connection, but
poor Internet connection.

We envision that in general, in this age of mobile
knowledge workers, proliferated with sophisticated
portable computing cum communication devices, it
is thus essential to support nomadic collaboration,
which is served well by supporting collaborative ses-
sions even in absence of infrastructure. Such solu-
tions may either be stand-alone or be compatible
with infrastructure (hybrid solutions) as and when
necessary or possible.

In order to decouple the collaborative session
from dedicated infrastructure — it is essential not
only to provide a communication mechanism to
communicate with all members of the collaboration
session, but also to synchronize their editing activi-
ties so that all participants have a consistent view of
the collaboratively manipulated objects. Such syn-
chronization can however be readily achieved by ei-
ther adopting a centralized approach within the ses-
sion, where an elected member acts as the synchro-
nizer (from software engineering perspective, this is
simpler), or can also be achieved in a decentralized
manner by the use of vector clocks [12].

Current groupware implementations also assume
that end users have reliable and fast connection,
and membership changes in a session are infre-
quent, and are not optimized for various kinds of
heterogeneity that occurs in practice. Geographic
distribution of collaborators, increased mobility of
knowledge workers as well as proliferation of diverse
portable devices like Ultra Mobile PCs (UMPC)
and smart-phones require a more flexible support



[0.08, 0.2]

(8,0
[0.1,0.1] [0.05,0.1]
(2,0 (12, 0) .
(8,0)

(0.6, 0.3]

[0.06, 0.3]

Figure 2: Connectivity graph for the physical network struc-
ture presented in Figure 1. Values next to a node are its
workload p (higher values denoting more frequent updates)
and instability A (higher values denoting more frequent dis-
connections). Values next to an edge are its latency ! and
its cost c.

for nomadic collaboration. Such a flexible paradigm
should take into account users’ limited connectivity
and other constraints. For instance, UMPCs typi-
cally have various connectivity options (bluetooth,
wi-fi, GPRS, Ethernet). Likewise, wireless net-
works are much more varied than corporate LANs
in availability, performance and costs.

These considerations motivate the design of a
more flexible communication mechanism, where a
suitable topology can be chosen for communication
within session members, where the optimality is
determined by various considerations including the
overall performance and cost.

In order to model the process of collaborative
editing in a more accurate way, we propose to mea-
sure additional characteristics of nodes and edges
(formally defined in Section 2).

Typically, some users contribute to a shared doc-
ument more than others. The structure of the
connectivity tree should take this into account by
proposing an architecture in which updates from
frequent contributors have lower latency. We model
the frequency of edits of node v by workload p(v) €
[0,1], with higher values denoting more frequent
contributions.

Nodes disconnect from the network with differ-
ent rates, that depend on factors such as the qual-
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Figure 3: A multicast tree in which, by using intermediate
nodes, data on the backbone link is not replicated.

ity of network connection (Ethernet vs. GPRS) or
the type of the node (a standard PC vs. a smart
phone). A disconnection of a node will force the
nodes connected through that node to reorganize.
We model the disconnection rate by nodes’ insta-
bility X\, with higher values corresponding to more
frequent disconnections.

A communication channel between two nodes is
characterized by the observed latency. As high la-
tencies worsen the user experience of collaborative
editing, nodes should use channels with low laten-
cies. Finally, in a heterogeneous network infras-
tructure, some of the links (such as GPRS/3G)
may have significant monetary cost, while others are
free/cheap (local Ethernet or local wireless), which
should be taken into account.

Consider an example of a geographically dis-
tributed team working at two physical locations P
and S (Figure 1). The typical collaborative editing
application uses a dedicated server as the hub of
a logically star topology for communication. How-
ever, this would exclude the mobile node S4 from
collaboration.

In a more dynamic collaboration scenario, one of
the nodes takes also the role of the server that syn-
chronizes the rest of the nodes (this role can be del-
egated to another node, should the current server
fail). Figure 2 presents all the possible connections
at the application layer. Additionally, we present
workload and instability for each node and latency
and cost for each edge. Using this data, an alterna-
tive multicast tree (Figure 3) can be constructed, in
which only one copy of data (instead of four) is sent
over the cross geographic S-P link, which optimizes
the usage of potentially costly connection.

However, determining the best topology is often
non-trivial, and care should be taken in determin-
ing a good topology. For instance, in the example
scenario, S1, the local root in S, uses a potentially
unreliable wireless link, which is undesirable. An-
other problem may be that observed latency can be
high, as node S2 is the source of a majority of the
update operations.

In this paper, we consider the problem of building
an optimal multicast tree for disseminating update
information in collaborative applications. We take
into account heterogeneous network structure and
failing nodes. We analyze the problem from both
possible designs that can be used in collaborative
applications: decentralized communication (as in
many-to-many multicast), and centralized commu-
nication, in which all the messages must be sent



to a synchronizer, before being disseminated to the
rest of the peers.

We model the problem as a multiobjective op-
timization problem (Section 2) that optimizes the
stability, the latency and the cost of the multicast
tree. Then, we formulate these performance mea-
sures in the two dissemination scenarios. In the cen-
tralized communication scenario, the latency takes
into account both the uplink latency (on the path
from a node to the synchronizing server) and the
downlink latency (the maximum latency between
the synchronizer and a node). Similarly, the cost
considers both the cost of sending an update to the
server and the cost of disseminating this update by
the server to the nodes. In decentralized commu-
nication scenario, both measures are slightly modi-
fied: latency takes into account the longest path in
the tree; and cost considers only the cost of the mul-
ticast. In both communication scenarios, we model
the (in)stability as the average number of discon-
nections of a node in an unit of time. In both sce-
narios, users’ latencies and costs are weighted by
the average participation of the user in the editing
process.

We analyze the boundary, monocriterion prob-
lems and propose exact algorithms (Section 3). We
then propose a multiobjective (approximate) al-
gorithm based on a hill climbing heuristic (Sec-
tion 3.3). We validate the performance of our algo-
rithms by simulation (Section 4).

There is substantial research effort devoted to ap-
plication level multicast, both in one-to-many and
in many-to-many scenarios. We further discuss re-
lated work and differentiate them from our work in
Section 7. One-to-many multicast typically models
transmissions of contents that cannot be modified
by the group (such as Internet radio or RSS feeds).
Many-to-many multicast models more interactive
applications, such as teleconferences. Collaborative
applications are somewhat similar to many-to-many
multicast.

The main difference from typical many-to-many
multicast is that for many current implementations
of collaborative applications, the messages must be
validated (and, perhaps, modified by operational
transformation) by a logically central synchronizer
before other members can use them to guarantee
consistency. Multicast trees for collaborative appli-
cations must thus optimize both the information
collection and the dissemination (after necessary
processing and reordering). In order to compare the
classic many-to-many multicast with server-based

collaboration, we formulate our criteria for tree op-
timality in both dissemination strategies. Due to
different communication patterns, the formulation
of criteria differ. However, the general approach,
and the type of criteria used is the same.

Another fundamental difference of our approach
is that the majority of existing multicast trees are
built to optimize a single criterion, typically the la-
tency. Our experiments show that single-criterion
optimized topologies are far from the optimum with
respect to the other criteria (such as cost and sta-
bility). The multiobjective approach proposed in
this paper facilitates a good trade-off between all
the criteria.

The fact that collaborative sessions last long, and
same collaborators participate in repeated sessions
allows for the collection of statistical information
(such as the relative contribution of each of the
users in the collaboration), which can be used to
calculate the weighted versions of latency and cost
of the dissemination tree, in which each users’ cri-
terion is weighted by the user’s participation.

Another (final) difference, thankfully to our ad-
vantage, is that the number of members in a session
to edit an object is small in typical groupwares: for
instance CoWord [6] supports a maximum of six-
teen simultaneous users editing an instance of a
document, and even in massively multiplayer on-
line games, each game region has tens upto around
a hundred users. This allows the problem of finding
a multiobjective optimized overlay to be computa-
tionally tractable.

To summarize, in many scenarios it is impor-
tant to consider more than the latency in build-
ing multicast trees, as trees optimized for one ob-
jective tend to be inefficient for other objectives.
We propose approximate algorithms to determine
such topologies, and validate with simulations and
experiments that a good compromise between the
criteria is obtained, and that such topologies are
fast to compute by our hill climbing algorithm, and
at the same time, very close to the optimal ones
determined by exhaustive search. The algorithms
are used by MoMo, our implementation for opti-
mized multicast communication, briefly described
in Section 5. We provide the implemented MoMo
communication library as an open source project
(http://code.google.com/p/momocommn/).



2. Problem Definition

The connectivity graph G = (V, E') represents all
the possible logical connections (u,v) € E between
peers (or nodes) V = {v}. If (u,v) € E, peers u
and v can establish a connection. We assume that
(u,v) € E < (v,u) € E. However, if both peers
are firewalled, or too far apart, there is no edge in
G. We assume that the graph is connected.

We define the following cost functions over E:

o ¢c: E— RT: ¢(u,v) is the monetary cost asso-
ciated with sending a unit of data (e.g., 1kB)
from u to v;

o/ : L — R": I(u,v) is the latency (in time
units) over the edge (u,v).

In the most general model, the price and the latency
of the link are not symmetric.

The amount of communication messages gener-
ated by a user of a collaborative application varies,
depending on the type of the application and the us-
age pattern. In a boundary case, a very fast typist
can generate about 30kB/s on CoWord configured
to send one message for each pressed key. However,
other applications do not produce as many mes-
sages, and CoWord can be reconfigured to group
neighboring edits before sending them. Neverthe-
less, bandwidth limit can be introduced as a limit
degmax(v) over the number of immediate children of
anode v (with a simplifying assumption that all the
children share the same communication channel).

Each node v has the following characteristics:

e disconnection rate A(v): the average number
of disconnections from the network in the unit
of time;

e sending rate p(v) € [0,1]: expresses the frac-
tion of messages (or the fraction of the total
size of messages) sent by v (i.e., messages pro-
duced by v). It enables measuring the relative
importance of v as a source in the multicast
network: the higher p(v), the more messages it
emits, thus, the more important it is to opti-
mize the uplink between v and the rest of the
network.

