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Abstract

The distributed nature of new computing platforms results in the problem of scheduling parallel jobs produced by several independent

organizations that have each their own rules. They have no direct control over the whole system, thus it is necessary to revisit classical

scheduling with locality constraints. In this article, we consider distributed computing systems in which each organization has its own

resources. Each organization aims at minimizing the execution times of its own jobs. We introduce a global centralized mechanism for

designing a collaborative solution that improves the global performance of the system while respecting organizations’ selfish objectives.

The proposed algorithm is proved to have an approximation ratio equal to 3 over the global optimal makespan and this bound is shown

to be asymptotically tight (when the number of organizations is large). Several variants of this problem are also studied. Then, we derive

another algorithm that improves in practice these solutions by further balancing the schedules. Finally, we provide some experiments

based on simulations that demonstrate a very good efficiency of this last algorithm on typical instances.

• P.-F. Dutot, K. Rzadca and D. Trystram are with the LIG, Grenoble University, 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, France.
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Approximation algorithms for the
Multi-Organization Scheduling Problem

1 INTRODUCTION

WHEN buying a production cluster, a company
has to compromise between the price and the

expected computing power. However, the job submis-
sions usually follow an irregular pattern with alternative
periods of peak and low utilization. The decision is then
to own an oversized cluster which will sometimes be
under-used or to export jobs to other computing facilities
when the submissions are heavy. In the grid computing
paradigm [1] several organizations share their comput-
ing resources in order to distribute peak workloads over
all the participants. An organization is an administrative
entity grouping users and computational resources such
as private companies or academic research groups. The
system has only a low central administrative control [2],
and organizations are free to join or to leave the system,
if the gain experienced is lower than the cost of partici-
pation. Therefore, in order to sustain the computational
grid, the resource management system must achieve
an acceptable performance not only at the level of the
community of users (as in classical scheduling), but also
at the inter-organizations level. Some globally-optimal
approaches may be unacceptable because they implicitly
favor jobs produced by specific organizations, therefore
reducing the performance experienced by the others.

In this paper, we study the problem of scheduling
parallel jobs [3] produced by several organizations. Each
organization owns and controls a cluster (composed
of identical processors), that together form a compu-
tational grid. The global objective is to minimize the
makespan [3], defined as the time when all the jobs
are completed. However, each organization is only con-
cerned with the makespan of its own jobs. An organiza-
tion can always quit the grid and compute all its jobs on
its local cluster. Therefore, a solution which extends the
makespan of an organization in comparison with such
a local solution is not feasible, even if it leads to a better
global makespan. Such an organization would prefer to
quit the grid, to compute all its jobs locally and not
to accept any other jobs on its cluster. The considered
scheduling problem is therefore an extension of the clas-
sical parallel job scheduling [3] by the constraints stating
that no organization’s makespan can be worsened.

The main contribution of this article is the demonstra-
tion that it is always in the interest of several indepen-
dent organizations to collaborate in a computational grid
system composed of independent clusters. This prob-
lem (called MOSP for Multi Organization Scheduling
Problem) has been introduced in [4]. We propose a new

algorithm producing solutions that guarantee that no
organization’s makespan is increased. This algorithm is
proved to have a constant approximation ratio (worst-
case performance) regarding the globally-optimal so-
lution. More precisely, assuming that each job can fit
into every cluster, the proposed algorithm achieves a 3-
approximation if the local schedules are obtained by the
highest first list scheduling policy (HF in short). For any
other local policy, the approximation ratio is equal to 4.
Then, we improve these solutions by a centralized itera-
tive load-balancing that is hard to analyze theoretically.
We run many experiments that assess that the proposed
algorithms work very well on average.

This paper is organized as follows. Section 2 formally
defines the model and the problem and presents some
motivating examples. It also introduces the notations
used in the rest of the paper. Section 3 considers the
basic problem of scheduling local jobs on a single or-
ganization cluster with list algorithms. In particular, we
analyze the highest first scheduling policy (HF) where
the jobs are sorted according to the decreasing number of
required processors. This algorithm is a 2-approximation
and we exhibit interesting structural properties that are
useful for the general analysis. Section 4 presents the
algorithm for N organizations and proves that it is a
3-approximation. This bound is shown to be asymp-
totically tight (for a large number of organizations). In
section 5, we discuss some extensions including the case
where the local scheduling policies are not HF lead-
ing to a 4-approximation ratio and the case where the
jobs are sequential. Section 6 describes a load-balancing
algorithm that is used to improve the results of the
base algorithm. Results of experiments are analyzed in
Section 7. Related studies are discussed in Section 8.
Finally, Section 9 summarizes the obtained results and
concludes the paper.

2 PRELIMINARIES

2.1 Model of the multi-organization Grid and nota-
tions

The basic model is a computational grid composed of
independent clusters belonging to various organizations.
O = {O1, . . . , ON} denotes the set of independent or-
ganizations. Each organization Ok owns a cluster Mk

(1 ≤ k ≤ N ). Each Mk is composed of mk identical
processors, and without loss of generality, let us assume
that m1 ≥ m2 ≥ · · · ≥ mN . Finally, let m =

∑

mk.
The set of all the jobs produced by Ok is denoted by

Ik, whose elements are {Jk,i}. Jk denotes the set of
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Fig. 1. Example of a schedule with three organizations:

O1 produces light gray jobs, O2 – gray, and O3 – dark

gray. O1 has the earliest makespan Cmax(O1). Cluster M1

is then used for executing jobs of the other organizations.

The makespan of M1 corresponds to the last completion

time of a job belonging to O2, thus, it is equal to Cmax(O2).
The global makespan Cmax is determined by O3 on M3.

jobs executed on Ok’s cluster Mk. If Jk,i ∈ Jk, the job
is executed locally, otherwise it is migrated to another
cluster. The underlying computational model is parallel
rigid jobs where Jk,i must be executed in parallel on
qk,i processors of exactly one cluster during pk,i time
units [5]. It is not possible to distribute a job between
two, or more, clusters. pmax = maxi,k(pk,i) denotes the
maximum length of the jobs. Jk,i is said a low job with
respect to cluster Mk if its height qk,i is at most equal
to mk

2 , otherwise it is high. Moreover, we assume that
all the jobs can fit in all clusters, which means that each
job has a height lower than or equal to each cluster size
(max qk,i ≤ mN ).

Ck,i denotes the completion time of job Jk,i. For
an organization Ok, the maximum completion time
(makespan) is computed as Cmax(Ok) = maxi(Ck,i :
Jk,i ∈ Ik). The global makespan Cmax is the max-
imum makespan over all the organizations, Cmax =
maxk Cmax(Ok). All these notations are natural exten-
sions of standard notations in scheduling, they are il-
lustrated in Figure 1.

For cluster Mk, a schedule is an allocation of jobs Jk
to processors together with a starting time, such that at
each time, no processor is assigned to more than one
job. The makespan Cmax(Mk) of cluster Mk is defined
as the maximum completion time of jobs Jk assigned
to that cluster, Cmax(Mk) = maxi,j(Cj,i : Jj,i ∈ Jk).
At any time t, utilization Uk(t) of Mk is the ratio of
the number of assigned processors to the total number
of processors mk. A scheduler is an application which
produces schedules, given the sets of jobs produced by
each organization.

2.2 Problem Statement

We consider off-line, clairvoyant scheduling with no pre-
emption. Those assumptions are fairly realistic in most

of the existing scheduling systems, which use batches [6]
and which require the user to define the run-time of the
submitted jobs. The objective of each organization Ok is
to minimize the date Cmax(Ok) at which all the locally
produced jobs Ik are finished. Organization Ok does not
care about the performance of other organizations, nor
about the actual makespan Cmax(Mk) on the local cluster
Mk, if the last job to be executed does not belong to Ok.
However, Cmax(Ok) takes into account jobs owned by
Ok and executed on non-local clusters, if there are any.

Informally, the Multi-Organization Scheduling Prob-
lem (MOSP) corresponds to the minimization of the
makespan of all the jobs (the moment when the last job
finishes) with an additional constraint that no makespan
is increased compared to a preliminary schedule in
which all the clusters compute only local jobs. More
formally, let Cloc

max(Ok) be the makespan of Ok when the
set of jobs executed by Mk (that is Jk) corresponds only
to local jobs. MOSP is defined as:

Minimize Cmax such that

∀k ∈ {1, . . . , n} Cmax(Ok) ≤ Cloc
max(Ok). (1)

In the sequel, we denote by C∗
max the makespan of

an optimal solution of the problem where the aim is to
minimize the makespan without local constraints. Thus,
C∗

max is a lower bound of the makespan of an optimal
solution of MOSP. We denote by LB a lower bound of
the makespan of an optimal solution of MOSP: LB =

max
(

∑
k,i

qk,ipk,i∑
k
mk

,maxk,i (pk,i)
)

.

The complexity analysis of MOSP is straightforward
by restricting the number of organizations to N = 1, the
size of the cluster to m = 2 and the jobs to sequential
ones (qk,i = 1). In this case, MOSP is exactly the classical
scheduling problem P2||Cmax which is NP-hard [7].

2.3 Motivation for cooperating

Let us first recall that there exist several papers address-
ing the scheduling of centralized jobs on hierarchical
platforms with several clusters without local constraints.
A theoretical analysis of the problem has been studied
in [8] where the problem has been proved to be NP-
hard and any list scheduling policy is arbitrarily far from
the optimal (for a large number of clusters). Then, a
first algorithm based on several separate lists has been
proposed in [9], it leads to a 3-approximation in the
case of non-clairvoyant jobs (it also holds for clairvoyant
jobs with a larger ratio). A complete theoretical analysis
has been provided recently in [10] leading to costly
polynomial approximation schemes and shelves-based
algorithms. A recent alternative approach based on evo-
lutionary fuzzy systems has been proposed in [11].