In collaborative editing, the peers are well-
identified and the collaboration sessions are long.
Consequently, it is possible to collect the aforemen-
tioned parameters.

The objective is to build a spanning tree T =
(‘/, Ef) for C;’7 with Et g E.

We consider two dissemination scenarios: cen-
tralized and decentralized. The centralized scenario
models a typical collaborative application in which
the root r(T') of the tree acts as a synchronizer.
When a peer v modifies the shared data (by modi-
fying the local copy), the modification notification
is sent to its parent parent(v) = u : (u,v) € Fy,
who forwards it to its parent, and so on, until it
reaches the root. Note that the nodes along such
a path do/can not utilize the message at the ap-
plication level. The root accepts the modification
(possibly re-ordering it with other, concurrent mod-
ifications originating from other peers or marking it
as a conflicting one). Then, the notification is mul-
ticasted by the root back to all the other nodes.
This is done by reusing the overlay. That is to say,
the root sends the notification to its immediate chil-
dren. These children nodes use such received mes-
sage at the application layer, and also forward it
further downstream to their children, until the no-
tification reaches all the nodes in the tree.

The decentralized scenario models a usual multi-
cast with multiple senders, e.g., peer-to-peer video
conferences, or when vector clocks are used for syn-
chronization of coedited document. In this sce-
nario, we assume that neighbors of a sending peer
can use the information as soon as they receive it.
Thus, the modification notification of a peer v is
sent to its immediate parent u = parent(v). The
parent can immediately use the message at the ap-
plication level, besides forwarding it further to its
parent parent(u) and all its other children apart
node v itself (w # v : parent(w) = u).

Even though collaborative applications can be re-
alized in a decentralized pattern (using careful syn-
chronization with vector clocks), many implemen-
tations (such as CoWord [6] or Google Wave [8])
rely on a central point. This point acts as a doc-
ument repository, but also acts as a synchronizer
and provides mechanisms to avoid and resolve con-
flicts. For this reason remote peers (i.e., the peers
who do not produce the modification) can accept
messages only after they have been accepted and
pre-processed by the root.

In summary, the fundamental difference between
the two scenarios (de/centralized) we consider is
this: We assume that in the centralized scenario
the root node needs to process the aggregated mes-
sages (for example, re-order them) before all the
other nodes can use the messages at the applica-
tion layer, while in the decentralized scenario, no
such centralized processing is carried out.



In both scenarios, we assume that the tree used
for collecting the updates is the same as the mul-
ticast tree. In principle, the update (aggregation)
tree could have been different from the dissemina-
tion tree. However, this would put a further burden
on construction and maintenance of such a separate
tree.

We use the following notation in the rest of
the text.  The degree of a node deg(u) is
the number of (immediate) children node w has
in the tree T (deg(u) = | (u,v;) €
E.}|). A path 7w(u,v) in T is an ordered se-
quence of nodes (vg,v1,...,v,) such that vy = u,
v, = v and {(vo,v1), (v1,v2),. .., (Vn_1,vn)} C
E;. The total latency L(u,v) over path m(u,v)
is the sum of latencies of edges in the path,
L(u,v) = > . n1lvi,viy1).  The total
cost C(u,v) is similarly defined as C(u,v) =
22i=0,...n—1 ¢(Vis Vig1):

2.1. Optimization Criteria in Centralized Dissemi-
nation

We define the following optimization criteria
over 1"

2.1.1. Tree’s weighted end-to-end latency L

This criterion expresses the latency between the
moment that any of the peers sends an update and
the moment when this update is received by the
furthest peer in the network. The latency is aver-
aged over all peers with weights equal to the send-
ing rates p(v;) (so that the peers that send updates
more frequently have more influence over the crite-
rion). Thus,

L(T) = Z p(v)(L(v,r) + max L(r,w))

% weV
- ve L L (1)
= max L(r, w) + %;p(v) (v,7),

where r is the root. In the tree in Figure 3, L equals:

L=65+0.08-0+0.06-5+0.06-7
+0.05-45+ 0.6 - 47+ 0.1- 53 + 0.05 - 65.

The first element (65) is the total latency between
the root P1 and the furthest node S4. The second
element computes the observed uplink latency of
P1 as its workload (0.08) multiplied by the cost of
the path to the root (0, as P1 is the root). The
following elements add the observed latencies for
nodes P2, P3, S1, S2, S3, S4.

2.1.2. Tree’s aggregated cost C'

The aggregated cost expresses the weighted cost
of sending and receiving updates through the mul-
ticast tree. For each node v, the cost of sending the
update is C(v,root). Then, this update is multi-
casted to all the other nodes in the tree. Each edge
in the tree is used. By aggregating these costs over
all the nodes and weighing it by p(v), we obtain:

C(T)=>_ p)C(v,r)+ > clparent(v),v). (2)

veV veV

In the tree in Figure 3, C equals:

C =(0.05-10+40.6-10+0.1-10 + 0.05 - 10)
+ 10.

The first line reflects the cost of the uplink of nodes
S1, S2, S3 and S4 as the product of their workload
(0.05 for S1) multiplied by the total cost of the link
between each of the nodes and P1, the root (non-
zero only for S1-P1 link). The cost of uplink of
nodes P1, P2 and P3 is zero. The second line adds
the costs of all the edges of the tree. In this case,
only the link P1-S1 has non-zero cost.

2.1.8. Tree’s instability A

A disconnection of a node v affects its children
{u : (v,u) € Er} that would have to find replace-
ment parent node(s). For the sake of the theoretical
analysis, we make an usual assumption that nodes’
failures are independent, and thus with high prob-
ability no two nodes disconnect at the same time!.
Thus, the instability of the tree can be computed
as the average number of nodes affected by discon-
nection in an unit of time:

AMT) =Y A0){u: (v,u) € BEr}]  (3)

veV

In the tree in Figure 3, A equals:
A=02-34+06-2+0.1-1.

Node’s P1 impact on instability is its A (0.2) multi-
plied by the total number of children (3). The other
nodes with children are S1 (adding 0.6 - 2) and S3
(adding 0.1-1).

1This assumption is unrealistic in case of network parti-
tioning, when nodes share the same physical network link
that gets disconnected. However such situations can be con-
sidered rare, compared with node churn.



2.2. Optimization Criteria in Decentralized Dis-
semuination
When messages do not have to be processed by
the root before being used by the other peers, the
dissemination pattern, and thus the usage of the
links changes. Thus, the criteria described in the
previous section have to be modified accordingly.

2.2.1. Tree’s weighted end-to-end latency L

In decentralized dissemination, each peer can im-
mediately use a received message apart from for-
warding the same to all its neighbors (except the
source). Thus, for each sender, the observed latency
is determined by the length of the longest path in
the tree. This leads to the following formula for
weighted latency:

L(T) =) p(v) max L(v, w). (4)

weV
veV

2.2.2. Tree’s aggregated cost C'

In decentralized dissemination, a message is not
forwarded back to its source. Additionally, each
message is routed to all other peers in the net-
work. Note, however, that in the general case,
c(v, parent(v)) # c(parent(v),v).

The routing direction of a message on the
(v, parent(v)) edge (and thus, the cost) depends on
the original sender of that message. If v, or one
of its descendants (denoted later as T'(v)) is the
sender, the message is routed “upward”, or from v
to parent(v). If any other node in the graph is the
sender, the message is routed “downward”, or from
parent(v) to v.

In the first case (a message originates from
T(v)), the routing results in cost c(v, parent(v)).
Such messages are produced with probability
> wer(w) P(w). Thus, the resulting weighted cost
is equal to c(v, parent(v)) 3_, e P(W).

In the second case (a message originates outside
T(v)), the routing results in cost c(parent(v),v),
which results in a weighted cost equal to
clparent(v), v)(1 = Yy pw)):

By summing over all edges (v, parent(v)) in tree
T, we obtain the following formula:

c(T) = Z ((c(uparent(v)) Z p(w))

veEV weT (v)

+ (c(parent(v),v)(1 — Z p(w))))

weT (v)

()

2.2.8. Tree’s instability A

Instability does not depend on the communica-
tion pattern, but on the protocol used to recon-
struct the tree when a node fails. Thus, Eq. 3 is still
valid in the decentralized dissemination pattern.

2.3. Multiobjective Problem

The multiobjective optimization problem is de-
fined as finding a spanning tree T* on G that min-
imizes the latency Lj,q., minimizes the cost C' and
minimizes the instability A:

(min L(T), min C(T'), min A(T)), (6)

Note that the notation
(min L(T), min C(T),min A(T"))  specifies  only
that the three functions are to be simultane-
ously minimized. However, it leaves open the
meaning of the multiobjective minimization, and
the kind of solution, or solutions, that are to be
returned [13]. For instance, one possibility would
be to return any Pareto optimal solution (i.e., a
solution y = (I, ¢, \) such that there is no solution
y' = (',d, N) with values better for all the criteria
' <l,d <e¢, N < )\). The other possibility is to
return all the Pareto-optimal solutions. However,
many multi-criteria combinatorial optimization
problems are intractable, that is, the number of
all Pareto-optimal solutions is exponential. It is
also possible to return a certain Pareto-optimal
solution, being, for instance, the weighted average
of the criteria.

2.4. Special Case Considered

In the rest of the paper, we restrict the gen-
eral problem defined in the previous section to a
class of problems that is realistic enough to model
most of the real world scenarios and, at the same
time, has boundary problems that can be solved
by exact algorithms. We assume that all the la-
tencies are symmetric (I(u,v) = Il(v,u)). Thus,
we assume that a link latency is equal to the half
of the round trip time (RTT), which is not pre-
cise in general. However, RTTs can be easily mea-
sured, unlike latencies. Similarly, costs are symmet-
ric (¢(u,v) = c(v,u)), which reflects usual network
providers’ charging schemes. We also assume that
the collaborative application does not require sig-
nificant bandwidth, thus there are no limits over
the maximal degree of nodes deg,,.. (v) = oco.