Many cases motivate independent organizations to
cooperate and accept non-local jobs, even if the resulting
configuration is not necessary globally optimal. A non-
cooperative solution is that all the organizations com-
pute their jobs on their local clusters. However, such a
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Fig. 2. Globally-optimal solution (b) is inadmissible, as it

extends the makespan of organization O1 in comparison

with the local solution (a). The best solution which does

not increase any local makespan (c) has a larger value

than the global optimum.

solution can be arbitrarily far from the global optimum.
Let us consider the following instance: Organization O1

owns N jobs of unit length and all the others (from
O2 to ON ) have no local jobs. The global makespan
obtained without cooperation is equal to N while the
optimal makespan is 1 when each cluster executes one
job. Thus, the ratio is arbitrarily large when the number
of organizations increase. Let us remark also that careful
scheduling may offer more than simple load balancing of
the previous example. By matching certain types of jobs,
bilaterally profitable solutions are also possible. Never-
theless, a certain price must be paid in order to produce
solutions in which all the organizations have incentive
to cooperate. Figure 2 presents a lower bound of an
instance in which the globally-optimal solution extends
the makespan of one of the organizations. Consequently,
all the algorithms that meet the constraint have at least a
makespan equal to 3

2 of the value of the globally-optimal
solution (C∗

max). Let us remark that this bound still holds
for the sub-case where the machines are reduced to only
one processor.

3 SCHEDULING ON ONE CLUSTER

Let us first focus on the preliminary case of schedul-
ing rigid parallel jobs on one cluster of m identical
processors. In this section, we define a job as low if
its height is at most m

2 ; otherwise it is high. Notice
that as in this section there is no reason to distinguish
between a cluster and an organization, we will simply
use Cmax to denote the makespan and omit the index
of the organization in other notations (e.g. qk,i becomes
qi). We will use the classical list scheduling algorithm,
which has an approximation ratio equal to 2− 1

m [12]. We
show that if the jobs are ordered according to decreasing
number of required processors, the resulting schedule
achieves fairly homogeneous utilization.

3.1 List Scheduling

List scheduling [12] is a class of algorithms which work
as follows. First the jobs are ordered into a list. Then, the
schedule is constructed by assigning jobs to processors
in a greedy manner. Let us assume that at time t, m′

processors are idle in the schedule under construction.
The scheduler chooses the first job Ji of the list requiring

no more than m′ processors, it schedules the job at
time t, and finally it removes the job from the list.
If there is no such job, the scheduler advances to the
earliest time t′ when one of the scheduled jobs finishes.
Although straightforward in its principle, list scheduling
of rigid parallel jobs is an approximation algorithm with
guaranteed worst case performance of 2 − 1

m [13], no
matter the order of jobs in the first phase.

3.2 Highest First (HF) Job Order

It is well-known that the 2 − 1
m approximation ratio of

list scheduling does not depend on the particular order
of jobs in the list. Therefore, we may choose a criterion
which gives some interesting properties of the resulting
schedule without losing the approximation ratio.

Fig. 3. When jobs are sorted according to the number

of required processors, the schedule can be divided into

two successive regions with utilization U(t) > 1
2 (up to

tHL) and U(t) ≤ 1
2 (after this moment).

Assuming that the jobs are ordered according to HF,
i.e. by non-increasing values of qi, the following propo-
sition holds:

Proposition 1: All HF schedules have the same struc-
ture consisting of two consecutive regions of high (t ∈
[0, tHL) : U(t) > 1

2 ) and low (t ∈ [tHL, Cmax] : U(t) ≤ 1
2 )

utilization, where 0 ≤ tHL ≤ Cmax. Moreover, for
tHL ≤ t ≤ Cmax, U(t) is non-increasing and the period
length Cmax − tHL is lower or equal to LB. (Figure 3
illustrates the structure).

Proof: First, notice that no high job is scheduled
after a period of low utilization. Indeed, as soon as
a high job is completed, the following highest job is
scheduled (according to the HF order). Thus, there is
no low utilization period before all the high jobs have
been completed. The proof is now by contradiction. Let
us assume that at time t the utilization is low (U(t) ≤ 1

2 ),
and that at time t′ > t the utilization is high (U(t′) > 1

2 ).
Let us consider a job Ji scheduled at time t′. It is not
possible that Ji is a high job because no high job can
be scheduled after a period of low utilization, as noticed
before. If Ji is low (qi ≤

m
2 ) then it could have been

scheduled at time t, and scheduling it after t contradicts
the greedy principle of the list scheduling.

A similar argument can be used to show that no job
starts after tHL. Therefore, for tHL ≤ t ≤ Cmax, U(t)
is non-increasing. Since the longest job has a processing
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time smaller or equal to LB, this also proves the property
on the length of the low utilization period.

The cost complexity for Local HF is of order
O(nk log nk) on each cluster, where nk = |Jk|.

4 MOCCA

In this section we present an algorithm for solving
MOSP. We start by presenting the principle of the al-
gorithm and detail how it runs on an example. Then, a
formal description is given before proving the approxi-
mation ratio.

4.1 Principle of the algorithm

MOCCA is an algorithm with a guaranteed worst-case
performance on the global makespan. The algorithm
consists of three phases. It starts by scheduling all
the jobs on their local clusters using the Highest First
ordering (HF) (described and analyzed in Section 3.2)
in phase 1. Then, the algorithm unschedules the jobs
that would break a given threshold (i.e., in the local
schedules, those that finish after the performance bound
equal to three times a lower bound of the optimal
global makespan. This lower bound is determined by
the maximum between the total workload divided by m
and the maximum processing time).

All these unscheduled jobs are sorted according to the
HF order. They are scheduled in phase 2 on all possible
clusters as late as possible, from the threshold value
backwards. These jobs are scheduled without interfering
with the local schedules, i.e., already scheduled jobs
ending before the threshold remain unchanged.

Then, the remaining (small) jobs are inserted in phase
3 using an HF list algorithm over all the clusters between
the initial local jobs and the imported jobs. We will
prove that following this procedure, all the jobs are
scheduled. A formal description of the algorithm is given
in Section 4.3.

4.2 Example Run

Figure 4 presents the result of a typical execution of
MOCCA on an instance with N = 5 organizations.
Scheduling all the jobs locally (Figure 4(a)) results in
large global makespan Cmax, that is determined here by
the makespan of M2. O2 is the only organization whose
local makespan is larger than 3LB. MOCCA (Figure 4(b))
improves Cmax by rescheduling the last jobs of O2 on the
other clusters. Notice that no local makespan is increased
in the resulting schedule. The global makespan meets
the theoretical bound of 3 times the lower bound of
C∗

max. In Section 6 we show that a further improvement
is possible.

4.3 Formal Description

In order to provide a complete and formal definition
of MOCCA, some additional notations are introduced

(a) local

(b) MOCCA

Fig. 4. An example instance with N = 5 organizations.

Jobs of different organizations are denoted by different

shades of gray. MOCCA (b) improves the system-wide

makespan comparing to the local scheduling (a).

inside the algorithm description. At the end of phase 1,
we denote by C≥j

k the earliest time moment when at least
j processors are idle on cluster Mk until the end of the
schedule (or at least until a certain deadline Dk when
Dk is defined). These values are computed immediately
after phase 1. Let Dk be the deadline that it is fixed on
machine Mk for the jobs scheduled in phase 2. Let us
recall that the clusters are sorted in non-increasing order
of number of processors (m1 ≥ m2 ≥ · · · ≥ mN ). In the
sequel, (p, q) will denote a job using q processors with
a processing time p. The cost complexity of MOCCA is
O(n log n), where n is the total number of jobs.

Algorithm 1 MOCCA phase 1

Require: Local queues for all clusters
Ensure: A list of jobs named Sorted and a partial sched-

ule
LB ← max

(
∑

k,i
qk,ipk,i∑
k
mk

,maxk,i (pk,i)
)

for k ← 1 to N do
Schedule local jobs on Mk using HF up to 3LB.

end for
Sorted← remaining jobs sorted according to the num-
ber of processors required in non-increasing order.
compute the values C≥j

k .
for k ← 1 to N do

On each cluster Mk, the processors are numbered
in non-increasing order of their completion times.
Processor 1 ends its jobs the latest, while the mk-th
processor ends the soonest.

end for
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Algorithm 2 MOCCA phase 2

Require: A list of jobs Sorted and a partial schedule
Ensure: A list of jobs Unscheduled and a partial sched-

ule
Unscheduled← ∅
for k ← 1 to N do
Dk ← 3LB

end for
while Sorted 6= ∅ do
(p, q)← first job of Sorted
Remove job (p, q) from Sorted
scheduled← false
k ← N
while ((not scheduled) and (mk

2 < q) and (k ≥ 1))
do

if (C≥q
k + p ≤ Dk) then

Schedule job (p, q) starting at time Dk − p on
Mk. The q processors used are those which are
idle at time Dk − p and have the highest index.
Dk ← Dk − p
scheduled← true

else
// The job does not fit on Mk

k ← k − 1
end if

end while
if not scheduled then

Add job (p,q) to Unscheduled
end if

end while

4.4 Feasibility

The algorithm is guaranteed by construction to be a 3-
approximation. We prove in this section that it is feasible
(all the unscheduled jobs fit before 3LB). First, we will
start by some structural propositions which give impor-
tant information on the partial schedules built at each
step of MOCCA. Proposition 2 states that some clusters
are computing their fair share of workload if certain jobs
cannot be added during phase 2. Proposition 4 states
that during phase 3 each time a job is scheduled on Mk,
then the global processor usage is strictly greater than
mk

2 during an initial period, followed by a limited period
of low utilization (when at most mk

2 processors are used).

Proposition 2: During phase 2, when a job requiring
q processors is inserted in the Unscheduled set, all the
clusters Mk such that mk

2 < q have a workload Wk which
is at least mkLB.

Proof: When a job is inserted in the Unscheduled
set, the boolean variable scheduled is false since the
instruction is guarded by a test on this variable. Hence,
the preceding while loop stopped either because mk

2 ≥ q
(the job is no longer big enough for the remaining
clusters) or k < 1 (all the clusters have been considered).
Anyway, all the clusters Mk such that mk

2 < q have been

considered, and for each of them we have C≥q
k +p > Dk.

Algorithm 3 MOCCA phase 3

Require: A list of jobs Unscheduled and a partial sched-
ule

Ensure: A complete schedule not longer than 3LB
potential start← minj,k C

≥j
k

while Unscheduled 6= ∅ do
possible configurations←

{(j, k)|C≥j
k = potential start}

max idle← max {j|∃k,
(j, k) ∈ possible configurations}

scheduled one← false
candidate jobs← {(p, q)|(p, q) ∈ Unscheduled and

q ≤ max idle}
Sort candidate jobs in non increasing order of pro-
cessor used
while (candidate jobs 6= ∅ and not scheduled one)
do
(p, q)← First job of candidate jobs
for k ← 1 to N do

if not scheduled one and C≥q
k ≤ potential start

and potential start+ p ≤ Dk then
Schedule (p, q) starting at potential start on
Mk

scheduled one← true
Recompute the new C≥j

k for all j in Mk

Remove job (p, q) from Unscheduled
end if

end for
if not scheduled one then

Remove job (p, q) from candidate jobs
end if

end while
if not scheduled one then
next potential starts←

{C≥j
k |C

≥j
k > potential start}

// The set next potential starts is not empty (as
proved in proposition 6).
potential start← min(next potential starts)

end if
end while

Since p ≤ LB, the previous inequality can be simplified
to C≥q

k + (3LB −Dk) > 2LB.