3. Problem Analysis and Proposed Algo-
rithms

3.1. Individual Subproblems in Centralized Dissem-
tnation
This section analyzes the complexity and the op-
timality for individual monocriteria subproblems,
that is minimizing the maximal weighted end-to-
end latency L,,q,, minimizing the aggregated cost
C and the instability A.

3.1.1. Instability

The min A(T") problem is equivalent to the di-
rected minimum spanning tree in a graph G =
(V, E), in which the cost A(v,w) of the edge (v, w)
is equal to the disconnection rate A(v) of node
v. Recall that A(T) = > . AMv){w : (v,w) €
Er}|, which, in such a spanning tree corresponds to
2 wawyer Mo, w) =32, yer A(v). Given a root r,
such a tree can be found by Chu-Liu/Edmonds [14]
algorithm in O(]V'|?) for dense graphs. Moreover, as
the following lemma states, the tree must be rooted
at the most reliable node.

Lemma 1. The instability is minimized by a span-
ning tree Ty rooted at the most reliable node rx =
arg min, A(v).

Proof. The proof is by contradiction. Assume that
tree T', different than T is optimal for A. Conse-
quently, 7" must have a different root r’ than Ty.
Consider path 7(r’,rs) in T. Let us modify T into
T’ so that 75 becomes the new root and 7 is re-
versed. In T, the number of children of r, increases
by one and that of " decreases by one. The number
of children of all the other nodes is the same. Thus,
the instability in 7" changes by A(ry) — A(r') < 0,
which leads to a contradiction with the assumption
that 7" is optimal for A. O

Note that if the maximum degree of some nodes
is bounded, this problem becomes NP-hard ([15,
ND3)).

3.1.2. Latency

The main difficulty in analyzing min L(T) is
caused by the fact that the same tree is used for
upstream and downstream messages. The min L
problem is a special case of the optimal communi-
cation spanning tree (OCT) problem [16]. In OCT,
given communication requirements p(u,v) for each
pair of nodes, the task is to find a spanning tree such
that >°, ,cv p(u,v)L(u,v) is minimized. OCT is

NP-hard, even for restricted cases when only some
fixed number of senders S C V (|S| > 1) commu-
nicate (i.e., p(u,v) # 0 only for w € S C V). The
combinatorial complexity is caused by the fact that
senders communicate with all the other nodes.

In our problem, however, the set of communi-
cating pairs is more limited. OCT defined by Eq. 1
has a particular structure of requirements with only
non-zero requirements being p(u,v) = p(u) for
v = r (uplink latencies between each node u and
the root r); and p(u,v) = 1 for u = r, v = k (down-
link latency between root r and the furthest node
k). However, in our problem node k and r are iden-
tified only after the tree is constructed.

Even in the case of symmetric latencies, the
problem is still different from the usual Shortest
Path Tree (SPT) problem, because of max element
(max,, L(r,w)) and non equal weights p. However,
the following lemma shows that a SPT spanning
tree is optimal.

Lemma 2. If the latencies are symmetric
(v, u) = l(u,v)), the SPT spanning tree with min-
imal L among all possible SPT is optimal for the
weighted end-to-end latency L.

Proof. The proof is by contradiction. Let us denote
as r* the root node of the SPT spanning three T*
with minimal L = L*. Assume that L' < L* for
some spanning tree T’ rooted at r’.

Since latencies are symmetric, we rewrite L(T)
(Eq 1) as follows:

L(T) = max L(r,w) + Zp(v)L(v, r)
= max L(w,r) + Z p(v)L(v, 1)

If the root of both trees is the same (r* = 1/),
L' < L* implies that there is some node v, for
which L(v,r’) < L(v,r*), which means that L’ has
shorter path to v, which contradicts the assumption
that the tree is an SPT tree. If the root is different,
compare T" with a SPT T5PT" rooted at /. Using
the same argument, it is not possible that the dis-
tance L(v,r’) in T' is less than the same distance
in 75PT" Furthermore, LSPT" > L*, as T* has the
minimal latency among all the SPT trees. O

Optimal latency tree can be thus easily found
by repeating Dijkstra’s shortest path algorithm for
every node (with total complexity O(|V|?)) [17].

When the maximum degree of the tree is limited,
this model becomes NP-hard (even with symmetric



latencies), since SPT with bounded degree is NP-
hard [18].

3.1.8. Cost

Equation (2) denoting the cost of a tree is com-
posed of two components. min ), p(v)C(v,r) is a
weighted shortest path between v and r, optimized
by SPT (but taking into account the costs ¢(v,u),
and not the latencies (v, u), as in the previous sec-
tion). min ) c(parent(v),v) is the total cost of all
the edges, optimized by the usual Minimal Span-
ning Tree (MST). Thus, a tree optimal for cost C
is a trade-off between MST and SPT.

The min ), p(v)C(v,root) + 3 c(parent(v),v)
problem is related to the NP-complete Minimum
Diameter Spanning Subgraph [15, problem ND6],
in which a graph’s diameter is minimized, given a
budget on the spanning tree’s cost. Another, simi-
lar problem is the problem of finding a tree that bal-
ances the total weight of the edges and the length of
paths [19] (called LAST, Light Approximate Span-
ning Tree). In this problem, the goal is to find a
tree with total weight of at most 8 times the total
weight of the minimum spanning tree and which
extends the length of paths between the root and
each vertex by at most a. [19] proposes a poly-
nomial approximation algorithm that adjusts Min-
imum Spanning Tree (MST). The algorithm does a
depth-first search. For each vertex v, if the current
path length breaks the shortest path requirement,
the vertex is switched to its SPT path (by adding
all the missing edges on SPT path between v and
r). The algorithm is (o, 1+ —2;) approximation
of, accordingly, the length of each SPT path and
the total weight of the minimum spanning tree.
The main difference between LAST and min C is
that min C' optimizes the weighted sum of short-
est paths and MST. Another related algorithm is
MENTOR [20], a heuristics that combines Prim’s
MST and Dijkstra’s SPT by modifying the edge
scoring function. In Prim’s MST, edge’s (v, w) score
is ¢(v,w). In MENTOR, the scoring function adds
the distance between the root node and the vertex
multiplied by a constant « € [0,1], so the score is
c(v,w) + aC(r,v).

The problem of finding a polynomial al-
gorithm  optimizing min)_ p(v)C(v,root) +
>, c(parent(v),v) is still open. Currently, we use
a heuristic that is a variant of LAST [19]. Our
algorithm builds a MST and starts a depth-first
search. Each vertex v is tentatively switched to
its SPT path. For each vertex w on the SPT

path between v and root, its parent on the SPT
path replaces the current parent. Then, if the
resulting tree 7" has lower cost (C(T") < C(T)),
the tentative switch is accepted and the current
tree is modified; otherwise the process continues
with the original tree. Finally, after visiting child
w (and, thus, all its descendants), if w switched to
its SPT parent, the original parent v tentatively
becomes w’s child (but only if it does not cause a
cycle in the tree). If the resulting tree 7" has lower
cost (C(T") < C(T)), such a change is accepted
and the current tree is modified.

When the maximum degree of the tree is lim-
ited, this model also becomes NP-hard, as it in-
volves both the spanning tree and the shortest path
problems with bounded degree.

3.2. Individual Subproblems In Decentralized Dis-
semuination

In this section, we analyze the complexity of min-
imization of individual performance measures in the
decentralized dissemination scenario. Analysis of
the instability (Section 3.1.1) still holds, as the in-
stability problem is the same in the centralized and
in the decentralized communication pattern.

3.2.1. Latency

If the sending rates p(v) are equal, the problem
of minimizing ), max,, L(v,w) becomes a special
case of the k-Source Sum of Source Eccentricities
Spanning Tree problem (k-SSET, [21]) in which
all the vertices are sources. k-SSET is polyno-
mial. The optimal tree is a SPT rooted at the
midpoint of the diametral path (the shortest path
connecting the pair of vertices furthest apart, i.e.,
(v,w) : L(v,w) = max., »; L(vi,v;)) [21].

The following lemma shows that the weighted
problem )" max,, L(v, w) can be expressed by the
unweighted k-SSET on a modified graph.

Lemma 3. The problem of minimizing
>, p(v)maxy,, L(v,w) can be reduced to the
problem of minimizing ), ., maxy, L(v,w) in a
modified graph (V',E').

Proof. Given a graph (V,E) and nodes with
weighted sending rates, we will construct a modified
graph (V') E’), in which source nodes have the same
sending rates, the rest of the nodes is not sending,
and the resulting latency is equal to the latency in
the original graph (multiplied by a constant).

We defined the sending rates p(v) as the fraction
of transmission time in which node v sends data.



Thus, all p(v) are rational numbers. We denote by
po their lowest common denominator (an integer).

We replace each node v in the original graph by
1+ po - p(v) nodes: the front node vy that has the
same set of outgoing edges to the rest of the graph
as v; and pop(v) nodes vy, . .. s Vpop(v)> connected to
vo with edges (vg, v;) with zero latency.

The set of senders S in the modified graph in-
cludes only nodes v; (i.e., all the nodes excluding
the front nodes).

In the modified graph, there are exactly pg times
more messages leaving each front node vy, com-
pared with node v from the original graph. Thus,
the relative rates of outgoing messages at front
nodes are the same as in the original graph.

Thus, the latency in the modified graph
> v, e Maxy, L(v,w) is equal to the latency in the
original graph multiplied by the lowest common de-
nominator pg Y, oy p(v) maxy, L(v,w).

O
Consequently, an  algorithm  optimizing
>, p(v)max, L(v,w) can construct such a

modified graph and then find a SPT rooted at the
diametral path. However, a more straightforward
approach is to construct all possible SPTs in the
original graph and then choose the one resulting
in the minimal latency. As the optimal tree in
the modified graph is a SPT, in which all the
added nodes are leafs, the best SPT in the original
graph will have the same structure. Thus, again
Dijkstra’s shortest path algorithm can be repeated
for all the nodes, with total complexity O(n?).

3.2.2. Cost
Symmetric costs (c(u,v) = ¢(v,u)) allow refor-
mulating Eq 5 as:

c(T) = Z ((c(uparent(v)) Z p(w))

veV weT (v)

+ (c(v, parent(v))(1 — Z p(w)))>
weT (v)
Thus,
C(T) = Z c(v, parent(v)),

veV

(7)

which follows the intuition that, on each message,
each edge is used exactly once. As cost in both
directions is the same, we can just add the costs of
all the edges in the tree.

The problem of cost minimization in decentral-
ized dissemination is thus identical to the usual
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Minimal Spanning Tree (MST) problem with edges’
weights equal to costs. MST can be found in O(n?)
by Kruskal’s (or Prim’s) algorithm [17].

3.3. Multiobjective Problem

In order to solve the general multiobjective prob-
lem (min L, min C, min A), two issues must be ad-
dressed. Firstly, the meaning of multiobjective min-
imization and the kind of solutions we want to
obtain. We propose to return a solution that is
the closest to the ideal solution, constructed from
the optimal values of monocriterion problems. Sec-
ondly, the problem of finding an algorithm that pro-
duce that solution. We propose a heuristics algo-
rithm based on hill climbing. Note that this part
of the analysis can be applied both to decentralized
and to centralized communication scenario.

3.8.1. Approximating the ideal solution

We expect that the number of Pareto-optimal
solutions is exponential, as the multiobjective
problem involves bi-criteria versions of shortest
paths and minimum spanning trees, which are in-
tractable [13]. Thus, we chose only one Pareto-
optimal solution as the solution to the general prob-
lem. This solution is defined as a solution min-
imizing the distance to the ideal solution y! =
(L*,C*, A*), where L* is the optimal latency (L*
ming L(T')), C* is the optimal cost and A* is the
optimal stability.

Ranges of possible values of L, C' and A can dif-
fer significantly. For instance, assume that A* = 0.1
and the worst value of A for some tree is 10, whereas
C* = 100 and the worst cost is 1000. When using
normal, euclidean distance over unscaled values, the
distance from the ideal point (C, A) = (100,0.1) to
(100, 10) is 9.9, whereas to (1000, 0.1) is 900. Thus,
such a measure is much more sensible to changes in
the function that has larger numerical values. How-
ever, the distance to these two solutions should be
the same — the first point represents the solution
minimal for C' and maximal for A, whereas the sec-
ond the opposite.

To make the distance measure unaffected by nu-
merical values of functions, we scale the value of
each function by the boundary values. However,
in the general case, the problem of determining
the maximal value of some of the considered func-
tions is hard (for instance, the longest path problem
is NP-hard). That is why we scale each function
y € {L,C, A} between its optimal value y* and its



approximated nadir V. We define 7V as the maxi-
mal value of y observed in the optimal solutions for
other functions [13]. For instance, denoting T as
the tree minimizing C, and T as the tree minimiz-
ing A, the approximated nadir of the latency LY
is the maximum from the latencies of T and T},
LN =max (L(T¢), L(Ty)). Note that it is possible
that for some tree T', L(T) > LV.

After determining the approximated nadirs for
each function, we scale functions to:

y(T) —y*
~N __ y* :

y'(T) = 7

(®)
Observe that, for the optimal tree T™ for y, the
value of the scaled function is y'(T%*) = 0.

Thus, the function to minimize is:

dist(T) = \/((L’(T))Z + () + (M(1)%).
(9)

3.3.2. Producing the approzimated ideal solution

An obvious possibility to find a tree minimizing
dist(T') is an exhaustive search over all spanning
trees. However, the number of spanning trees is
exponential and equal to n™~2 [16] in the worst case
of a fully-connected graph. Thus, the exhaustive
search is clearly not efficient, especially for larger
graphs. In our initial experiments, fully-connected
graphs with n = 10 nodes took more than an hour
to optimize.

We have implemented a heuristics based on
stochastic hill climbing (HC). The algorithm min-
imizes the distance dist(T) of the current tree T
to the ideal solution by random modifications of
T. If a modified tree results in lower dist(T), it
is accepted, otherwise it is rejected. Two types of
modifications are possible: (1) swapping the root
of the tree (with probability p, where p is com-
puted from the formula given below); (2) swapping
an edge with an unused edge from the graph (with
probability 1 — p). The probabilities are set in a
way that makes small adjustments (such as swap-
ping an edge connecting a small number of nodes)
more probable than the large ones (swapping an
edge close to the root, or swapping the root).

In root swapping, all the nodes are equally prob-
able to be the new root. In edge swapping, the
probability of removing an edge is inversely pro-
portional to the number of descendants desc(v) of
the downstream node v of the edge (u, v), and equal
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Table 1: Comparison between the multiobjective hill climb-
ing and the exhaustive search on small graphs.

dist instances [%)]
multiobjective | exhaustive
n T o T o worse  pareto
5| 0.63 0.25 | 0.61 0.25 12 0
6 | 0.58 0.28 | 0.56 0.26 13 0
7| 0.57 0.23 | 0.55 0.22 16 1
8 | 0.57 0.24 | 0.55 0.23 14 1
9 | 0.55 0.2 | 0.53 0.19 20 1

to p/(1 + desc(v)) (except for leaf nodes that have
only one connection to the rest of the graph, and
thus cannot be disconnected). After removing an
edge, the algorithm reconnects the tree by choos-
ing an edge unused in T at random and checking
whether the tree using this edge is connected.

4. Experimental Evaluation

4.1. Settings

We evaluated the algorithms on randomly-
constructed connectivity graphs. We considered
only the centralized dissemination pattern, as it
is more used in existing collaborative applications
and, at the same time, unexplored by many-to-
many multicast approaches. The graph models
the logical, and not physical, connectivity between
nodes, which makes most topology generators unfit
for the task.

We group nodes into s ~ U(2,4) sites, that model
different physical locations. Within each site, laten-
cies are low (~ U(5,20)) and costs are negligible
(0). There are two classes of nodes in a site: peers
(at least one), that model standard PCs, and leafs
that model mobile devices such as UMPCs or smart
phones. A peer is able to connect to every other
peer in its site. A leaf can connect only to one of
the peers. Additionally, each peer is firewalled with
probability of 0.8 (in Coolstreaming [22], 20% of
nodes are directly reachable or behind UPnP). Two
firewalled peers from different sites cannot directly
connect. We assumed that in the network there is
at least one peer that is not firewalled. Connections
between sites have non-zero costs (~ U(10,20)) and
considerably higher latencies (~ U(100,500)). Cost
and latencies between all pairs of peers from any
two sites are similar. Instabilities A(v) are gener-
ated with U(0,1) (note that our algorithms do not
take into account the absolute values of functions,
so the results for U(0,0.01) would be similar). Fi-
nally, sending rates p(v) are generated with normal-



Table 2: Results of experimental evaluation based of the hill climbing multiobjective algorithm. The table presents scaled
performance measures (Eq. 8) averaged over 100 random graphs for each n. T is the tree returned by optimal latency algorithm
(Section 3.1.2), T% ~by adjusted LAST (Section 3.1.3), Ty — by MST on stability graph (Section 3.1.1). multiobjective is the

solution chosen by the multiobjective algorithm (Section 3.3).

Tz T Tx multiobjective
c(T) | A(T) L(T) | A(T) L(T) | c(T) L(T) | c(T) | A(T)
n xr o d o x o C o & o T (o4 x o xr o & o
5 0.46 0.39 0.73 0.37 0.65 0.4 0.79 0.29 0.72 0.38 0.86 0.32 0.22 0.26 0.27 0.28 0.34 0.27
6 0.5 0.39 0.73 0.37 0.75 0.37 0.78 0.29 0.62 0.39 0.84 0.34 0.25 0.26 0.26 0.28 0.29 0.24
7 0.44 0.37 0.74 0.3 0.72 0.37 0.79 0.3 0.79 0.31 0.83 0.35 0.24 0.27 0.23 0.24 0.31 0.22
8 0.45 0.34 0.75 0.34 0.72 0.36 0.84 0.25 0.74 0.33 0.9 0.28 0.22 0.24 0.26 0.24 0.31 0.21
9 0.5 0.35 0.8 0.3 0.72 0.34 0.82 0.26 0.83 0.25 0.9 0.26 0.23 0.22 0.21 0.16 0.34 0.21
10 0.46 0.32 0.79 0.25 0.73 0.33 0.86 0.23 0.8 0.29 0.96 0.18 0.19 0.16 0.25 0.21 0.31 0.17
12 0.41 0.29 0.8 0.29 0.73 0.32 0.8 0.26 0.83 0.26 0.98 0.08 0.18 0.14 0.2 0.14 0.32 0.18
15 0.38 0.29 0.85 0.21 0.69 0.32 0.8 0.28 0.88 0.2 0.93 0.23 0.23 0.19 0.17 0.15 0.3 0.17
20 0.37 0.25 0.86 0.21 0.73 0.3 0.8 0.28 0.89 0.18 0.96 0.17 0.16 0.13 0.17 0.11 0.26 0.12
25 0.32 0.21 0.85 0.21 0.65 0.33 0.85 0.22 0.94 0.15 0.98 0.1 0.14 0.1 0.13 0.08 0.24 0.13
30 0.3 0.22 0.84 0.23 0.67 0.31 0.84 0.22 0.93 0.14 0.99 0.03 0.12 0.07 0.14 0.11 0.21 0.12
40 0.32 0.22 0.84 0.21 0.68 0.29 0.84 0.24 0.95 0.12 0.98 0.11 0.12 0.1 0.12 0.08 0.2 0.12
50 0.27 0.2 0.87 0.18 0.59 0.29 0.84 0.2 0.97 0.09 0.99 0.07 0.1 0.06 0.09 0.07 0.18 0.1

ized zeta distribution, as we assume that users’ con-
tributions to a shared document vary substantially.
We control the number of nodes n in the network,
and, for each n, generate 100 random graphs.

We experiment with up to n = 50 nodes, which
corresponds to collaborative sessions having more
than three times as much users as the upper limit
of CoWord. All the studied algorithms are feasible
for this number of nodes: for instance, hill climbing
takes about 3 minutes to produce optimized trees
for 100 different random graphs of size 30 (or, about
1.8 seconds for each graph).