If C≥q
k ≤ LB, the proof is obtained by a simple addi-

tion of the workload done before C≥q
k and the workload

done after Dk. According to Proposition 1, the utilization
before C≥q

k is either larger than 1
2 , or non increasing (and

by definition of C≥q
k , larger than mk−q+1

mk
). After Dk, the

utilization is at least q
mk

since the jobs are added in non-
increasing height. The workload Wk being larger than
the sum of these two parts, we can conclude:

Wk ≥ C≥q
k (mk − q + 1) + (3LB −Dk)q

> C≥q
k (mk − q + 1) + (2LB − C≥q

k )q

= C≥q
k (mk + 1) + (2LB − 2C≥q

k )q

≥ C≥q
k (mk + 1) + (LB − C≥q

k )(mk + 1)
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= LB(mk + 1)

If C≥q
k > LB, the proof is obtained by a slightly

more complicated decomposition. First, let us remark
that since phase 1 consists of a local HF list scheduling,
where jobs are independent and shorter than LB, all
jobs running at time t + LB were not running at time
t. Hence, for all t such that U(t + LB) > 0, we have
U(t) + U(t+ LB) ≥ mk+1

mk
. On one hand, if C≥q

k ≥ 2LB,

Wk is larger than mk

∫ 2LB

0
U(t)dt which is larger than

(mk + 1)LB, and on the other hand if C≥q
k < 2LB, Wk

can be expressed as a sum of four terms:

Wk ≥ mk

∫ C
≥q

k
−LB

0

U(t)dt+mk

∫ LB

C
≥q

k
−LB

U(t)dt

+mk

∫ C
≥q

k

LB

U(t)dt+ (3LB −Dk)q

= mk

∫ C
≥q

k
−LB

0

(U(t) + U(t+ LB)) dt

+mk

∫ LB

C
≥q

k
−LB

U(t)dt+ (3LB −Dk)q

≥ (mk + 1)(C≥q
k − LB)

+(mk − q + 1)(2LB − C≥q
k ) + (3LB −Dk)q

= (mk + 1)LB + q(LB −Dk + C≥q
k )

> (mk + 1)LB

Proposition 3: During phase 3, if job (p, q) is scheduled
on Mk then q ≤ mk

2 .
Proof: Since the job was not scheduled during phase

2, either q ≤ mk

2 or C≥q
k + p > Dk. The proposition is

straightforward in the first case, and in the later case
there are no possible potential start such as C≥q

k ≤
potential start and potential start + p ≤ Dk which is
a necessary condition to schedule (p, q).

Proposition 4: During phase 3, each time a job is sched-
uled on Mk, the cluster utilization is strictly greater
than 1

2 during an initial period of time (up to the new

C
≥⌈

mk
2

⌉

k ), followed by a limited period of low utilization
when at most ⌊mk

2 ⌋ processors are used (during at most
LB units of time).

Proof: At the very beginning of phase 3, this property
is verified since the schedule up to Dk is exactly the
schedule produced by HF in phase 1 and it verifies
Proposition 1.

We have just proved in Proposition 3 that (p, q) is a
low job for Mk. We will now prove that job (p, q) is

scheduled to start no later than C
≥⌈

mk
2

⌉

k . The phase 3
of our algorithm relates to list algorithms in the sense
that it relies on a moving starting date (potential start).
The starting date is shifted to a later date (namely the
next C≥i

j ) only when no jobs can be scheduled starting
at this time instant. If at some point in phase 3 there is

a k such that C
≥⌈

mk
2

⌉

k < potential start, it means that

at a previous step of the algorithm we had C
≥⌈

mk
2

⌉

k =
potential start and no jobs could be scheduled on k.
Hence, for any remaining job (p, q) such that q ≤ mk

2 ,

we have C
≥⌈

mk
2

⌉

k + p > Dk. Which proves that job (p, q)
cannot be scheduled during phase 3 on k at a later date

than C
≥⌈

mk
2

⌉

k .
Therefore, when a job (p, q) is scheduled, the utiliza-

tion of Mk may be augmented before and after C
≥⌈

mk
2

⌉

k ,
but there are no gap of low utilization created by
scheduling (p, q). This proves that the property of having
a high utilization period followed by a low utilization
period is conserved throughout phase 3. Since all jobs
have a duration lower or equal to LB, the low utilization

phase cannot be extended further than C
≥⌈

mk
2

⌉

k + LB,
which completes the proof.

Proposition 5: For each job (p, q) in Unscheduled, for

each cluster Mk such that C
≥⌈

mk
2

⌉

k + p > Dk, cluster Mk

has a workload which is at least mkLB.
Proof: Cluster Mk has a high utilization before

C
≥⌈

mk
2

⌉

k , and after Dk up to the fixed deadline of 3LB.