The experiments start with validation of the
heuristics used for the multiobjective problem
against exhaustive search (the hill climbing algo-
rithm for the general problem in Section 4.2; and
the adjusted LAST for cost minimization in Sec-
tion 4.3). Then, we explore the nature of the solu-
tions returned by the multiobjective problem (Sec-
tion 4.4). We also analyze the sensitivity of the
solutions by simulating inaccurate stability mea-
surements (Section 4.5) and churn (Section 4.6).
Finally, we compare the multiobjective solutions
with alternative approaches: star topologies (Sec-
tion 4.7); and a penalty- (or weight-) based algo-
rithm (Section 4.8);

4.2. Validation of Hill Climbing

In the initial set of experiments, we validated hill
climbing against exhaustive search on small graphs.
Each execution of hill climbing tested 10,000 mod-
ifications of a tree. In our experiments, we mea-
sure the average distance from the ideal solution
achieved by both approaches; the number of in-
stances in which exhaustive search outperforms hill
climbing in terms of score; and the number of in-
stances in which the solution returned by the ex-
haustive search Pareto-dominates the solution re-

12

Table 3: Evaluation of LAST for min C problem: percentage
of instances in which LAST was not optimal and the average
relative error to the optimal solution.

n | instances [%)] | error [%]
5 2 3

6 0 0

7 2 0.5

8 0 0

9 1 0.2

turned by hill climbing. Table 1 presents the ob-
tained results. Additionally, Table 11 and Table 12
show results of similar experiments in graphs with
different configurations.

The results show that hill climbing in up to 20%
of instances fails to produce the global optimum.
However, the difference in average dist is less than
4%. Thus, it is relatively easy to find a solution
close to the optimum; but hard to find the exact op-
timum. We think that such performance is satisfac-
tory for an algorithm that, in a real distributed, net-
working environment, will work on imprecise data.

In another series of experiments, we compared
hill climbing to simulated annealing (SA)-based
heuristics. In smaller graphs (n < 9) SA outper-
forms hill climbing, as it finds the optimal tree in
98.8% of considered instances. However, in larger
graphs (Table 13) hill climbing produces trees with
smaller average dist and, often, Pareto-dominating
SA, except when the initial temperature in SA is
set to a very low value, which degrades SA into
hill climbing. Hill climbing performs well in large
graphs, as the local neighborhood of a solution is
large—thus it is hard to become stuck in a local
minimum.



4.8. Validation of LAST

Our multi-objective algorithm uses adjusted
LAST [19] (Section 3.1.3) to produce a tree T
whose cost C(T) is used for the ideal solution (by
which a candidate tree’s solution is scaled accord-
ing to Eq. 8). Adjusted LAST is a heuristics, thus
there are no performance guarantees on its results.

In order to validate the use of adjusted LAST in
the multiobjective algorithm, we checked how far
are the costs of trees produced by LAST to the best
trees in terms of C found by the exact algorithm.
Table 3 summarizes the results obtained for small
graphs . The table shows that LAST is suboptimal
only in about 1% of instances. Additionally, even
in these instances, the cost of the LAST tree is less
than 5% from the optimal cost.

4.4. Assessment of multiobjective solutions

The results of experiments are summarized in
Table 2. In order to obtain meaningful compar-
isons between random graphs with different n, we
present scaled values of each function (Eq. 8). Con-
sequently, for each graph and each measure, 0 is the
optimal value and 1 is the approximated nadir (cor-
responding to the maximum value of the measure
on T}, Tt and T for the graph). The table presents
averages and standard deviations computed over
100 random graphs with the specified number of
nodes n. 17 is the tree returned by optimal latency
algorithm (Section 3.1.2), T¢ — by adjusted LAST
(Section 3.1.3), Tx — by MST on stability graph
(Section 3.1.1). multiobjective is the solution cho-
sen by the multiobjective algorithm (Section 3.3).
A number of phenomena can be observed.

Firstly, the trees efficient for one objective tend
to be inefficient for other objectives. Algorithms
optimizing one objective have, on the average, a
score of 0.75 for the other objectives. The differ-
ence is especially visible when the absolute, and not
rescaled, values of A are analyzed (note that we do
not present full results in the paper because of space
constraints). On the average, A in trees optimal
for L and C is 5.59 times worse than the optimal
value, compared with 2.08 performance drop for L
and 2.14 for C (averaged over trees optimal for C,
A and L,A, respectively).

Secondly, the solutions returned by the multiob-
jective algorithm have a good trade-off between all
the objectives. The average performance is bet-
ter than the mono-objective optimization for all the
objectives. Moreover, standard deviations are also
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Table 4: Relative degradation of the instability of trees
returned by the multiobjective algorithm running on graph
with inaccurate nodes’ instabilities A(v), in function of the
level of the noise.

noise level av. degr inst. better inst. same
(o) z (%] o (%] % %o
0.05 4 13 16 51
0.1 8 18 14 37
0.15 12 22 13 28
0.2 17 27 13 23

lower, which denotes a more stable behavior of the
algorithm.

Thirdly, the instability seems to be the hardest
objective to optimize. The algorithms for C' and
L tend to be inefficient on A (0.81). Similarly, the
trees optimal for A result in inefficient C' and L
(0.89). Additionally, the multiobjective algorithm
has the worst average performance for A (0.30, com-
pared with 0.21 for L’ and 0.21 for C).

Finally, as the number of nodes in the graph is
increased, the more specialized are the algorithms
optimizing just one objective (i.e., the further are
trees optimal for one objective from the optimum
for other objectives). The multicriteria algorithm
does not exhibit such behavior.

4.5. Sensitivity to Inaccurate Stability Measure-
ments

One of the graph parameters used by algorithm
is the instability A(v) of a node, which can be non-
trivial to measure in a real system. In the following
experiment, we quantify the impact of the inaccu-
racy of individual nodes’ A(v) on the instability of
the trees A(T') returned by the multiobjective algo-
rithm.

In order to simulate inaccurate A(v), we added to
each A(v) a random variable distributed with the
Normal distribution N(0,0) (o, a parameter of the
experiment, was set to o € {0.05,0.10,0.15,0.20}).
Thus, A(v") = A(v) + N(0,0). We then ran the
multiobjective algorithm on the modified graph G'.
Finally, we took the tree T” returned by the multi-
objective algorithm; and calculated the instability
A(T") using the original (unmodified) nodes’ insta-
bilities A(v). We compared A(T') to A(T), the in-
stability of the tree returned by the multiobjective
algorithm running on the unmodified graph. Ta-
ble 4 summarizes the obtained results (for graphs
with n = 30 nodes). The table shows the aver-
age relative degradation (computed over instances
in which the degradation was non-negative); and
the percentage of instances in which the “noisy”



Table 5: Relative degradation of the score (without sta-
bility) of the trees returned by the multiobjective algorithm
in two versions: optimizing stability, cost and latency; and
optimizing only cost and latency. Degradation in function of
the number of nodes removed from the tree.

nodes with stability | without stability
removed T o T o

1] 0.26 1.15 | 0.86 4.93

2 | 0.18 0.97 | 1.77 5.70

31 0.35 1.26 | 2.92 7.30

4 1 0.63 1.84 | 3.12 7.19

5 1 0.70 1.98 | 4.02 7.30

tree T' was better than; and the same as the un-
modified tree T

The results show that the algorithm is, to some
extent, prone to inaccurate measurements of nodes’
instabilities, as with increased noise level the aver-
age degradation increases; similarly, the percent-
age of instances in which the returned tree is the
same decreases. However, the average degradation
does not increase strongly with the noise level; it is,
approximately, of the same order as the standard
deviation o of the noise. There are also around
14% of instances in which the noised tree T’ had
lower instability A than the tree computed with
original values T'. This effect is due to the mul-
tiobjective nature of the optimization algorithm,
and its non-determinism. Note that when taking
these instances into account, the relative degrada-
tion drops from 2% for noise level o = 0.05 to 14%
for o = 0.20.

4.6. Degradation under Churn

Tree topologies offer lower latency, cost, and in-
stability in comparison with star topologies (Sec-
tion 4.7), however they are harder to create and
maintain in a dynamic system in which peers con-
tinuously join and depart. Although collaboration
systems, due to their very nature, are more stable
than p2p systems in general, these effects can be
still significant. For instance, due to communica-
tion latencies, it can be impossible to create a com-
pletely new structure of a tree on each departure.
Thus, in a dynamic system, the communication li-
brary should regenerate the tree only if the current
performance is significantly worse than the perfor-
mance of the optimal tree under current network
conditions (as determined by the multiobjective al-
gorithm).

In this series of experiments, we simulate the
gradual degradation of the tree by removing a ran-
dom node and then by fixing the tree locally: the
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Table 6: Comparison of scores dist(T') of the trees returned
by the multiobjective algorithm with the best possible star
topology.

multiobjective star
n T o T o
5 | 0.63 0.21 | 1.22 0.62
6 | 0.54 0.21 | 1.32 0.58
7 | 0.50 0.18 | 1.39 0.61
8 | 0.47 0.15 | 1.36  0.45
9 | 0.42 0.15 | 1.35 0.39
10 | 0.41 0.14 | 1.38 0.41
12 | 0.37 0.12 | 1.43 0.40
15 | 0.31 0.12 | 1.39 0.34
20 | 0.28 0.12 | 1.47 0.37
25 | 0.24 0.09 | 1.45 0.26
30 | 0.22 0.08 | 1.51 0.29
40 | 0.21 0.07 | 1.49 0.27
50 | 0.19 0.07 | 1.50 0.27

removed node’s children connect directly to the re-
moved node’s parent. We then measure the rela-
tive degradation of the cost and the latency of the
resulting tree (we exclude the instability as a pa-
rameter related with the phenomenon). Afterward,
we remove the next node, and so on, until 5 nodes
are removed. We assume that the probability that
a particular node v departs is proportional to its
instability A(v). Table 5 summarizes the obtained
results (for graphs with n = 30 nodes).

Our multiobjective approach takes into account
nodes’ departures only indirectly—using the node
instability A(v). Yet, the obtained results clearly
show that degradation of cost and latency is con-
siderably smaller than in the alternative scenario,
when the instability in not taken into account in
the initial optimization. Nevertheless, the degrada-
tion is still significant and it will thus be valuable
to explore robust optimization techniques as future
work.

4.7. Comparison with Star Topologies

The multiobjective approach commonly returns
a tree, which, in a real system, is harder to main-
tain than a simple star topology (with all the nodes
directly connected to a single coordinating and for-
warding node). We wanted to quantify the gain of
the tree-based infrastructure compared to the star
topology. Of course, when leaf nodes are present,
a star topology cannot be constructed, as such de-
vices can directly connect only to specific (subset
of) nodes: if such a node is not the root of the
star, the leaf is bound to be disconnected from
the network. Consequently, in this series of exper-



iments, the considered graphs did not contain any
leaf nodes. Table 6 summarizes the obtained re-
sults, in which the tree returned by the multiobjec-
tive algorithm is compared to the best (according
to dist(T)) star. It can be clearly seen that, over-
all, star topologies are much worse than the trees in
terms of the distance to the ideal solution. Detailed
results (Appendix, Table 9) show that star topolo-
gies are comparable (yet slightly worse) in terms
of the instability A(T), they are much worse for
both cost and latency. High stability can be easily
achieved in a star centered on the most stable node.
However, a star topology uses costly inter-site links
redundantly. In contrast, a tree commonly uses the
inter-site link between any pair of sites just once.
Moreover, a tree can choose the inter-site link that
has the best latency/cost trade-off—which might
not necessarily be the one that is available for the
root of the tree.

4.8. Comparison with Weighted Approach

In our approach for the multiobjective optimiza-
tion, we treated each objective separately until
computing the distance dist(T') to the ideal solu-
tion. An alternative approach is to aggregate all
the parameters of nodes and edges into a penalty
associated with using a particular edge and then to
find a tree minimizing the overall penalty.

The penalty of an edge (u,v) is defined by:

pen(u,v) = wee(u,v) + wrl(u,v) + waA(w), (10)

where we, wy, and wy are the weights. We can as-
sume that each weight w, is composed of the scal-
ing factor w;, = 1/(max(y)) (that normalizes the
ranges of values of the parameters to [0,1]), and a
relative importance w;’ of the parameter y (with a
constraint w¢, + wy +wj = 1).

The overall penalty of a tree T" must take into
account both the sum of the penalties of the down-
stream links (reflecting the cost of dissemination)
and the sum of penalties of reaching the root r of
the tree (reflecting the cost of updating the infor-

mation), thus:

pen(T) = Z p(v)pen(v,r)—l—zpen(v,parent(v)),
veV veV

(1)

where pen(v, r) is the aggregate penalty of the path

between v and the root r. This equation has the

same form as Eq. 2, and thus the analysis of the

complexity of optimizing the cost (Section 3.1.3) is
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Table 7: Comparison of scores dist(T') of the trees returned
by the multiobjective algorithm with the ones returned by
the penalty-based algorithm.

multiobjective penalty

n T o T o
5 | 0.63 0.25 | 0.78 0.34
6 | 0.58 0.28 | 0.79 0.35
7 | 0.57 0.23 | 0.71 0.31
8 | 0.57 0.24 | 0.68 0.29
9 | 0.55 0.20 | 0.69 0.33
10 | 0.50 0.21 | 0.69 0.31
12 | 0.46 0.17 | 0.59 0.26
15 | 0.47 0.19 | 0.58 0.25
20 | 0.38 0.14 | 0.52 0.24
25 | 0.32 0.14 | 047 0.28
30 | 0.31 0.13 | 042 0.21
40 | 0.28 0.14 | 043 0.22
50 | 0.23 0.11 | 044 0.25

still valid. Note, however, that the penalty cannot
capture precisely the nature of the downstream la-
tency: the formulation used in Eq. 1 considers the
maximum latency between the root and the furthest
node; while here the sum of latencies is considered.

In order to compare the penalty-based approach
with our multiobjective approach, we set equal rel-
ative weights wj = wf = wx = 1/3 and used the
same random hill climbing algorithm with the same
number of iterations. The results are presented in
Table 7 (and the detailed results in Appendix, Ta-
ble 10).

The multiobjective approach returns trees that
are closer to the ideal solution, compared to the
penalty-based approach. Moreover, the perfor-
mance is more stable, as the standard deviations
are lower. In terms of multiobjective performance,
the solution of the penalty-based approach Pareto-
dominates the multiobjective solution in less than
1% of the instances. Two factors contribute to the
observed performance. Firstly, as discussed above,
the penalty-based approach is unable to correctly
capture the latency of the tree. Detailed analysis
(Table 10) reveals that indeed the penalty-based
trees have the lowest performance for the latency.
Secondly, the penalty-based approach uses weights
based on the maximal values in a graph, and not—
values from the approximate nadirs. Thus, for in-
stance, a high latency link that is not used in any
Pareto-optimal tree still reduces the scaling weight
wf, and thus reduces the overall impact of the la-
tency on the penalty. Note however, that in our ex-
periments, the second problem is less visible, as all
the values are generated from uniform, rather than



Table 8: Exploration of relative weights to obtain a penalty
based overlay with better score (for a specific graph).

relative weights penalty based approach
wg  wi  wa | L(T) C(T) A(T) score
0.33 0.33 0.33 1.16 0.04 0.19 | 1.18
0.4 0.3 0.3 1.48 0.09 0.18 1.49
04 04 02| 067 004 026 | 0.72
0.4 0.2 0.4 1.45 0.19 0.16 1.47
0.5 0.25 0.25 1.48 0.09 0.18 1.49
0.5 04 0.1 | 0.92 0.07 0.33 | 0.98
0.5 0.1 0.4 1.44 0.22 0.15 1.47
0.6 0.2 0.2 | 0.92 0.07 0.33 | 0.98
0.6 0.3 0.1 | 0.63 0.1 037 | 074
0.7 0.15 0.15 | 0.63 0.1 037 | 0.74
0.7 0.07 0.23 0.67 0.28 0.28 0.78
0.7 0.23 0.07 | 0.64 0.1 038 | 0.75
0.8 0.1 0.1 | 0.52 0.17 0.38 | 0.66
0.8 0.05 0.15 0.52 0.17 0.38 0.67
0.8 0.15 0.05 0.4 0.16 0.49 | 0.65
0.9 0.05 0.05| 0.53 0.24 0.36 | 0.68
0.9 0.01 0.09 0.55 0.3 0.38 0.73
0.9 0.09 0.01 | 0.41 0.21 0.52 | 0.69

heavy-tailed, distributions. These problems could
be mitigated by fine-tuning the relative weights for
a particular graph and re-running the algorithm
multiple times; however we believe that the less
fine-tuning an algorithm requires, the better, es-
pecially as the weights would probably need to be
adjusted after each modification of the underlying
communication graph.

If the users perceive that one of the criterion is
more important than the others, or alternatively,
if the performance of one criterion needs to be sig-
nificantly improved (e.g., say, cost and stability are
within agreeable limits, but the latency is not), then
in a specific scenario (a specific instance of the un-
derlying graph), they may choose to use a different
weight, penalizing more the criterion with stricter
performance needs, to explore the parameter space,
such that acceptable performance may be arrived
at. Given the continuous range of penalty param-
eter choices, an exhaustive exploration of the pa-
rameter space is not feasible, and thus it is even
hard to ascertain if a specific set of constraints can
be met by exploring the penalty parameters. In
contrast, in fact even exhaustive search of all mul-
ticast overlay configuration, despite the combinato-
rial problem, is still at least feasible to determine
what are the best possible configurations, and our
multiobjective optimization process can be seen as
an approximation of the same. Nevertheless, out
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of curiosity, we investigate, what happens if we in-
deed try to explore a bit the parameter space. We
do so by choosing random topologies, which had
resulted in multicast configurations based on mul-
tiobjective optimization and using equal penalty
that did not pareto-dominate each other. That
means, the penalty based approach out-performed
the multiobjective based approach along some cri-
terion, and thus the problem was to find parameter
choices which would hopefully help out-perform the
multi-objective optimized overlay in the remaining
aspect(s). In Table 8 we report the results from one
specific such graph comprising of fifty nodes which
had a diameter of four, an average network cluster-
ing coefficient of 0.2255 and an algebraic connectiv-
ity of 0.6442. For this graph, the multiobjective op-
timized multicast topology had a score of 0.42, with
C(T) = 0.19, L(T) = 0.2 and A(T) = 0.32. We
observe, albeit from a coarse-grained exploration
of the parameters, that the score of the penalty
based tree obtained with the best choice of rela-
tive weights (shaded row) is 0.62, which while much
better than what was obtained when equal relative
weightage was given, is still worse than the one ob-
tained with multiobjective optimization. Further-
more, the very low latency achieved by multiobjec-
tive optimization (which is the reason for it’s low
score) was never realized with any choice of the pa-
rameters we tried.

4.9. Summary of Experimental Evaluation

The experiments consisted of three parts. Firstly,
we demonstrated (Sections 4.2 and Section 4.3),
that the heuristics (hill climbing and adjusted
LAST) are reasonable, as the performance of the
produced trees is close to the performance of the
optimal trees found by exhaustive search.

Secondly, we analyzed the solutions returned by
the multi-objective algorithm, both in terms of
the values of the objectives problem (Section 4.4)
and also sensitivity to inaccurate stability measure-
ments (Section 4.5) and churn (Section 4.6).

Finally, we validated the efficacy of the multi-
objective approach by comparing it to alternatives
(star topologies in Section 4.7); and a penalty- (or
weight-) based algorithm in Section 4.8). The re-
sults in this part clearly indicated that the trees
produced by the multiobjective approach outper-
form the alternatives.



5. Multicast Communication Library

Using optimization algorithms described in Sec-
tion 3.3.2, we implemented a multi-threaded com-
munication library for collaborative applications,
which we call MoMo (which stands for Multiob-
jective Optimized Multicast Overlay). The library
organizes participating peers in a tree. This section
outlines design principles and some of the protocols
used in the library.