The sum of both periods is equal to C
≥⌈

mk
2

⌉

k +(3LB−Dk),
and since p ≤ LB this sum is larger than 2LB.

Proposition 6: The set next potential starts is never
empty and therefore potential start is always well de-
fined.

Proof: The proof is by contradiction, assuming that at
some point the set next potential starts is empty. Then,
the set Unscheduled contains at least one job which could
not be scheduled at any step of the algorithm, while all

the C
≥⌈

mk
2

⌉

k have been considered as potential starting
dates. Considering the characteristics of this particular
job (p0, q0), from the previous propositions we derive
the following facts:

• Any cluster Mk such that q0 > mk

2 was processing
a workload of at least mkLB when (p0, q0) was
considered in phase 2 (by Proposition 2).

• Any cluster Mk such that q0 ≤
mk

2 was processing a
workload of at least mkLB when (p0, q0) was con-
sidered in the last step of phase 3 (by Proposition 4).

Theorem 1: The schedule produced by MOCCA is fea-
sible, it includes all the jobs and completes before 3LB.
Hence MOCCA is a 3-approximation algorithm.

Proof: Proposition 6 states that the schedule is feasi-
ble and that all the jobs have been properly scheduled.
Moreover, by construction no jobs complete after 3LB.

4.5 Tightness

By construction, the algorithm produces schedules
which have a makespan close to the 3LB deadline on
some organization, since jobs ending after this deadline
in local schedules are rescheduled to end exactly at 3LB.
Therefore, the bound is obviously tight for this algo-
rithm. In this section, we will analyze several interesting
properties related to tightness.
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4.5.1 Adequacy of the lower bound

In our analysis of MOCCA, we proved that the lo-
cal schedules ended before 3LB. Actually, for some
instances this deadline is asymptotically close to the
optimal makespan.

Proposition 7: For any ǫ, there exist instances where
3LB − ǫ is lower than C∗

max.
Proof: Consider for example an instance composed of

N organizations of m processors each, and 2N+1 jobs of
size m/2 + 1 and length Nm

(2N+1)(m/2+1) . By construction
the lower bound LB is then equal to 1. However, no
organization is large enough to run two jobs at the
same time. Since at least one organization has to execute
three jobs, the optimal makespan is 3Nm

(2N+1)(m/2+1) which
asymptotically tends towards 3 when N or m grows.

This proves that no algorithm can produce a schedule
with a makespan always strictly lower than 3LB.

4.5.2 Unscheduling more jobs

To go further in the analysis we can also consider
the potential performance guarantee for all the algo-
rithms which respect the MOCCA fundamental property.
This property is to leave untouched all the jobs sched-
uled before a given threshold. Since an optimal (non-
polynomial) algorithm can schedule all the unscheduled
jobs in C∗

max units of time, whatever the threshold d ≥ 0,
the value d+C∗

max can be trivially achieved by an optimal
algorithm. Considering this, and the fact that MOCCA
has a performance ratio of 3, we will prove in this section
that no algorithm can improve this performance ratio
unless the threshold is smaller than 2C∗

max.
Proposition 8: Any algorithm keeping local schedules

unchanged up to 2C∗
max cannot have a performance ratio

better than 3.
Proof: We consider an instance of N organizations of

m processors, where m = 2N − 1. All the organizations
use list scheduling with jobs sorted in non-increasing
sizes to produce their original schedule. The jobs of the
first organization are N jobs of size m and length 2

N
and N jobs of size N and length 1 − 2

N . The other
organizations each have N jobs of size 1 and length 1− 2

N .
Original schedules are shown in figure 5.

The LB value for this instance is equal to 1.
Notice that this remains true even if LB is lower than

C∗
max and the threshold is set to 2LB.

5 EXTENSIONS

5.1 Two clusters and jobs of any heights

We present in this Section the following result: if there
are two organizations O1 and O2 with clusters of differ-
ent sizes m1 and m2 (with m1 ≥ m2), and if the height
of each job is at most equal to the number of machines
of its own organization, then the approximation ratio
of MOCCA is also 3. Notice that, contrary to what it is
considered elsewhere, we do not assume that all the jobs
fit in all the clusters.

(a) local schedules

(b) optimal sched-

ule with partial de-

scheduling

(c) optimal schedule

with complete de-

scheduling

Fig. 5. Worst-case instance, where partially descheduling

jobs lead to inefficient schedules.

Proposition 9: In the case of two organizations, if the
only constraint on the job’s heights is that no job is
higher than the size of the cluster of its organization,
then MOCCA is a 3-approximation.

Sketch of the proof: As in the previous proof, since
MOCCA returns by construction 3-approximate sched-
ules, we only show that the returned scheduled is fea-
sible. The principle of the proof is by contradiction,
assuming that one unscheduled job does not fit, a case
study on the job height shows that the total surface is
larger than expected in LB.