The library creates two logical networks having
different objectives and different topologies. The
multicast network is used to send normal multicast
messages. The status network is used as a robust
communication channel to manage the multicast
network.

The multicast network is used for the standard
multicast communication in the collaborative ap-
plication. The topology of the network is derived
by the optimization algorithm described in Sec-
tion 3.3.2.

The status network is used to send notifications
of node arrivals and departures, to measure network
parameters (such as latencies) and to send messages
based on which nodes reconfigure the topology of
the multicast tree. In the status network, peers are
interconnected, creating a complete graph (when-
ever it is possible). The status network works in-
dependently of the multicast network in order to
create a reliable communication channel even if the
multicast tree is being reorganized or down due to
nodes’ failures.

In both networks, every message contains the ac-
tual data, a unique identifier, the sender’s identifier
and a vector clock.

As the logical structure of the multicast net-
work depends on parameters of peers (workload
p(v), instability A(v)) and links (cost c(u,v), la-
tency I(u,v)), the multicast network should be re-
configured when these parameters change or new
peers join or leave the system. In the current im-
plementation, the optimization algorithm is run pe-
riodically, and, in addition, on each join and leave.

5.1. Routing

In the status network, notifications are broad-
casted to each connected peer (similar to gossiping).
Messages with the same identifier are discarded, to
reduce the overhead.

In the multicast network, messages are routed up
to the root of the tree. The root, upon receiving a
message forwards it back downstream to each of its
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children. Each child node can use such a message
at the application layer, besides further forwarding
it to all of its children.

The root acts as a free synchronizer — the or-
der of messages received by each peer is the same
once it has been ordered by the root. Reception of
one’s own message indicates that the message has
been correctly received by the root, and has been
broadcast back in an order which will be consistent
globally.

5.2. Message Handling

In a dynamic network, even when a central root
exists, the order of messages can be easily changed.
A state vector, added to each message, partially
handles this issue. Using the logical clock value
for a peer, messages originating from the same peer
can be reordered to the original order in which they
have been sent. This is similar to the receiving
buffer in TCP, although we have separate buffers
for each peer, instead of one, global buffer.

Messages are delivered to the application only in
the correct order. If an arriving message has the ex-
pected (next) sequence number, it is delivered im-
mediately to the application. Out-of-sequence mes-
sages are buffered by the communication library. If
the missing messages do not arrive for some time,
the receiving peer explicitly requests their retrans-
mission. Finally, if the messages are still miss-
ing, the library informs the application about seri-
ous and persistent problems on the communication
layer. In this case, the states of the shared doc-
ument should be synchronized on the application,
rather than in the communication layer.

5.3. Measurements

Four variables need to be measured to be used by
the optimization algorithm. They are gathered in
a distributed manner and are stored in every con-
nected peer. Additionally, when a new peer joins
the network, its parent sends the current values of
these measures.

After measurement completes, the newly mea-
sured value (p’(u)) is used to update the stored
value (p(u)) using an aging process, e.g., p(u) =
k- p(u)+ (1 — k) - p'(u) (we use kK = 0.8 as the
default).

Latencies [(u, v) are measured by round-trip time
(RTT) between each pair of peers. This measure-
ment is performed in the status network. Peers that
are persistently unreachable are considered as fire-
walled or behind a NAT.



Cost ¢(u,v) is given by the application (which, in
turn, obtains it as user input).

Workload rate p(u) is measured as the fraction
of data sent by w. Thus, each peer v, upon re-
ceiving a multicast message from wu, updates its
counter count(v,u) with the amount of data re-
ceived. Periodically, peer v updates p(u) by p'(u) =
count(v,u)/ >, count(v,w).

The stability A(u) of the peer u is measured indi-
rectly, by the inverse of its average session length.
After u disconnects, other peers update u’s average
session length, and then compute the stability.

5.4. Reconfiguration of Multicast Network

Periodically, an elected peer runs the optimiza-
tion algorithm in order to ensure that the multicast
network structure is still optimal. If the derived
structure differs from the actual, the elected peer
coordinates the new network formation by inform-
ing all the peers about their respective new parent.
These messages are sent over the status channel.

In order to elect such a peer, MoMo uses bully
election algorithm. There is another timeout that
starts after the election starts. This timeout is used
as a preventive measure against the situation where
the elected peer leaves in course of the reconfigura-
tion process. In such a pathological scenario, the
election process is restarted.

While the multicast network is reconfigured,
MoMo enters a transient state, in which all the mes-
sages are delayed locally at peers in order to prevent
message loss.

5.5. Handling arrivals and departures

MoMo handles node arrivals, node failures and
node departures. Node failures are considered as
node departures.

5.5.1. Node Arrival

MoMo assumes that a peer joining the network
must know another, already connected, peer. Ini-
tial contact is established through the status port
of the connected peer. The connected peer be-
comes the parent of the new peer and creates a
bi-directional link in the multicast network and in
the status network. Once all the links are success-
fully established, other peers are informed about
the join through the status network.
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Figure 4: Network topology derived by the multiobjective al-
gorithm for 4 planet-lab nodes. Values next to a node are its
workload p (higher values denoting more frequent updates)
and instability A (higher values denoting more frequent dis-
connections). Values next to an edge are its latency ! and
its cost c.
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Figure 5: Network topology derived by the multiobjective
algorithm for a configuration comprising 8 planet-lab nodes,
which is obtained by adding four new nodes to the previous
experiment.
5.5.2. Node Departure

When a node leaves the network, its parent and
its children inform other nodes using the status net-
work. In the current version of the library, the net-
work is reconfigured immediately after each leave.
However, in future we plan to defer the reconfigura-
tion until the network degrades beyond acceptable
threshold: and temporarily connect the children to
the parent of the departing node whenever possible.

5.5.83. Node Failure

Each communication link uses TCP sockets.
Abrupt departure of a node or a failure of a link
is easily detected by the node’s direct parent and
the node’s children. Node failure is considered as
node departure and is handled in the same manner.

6. Experimental Validation of the Commu-
nication Library

We tested a prototype of the communication li-
brary on the PlanetLab infrastructure using an ex-
ample application that multicasts short text mes-
sages. PlanetLab is not an ideal testbed for such



an experiment since it is a dedicated infrastructure,
so we contrive some of the settings with artificial in-
puts (e.g., cost based on geographic distance), mix-
ing it with observed parameters. Likewise, despite
PlanetLab being a dedicated infrastructure based
testbed, there are high fluctuations in the observed
parameters, influencing the results and their repro-
ducibility.

In our experiments, some of the observed parame-
ters come inherently from the environment (such as
latency), while others, like the workload, are gen-
erated using experimental parameters. The send-
ing rate of messages varied among different nodes
between 2 and around 120 messages per minute;
the distribution roughly followed Pareto distribu-
tion with s = 0.5. Each node measured the sending
rate p of all other nodes by the number of mes-
sages received. During the communication, every
two minutes, the current root of the tree performed
the optimization algorithm and reconfigured the
tree (if the optimum differed from the current tree).
Despite these considerations, we obtain reasonably
meaningful results from the conducted experiments.

Figure 4 shows a network topology derived by the
communication library for 4 planet-lab nodes. The
node located in Singapore (planetlab4.singaren.
net.sg) is the root of the multicast tree, as it
sends most messages (its real sending rate is about
120 messages per minute). All the nodes located
in Japan (planetlab-0x.naist.jp) are connected
using only one Singapore-Japan network link, to
minimize the cost of the tree.

Figure 5 shows a tree derived for topology with
two additional nodes in Israel (planetlabx.bgu.
ac.il) and two in the US (planetlabx.cnds. jhu.
edu). The tree minimizes the usage of costly intra-
country links, as each site has only one node that
communicates with the root.

We also carry out separate larger scale experi-
ments using up to 28 nodes. Figure 6 shows a tree
derived for topology with twenty eight nodes spread
across several continents. We see that again nodes
in Asia form (several) sub-clusters, while nodes in
Europe and North America form their own sub-
clusters. We also notice some interleaving of Hong
Kong, Singapore and again Hong Kong nodes in the
overlay. While we are not completely certain about
the reasons for such configurations, one specula-
tion is that some of the specific nodes (e.g., plab2.
cs.ust.hk,planetlab2.ie.cuhk.edu.hk) are too
slow to respond or the link saturates, so that these
nodes are then pushed to the periphery of the over-
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lay.

Repeating the experiments with the same nodes
over different time periods when the observed vari-
ables had naturally changed in the system (which
is an artefact of PlanetLab’s non-determinism), we
obtained different configurations (for example, Fig-
ure 7). Nevertheless, the overall qualitative behav-
ior of forming country and continent specific sub-
clusters remained the same.

7. Related Work and Discussion

There have previously been proposals to extend
the Internet Protocol (IP) [23] to support multicast
natively. However, since IP multicast has never
been widely deployed and adopted, the practical
way to send data to multiple receivers is to ex-
tend the application layer. We summarize some
of the application layer multicast approaches below
(see [24] for a more exhaustive comparison).

The most straightforward way to construct an
application-layer multicast tree is to optimize the
latency in a greedy manner. In Yoid [25], a node
connecting to a multicast tree chooses a random
subset of nodes that are in the tree and connects
to the one with minimal latency. Periodically, each
node switches its parent, if the switch reduces the
latency. In Overcast [26], a newly connecting node
probes the latency to the root of the multicast tree
and all of its immediate children. If the latency to
one of the children is lower than to the root, the
algorithm recursively probes that child’s children,
until either a leaf node is reached, or no child results
in a lower latency. Fastcast [27] is similar, but con-
siders the end-to-end latency over the whole path
between the root and the newly connected node,
not just the latency to any node in the tree.

In contrast, Narada [28] relies on a constantly-
updated mesh, similar to what we define as a con-
nectivity graph. Each node periodically adds links
to other, randomly chosen nodes and drops existing,
inefficient links. The data dissemination paths are
produced by a standard, distance-vector algorithm.

Massively multiplayer online games (MMOGs) [9,
10, 11], use the notion of groups of players (similar
to our members of a session), who need to commu-
nicate among each other. Our approach can be used
to optimize these intra-group communications.

Some other application-layer multicast meth-
ods are specific to a certain peer-to-peer over-
lay. For instance, Scribe [29] builds multicast trees



based on reverse path forwarding in Pastry over-
lay. Bayeux [30] uses forward path forwarding, and
Borg [31] combines the two approaches. All these
systems do not consider multiobjective optimiza-
tion; moreover, such multi-layered overlay based
forwarding involves nodes (as relays) who are not
even interested in the message.

There are several differences between the afore-
mentioned approaches and the proposal presented
here.

First of all, the way in which collaborative appli-
cations communicate differs significantly both from
classic one-to-many as well as many-to-many mul-
ticast. In one-to-many multicast, there is only one
source of data. In the typical many-to-many multi-
cast, many nodes act as data source, but messages
are directly used by nodes that lie on the dissemina-
tion path. In collaborative applications, in contrast,
the messages must first be sent to and processed by
a node acting as a synchronization server, and then
be multicasted to the group members. Note that
such dissemination pattern is similar to multicast
with rendez-vous nodes, such as Scribe [29].

Secondly, as collaborative sessions are long and
peers can be well identified, we are able to collect
and take into account more data on peers’ behavior.
Thus, our approach can explicitly take into account
not only the latency, but also the cost of the links
and the observed participation levels and discon-
nection rates. This allows optimizing the structure
of the mutlicast tree (in contrast to Scribe, that
does not perform optimization).

On the theoretical level, the alternative to the
spanning tree is to model multicast as a Steiner
tree. These approaches assume that there are some
nodes that only pass on the information. For in-
stance [32] considers the problem of asymmetric la-
tencies and [33] proposes a heuristic for bi-criteria
optimization of latencies and costs.

In multiobjective optimization, we treat all the
objectives symmetrically (as minimization goals).
However, for some applications, optimization of the
(network) latency matters only to a certain extent,
beyond which other latencies (GUI, user reaction,
etc.) are more noticeable. Cost and stability can
have similar properties—for instance, system’s re-
liability can be optimized until it reaches, e.g., five
nines. Our multiobjective approach can be easily
extended for such mixed objectives through, e.g.,
scaling based on reservation-aspiration points [34],
applied on each objective before mixing the dis-
tance function; or by choosing different reference
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points than the ones corresponding to the trees op-
timal for cost, latency and stability.

8. Conclusions and Future Work

In this paper we model and propose solutions
to the problem of the network design to collect
and disseminate updates to a shared document
in the context of interactive collaborative applica-
tions. Collaborative applications usually require
a central server that synchronizes users’ actions.
Consequently, messages containing updates are first
aggregated at the synchronizer and then multicas-
ted to other users.

We proposed to build a spanning tree to collect
and disseminate the updates. We measure the per-
formance of the tree by three metrics. The latency
L expresses the delay between the moment a user
updates her local copy of data and the change is
propagated through the network. The cost C rep-
resents the (monetary) cost of sending information
in the tree. Finally, the instability A represents
the average number of nodes affected by disconnec-
tions from the network. The cost and the latency
are weighted by the observed average participation
of users in collaborative editing. The goal is to op-
timize the infrastructure so that the users who up-
date the document more often have more influence
over the performance measure.

We analyzed the boundary problems of minimiz-
ing latency, instability and cost in two scenarios:
the classic, decentralized (many-to-many) multicast
and the sender-server-multicast used in collabora-
tive applications. We provided the complexity re-
sults and proposed exact, polynomial algorithms
for optimal instability, latency and, in decentral-
ized dissemination, cost.

Then, we tackled the general, multiobjective
problem. Among many Pareto-optimal solutions,
we proposed to chose the one closest to the ideal
solution, composed of the optimum values of all
three objectives determined individually. To find
such a multiobjective optimized solution, we imple-
mented a hill climbing algorithm, which if effective
and efficient even for reasonably large graphs.

We performed experimental evaluation of the al-
gorithms that showed that it is important to con-
sider the multiobjective problem, as individual op-
timal solutions for single performance measure can
be far from optimal for the others.

Then, we described a communication library
(MoMo) that uses the proposed algorithms to opti-



mize the multicast tree. The protocols used in the
library respond to dynamic changes in the network
structure. We performed basic tests of the library
on the Planet-Lab infrastructure. The MoMo li-
brary is in fact currently used as the communication
layer for SharedMind [35] (http://code.google.
com/p/sharedmind), an open-source collaborative
mind-mapping application.

In our subsequent work, we plan to make the li-
brary even more responsive to local changes, by lo-
cally adjusting the spanning tree when a node joins
or disconnects. Once the performance of the tree
diverges too far from the multiobjective based op-
timum, our algorithm can be used to rebuild the
whole tree.

Another interesting problem is the equity of the
produced tree for individual users. Currently, the
tree is biased towards heavy contributors, which
may cause unacceptable performance for some
users. In our implementation, we plan to address
this issue by additional constraints of guarantees
for the minimum performance for each user.
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Additional Experimental Results

Table 13: average dist to the ideal solution for hill climbing
and various variants of Simulated Annealing (SA). Graphs
with n = 50 nodes, no leaf nodes and no firewalled nodes.

settings ‘ T o

hill climbing 0.19 0.07

SA, to = 1.0, f; =0.95 0.51 0.12

SA, to =0.1, f =0.97 0.41 0.09

SA, to =0.01, fr =0.99 | 0.29 0.07




Table 9:

Detailed comparison of trees returned by the multiobjective algorithm to the best possible star topology.

L(T) c(T) A(T)

mult ‘ star mult star mult ‘ star
T o T o T o z o T o T o
5 0.22 0.24 | 0.54 0.40 0.29 0.22 | 0.80 0.60 0.39 0.23 | 0.41 0.51
6 || 0.22 0.20 | 0.75 0.52 || 0.24 0.17 | 0.79 0.37 || 0.35 0.20 | 0.44 0.53
7 0.21 0.16 | 0.72 0.38 0.24 0.17 | 0.95 0.42 0.32 0.17 | 0.46 0.62
8 (| 0.20 0.16 | 0.79 0.37 || 0.20 0.13 | 0.93 0.36 || 0.32 0.13 | 0.35 0.42
91 0.18 0.14 | 0.69 0.31 || 0.20 0.12 | 0.93 0.34 || 0.28 0.13 | 0.47 0.45
10 || 0.16 0.12 | 0.75 0.31 || 0.17 0.11 | 0.93 0.29 || 0.29 0.14 | 0.50 0.49
12 || 0.15 0.10 | 0.82 0.28 || 0.16 0.08 | 0.90 0.28 || 0.28 0.12 | 0.52 0.52
15 || 0.12 0.07 | 0.82 0.23 || 0.13 0.07 | 0.90 0.25 || 0.24 0.11 | 0.49 0.46
20 0.11 0.07 | 0.89 0.20 0.11 0.06 | 0.98 0.29 0.22 0.11 | 0.51 0.41
25 || 0.11 0.05 | 0.91 0.19 || 0.09 0.05 | 0.98 0.22 || 0.18 0.09 | 0.41 0.37
30 || 0.10 0.04 | 0.93 0.15 || 0.08 0.04 | 0.99 0.24 || 0.17 0.09 | 0.49 0.43
40 0.11 0.05 | 0.92 0.16 0.06 0.03 | 0.99 0.19 0.16 0.08 | 0.49 0.41
50 || 0.10 0.05 | 0.91 0.15 || 0.06 0.03 | 0.97 0.18 || 0.14 0.06 | 0.54 0.45

Table 10: Detailed comparison of trees returned by the multiobjective algorithm with the trees returned by the penalty-based
algorithm.

L(T) c(T) A(T)

mult ‘ pen mult pen mult ‘ pen
z o z o z o z o T o z o
51 022 026|027 036 || 027 0.28 | 0.33 0.34 || 0.34 0.27 | 0.41 0.35
6| 025 026|034 0391 026 028|031 0351 029 0.24 | 0.37 0.37
71 024 027|035 037 023 024|023 0.29 || 031 0.22 | 0.34 0.30
811 0.22 0.24 | 0.34 0.35 || 0.26 0.24 | 0.24 0.27 || 0.31 0.21 | 0.33 0.26
9| 023 022037 0381 021 0.16 | 0.25 0.27 || 0.34 0.21 | 0.33 0.25
10 || 0.19 0.16 | 0.38 0.34 || 0.25 0.21 | 0.22 0.27 || 0.31 0.17 | 0.34 0.28
12 || 0.18 0.14 | 0.31 0.29 || 0.20 0.14 | 0.20 0.20 || 0.32 0.18 | 0.31 0.23
15 || 0.23 0.19 | 0.33 0.27 || 0.17 0.15 | 0.16 0.20 || 0.30 0.17 | 0.30 0.23
20 || 0.16 0.13 | 0.37 0.28 || 0.17 0.11 | 0.12 0.14 || 0.26 0.12 | 0.23 0.16
25 || 0.14 0.10 | 0.33 0.29 || 0.13 0.08 | 0.12 0.12 || 0.24 0.13 | 0.22 0.16
30 || 0.12 0.07 | 0.31 0.23 || 0.14 0.11 | 0.10 0.10 || 0.21 0.12 | 0.18 0.14
40 || 0.12 0.10 | 0.33 0.23 || 0.12 0.08 | 0.10 0.14 || 0.20 0.12 | 0.16 0.13
50 || 0.10 0.06 | 0.37 0.27 || 0.09 0.07 | 0.05 0.07 || 0.18 0.10 | 0.16 0.11
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Figure 6: Network topology derived by the multiobjective algorithm for 28 planet-lab nodes.
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Figure 7: A different network topology derived by the multiobjective algorithm for the same 28 planet-lab nodes as in Figure
6, but at a different time. Such a different configuration is an artefact of PlanetLab’s non-determinism. Nevertheless, the
basic qualitative characteristics of the overlay are similar. Note also that the same Hong Kong nodes again form a somewhat
unexpected configuration, which we speculate is because of these nodes being very slow to respond and thus being chosen as

leaf nodes in the system by our algorithm.
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