5.2 Any local policy

We have considered up to now that the local schedule
of each organization has been obtained by HF. How-
ever, it is not always the best schedule. We consider
in this section that each organization produces its local
schedule as it wishes: thus, it may produce a schedule
with a local makespan smaller that the makespan it
would have obtained using HF. In this case, knowing
the local schedules which have been computed, our goal
is to return a schedule minimizing the global makespan
under the constraints that no local makespan has been
increased (regardless of the local policies used by the
organizations). Let us consider the following modified
version of MOCCA:

The differences with MOCCA are the following: we
keep local schedules if their makespan is better than
the one obtained with HF; we unschedule the jobs
completed after 4LB (and not 3LB); unscheduled jobs
are rescheduled only backward, from 4LB (as in Phase
2 of MOCCA– there is no phase 3 here).

Since the schedule is cut at time 4LB we will denote
this algorithm by MOCCA (4). More generally, the same
algorithm which cut the schedule at time αLB is de-
noted by MOCCA (α).
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Algorithm 4 MOCCA (4)

1) Let LB = max
(

∑
k,i

qk,ipk,i∑
k
mk

,maxk,i(pk,i)
)

.

On each cluster, if the local makespan is smaller
than 4LB and smaller than the makespan ob-
tained by scheduling the local jobs with HF then
keep the actual local schedule, otherwise replace
it by the HF schedule.

2) Unschedule all the jobs that are completed after
4LB.

3) Sort the unscheduled jobs according to HF.
4) List-schedule the unscheduled jobs backwards,

starting from 4LB (without moving the already
scheduled jobs).

Proposition 10: The schedule produced by MOCCA (4)
is feasible: it includes all the jobs and all the organi-
zations have incentive to cooperate, regardless of the
algorithms they use to compute their local schedules.
Thus, MOCCA (4) is a 4-approximate algorithm.

Proof: At step 1, each local schedule smaller than
4LB is modified only if its corresponding HF schedule
has a smaller makespan: no local makespan (smaller than
4LB) is increased. At step 2, the only jobs which are
unscheduled are those which are completed after 4LB.
These jobs will be, at the end of the algorithm, com-
pleted before 4LB. Hence, if the schedule returned by
MOCCA (4) is always feasible, no organization obtains
a makespan larger than the makespan of its original local
schedule. We show now that MOCCA (4) indeed returns
feasible schedules, i.e., that all the jobs can be scheduled
by the algorithm.

By contradiction, let us assume that at step 4 of
MOCCA (4) some jobs do not fit on any cluster. Let
J = (p, q) be the highest of these jobs. We show in this
case that the work already scheduled on each cluster Mk

is larger than mk LB. This implies that the work already
scheduled is larger than the total work available, which
is a contradiction.

Let S be the schedule on cluster Mk at the end of the
algorithm. We denote by Sloc the schedule of the local
jobs of S: Sloc is the schedule S in which we remove
all the jobs which have been added at step 4 of the
algorithm (i.e., those which have been list scheduled
backward from 4LB). We denote by Cmax(Sloc) the
makespan of Sloc. Let SHF be the schedule that we
would have obtained by scheduling on Mk the local jobs
using HF (and by scheduling only these local jobs). We
denote by Cmax(SHF ) the makespan of SHF . Thus, all
the jobs in SHF are those of Sloc: the work in SHF is the
same as in Sloc.

Let x = Cmax(Sloc). We know that the work done
in Sloc is the same as the work done in SHF , and the
makespan of SHF is larger than or equal to x (recall that
at step 1 we keep the original local schedule if and only
if its makespan is smaller than Cmax(SHF )). According
to Proposition 1, the work done in SHF (and thus also

(a) Schedule returned by MOCCA

(b) Schedule returned by ILBA

Fig. 6. ILBA (b) refines the schedule returned by

MOCCA (a) and improves both the global and local

makespans of O1, O2 and O4. Notice that (a) is a com-

pacted version of the schedule from Figure 4 (balanced

jobs are scheduled as soon as possible).

in Sloc) is larger than or equal to W1 = mk

2 (x − LB)
since the low utilization zone in SHF is at most equal to
LB. In S, the jobs which are not in Sloc are scheduled
backward from 4LB, using the HF order. Job J cannot be
scheduled in S, so the gap between the completion time
of the last job of Sloc and the high job which starts first
among the jobs scheduled “backwards” is thus smaller
than p and thus smaller than LB. Otherwise, J would fit
in the schedule (if J is a high job, recall that with the HF
list algorithm, as soon that a high job has been scheduled
the highest remaining job is scheduled – unless there is
no room for it). Thus there is a high utilization zone from
x + LB to 4LB. The work done in this zone is at least
W2 = mk

2 (4LB−x−LB). Thus the work done in S is at
least W1 +W2 = mk

2 (x− LB + 4LB − x− LB) = mkLB.
This completes the proof.

We show finally that this bound is tight. Consider for
example two clusters M1 and M2 with respectively three
and one processor. If O1 does not have any local job,
and if O2 owns 4 jobs of length 1, then the makespan
of its local schedule is 4, which is equal to 4LB, and
thus MOCCA does not change this local schedule. The
returned schedule is 4-approximate. Notice that we do
not know if the schedule returned by MOCCA (α) for
3 ≤ α < 4 is feasible (Proposition 8 states that any algo-
rithm keeping local schedules unchanged up to 2C∗

max

cannot have a performance ratio better than 3).
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6 ITERATIVE LOAD BALANCING ALGORITHM

The MOCCA algorithm guarantees that the global
makespan Cmax is not greater than 3C∗

max. Nevertheless,
the load distribution resulting from running the algo-
rithm can be unbalanced. For instance, MOCCA does
not usually modify the schedule of an organization with
Cmax(Ok) = 3C∗

max−ǫ. Yet, it is possible that jobs on such
clusters are not yet scheduled while some other clusters
are idle. The Iterative Load Balancing Algorithm (ILBA)
presented in this section improves the schedule returned
by MOCCA by balancing the load between clusters.
We also show that in a restricted case of scheduling
sequential jobs, ILBA has the same approximation ratio
as any list-scheduling algorithm.

The basic principle is to start with the least loaded
clusters and iteratively add the more loaded ones, ILBA
permits also to reduce the makespans on the less loaded
clusters. An example of applying ILBA to a schedule
returned by MOCCA is presented in Figure 6. Notice
that, as ILBA does not take into account the owner of a
job, in this section we will omit the index of organization.

6.1 Algorithm Description

ILBA starts by sorting and labeling the clusters by
non-decreasing values of their makespans. Suppose that
Cmax(M1) ≤ Cmax(M2) ≤ · · · ≤ Cmax(MN ). The al-
gorithm, for all k = 2, . . . , N , reschedules all the jobs
Jk executed on Mk on {M1, . . . ,Mk}. Jk are scheduled
sequentially in the order of execution of the original
schedule. Each job Ji is allocated to the cluster that has
the earliest strip of idle processors of width at least pi
and height at least qi.

ILBA does not delay any job, thus, given a schedule
produced by MOCCA, ILBA fulfills the locality con-
straint in and does not worsen the approximation ratio
(see the next Section 6.2 for a formal proof).

Notice that many other load balancing policies are
possible (such as redistributing load in pairs or starting
with the most loaded machine). However, by starting
with the least loaded clusters and iteratively adding
the more loaded ones, ILBA permits also to reduce the
makespans on the less loaded clusters. Consequently, the
resulting load distribution is more equitable. The cost
complexity of ILBA is O(Nn), where N is small.

6.2 Principle of Algorithm

ILBA does not delay any job and thus does not increase
the makespan of any organization. The following propo-
sition formally states this result.

Proposition 11: ILBA does not delay any job comparing
with the base schedule.

Proof: As ILBA considers clusters one after the other,
it is sufficient to show that the proposition holds for any
cluster Mk (as the jobs from the following clusters do not
modify the jobs already scheduled). Let assume that the
jobs are numbered according to non-decreasing starting
times in the base schedule.

The proof is by induction on the scheduled jobs. In
ILBA, a scheduled job Ji cannot be influenced by jobs
Ji+1, . . . , Jn scheduled after (nor by jobs incoming from
different clusters in the subsequent parts of the algo-
rithm). Notice also, that at this phase of the algorithm,
no new job is allocated to Mk. Thus, it is sufficient to
show that if jobs J1 to Ji−1 are completed no later than
in the original schedule, Ji is also not delayed.

The proposition trivially holds for J1, as the first job
will be started at t = 0.

Let now assume that jobs J1 to Ji−1 are scheduled no
later than their starting times in the original schedule.
Consequently, they finish no later than in the original
schedule. Thus, at Ji’s original starting time, the number
of free processors is at least the same as in the original
schedule. Hence, Ji can be scheduled at its original start-
ing time. It is migrated only if it can be started earlier
than this initial starting time. Consequently, Ji finishes
at the latest when it finished in the base schedule.

6.3 Approximation Ratio for Sequential Jobs

If all the jobs are sequential ones, ILBA can be run
directly after running local scheduling (i.e., executing
MOCCA is not needed). ILBA is a 2-approximation
algorithm.

Proposition 12: If all the jobs are sequential (i.e., qk,i =
1∀i, k), then the approximation ratio of ILBA is equal to
(2− 1∑

N
k=1

mi
) where all the organizations have incentive

to cooperate.
Proof: In the obtained schedule, no organization

has a makespan larger than the makespan it had by
scheduling its jobs locally, thus all the organizations
have incentive to cooperate. Moreover, no job starts after
any processor (of any cluster) becomes idle. Thus, the
schedule could have been returned by a list scheduling
algorithm. The approximation ratio of any list algorithm
which schedules jobs on m processors is 2− 1

m [12]. Thus,
ILBA also has the approximation ratio of (2− 1∑

N
k=1

mi
).

Notice that this bound is tight: consider for instance
one organization with m clusters, which uses the SPT
list algorithm (Shortest processing Times) to schedule
its jobs, and whose jobs are the ones used in Graham’s
worst case example of SPT (that is m(m−1) jobs of length
1 and one job of length m). ILBA does not move any job,
and the approximation ratio of the resulting schedule is
2− 1

m .

6.4 Approximation in the General Case

We show in this Section that the approximation ratio of
ILBA can be as high as wanted, contrarily to MOCCA
which is a 3-approximate algorithm for MOSP. This is
true even if the local schedules use the HF order.

Proposition 13: The approximation ratio of ILBA is un-
bounded.

Proof: Let x ∈ N. Let us show that ILBA has an
approximation ratio larger than x for MOSP. In the
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sequel (p, q) will denote a job using q processors with
processing time p. The considered instance is as follows:
Let n = x2−x+2. There are N = n+2x organizations. The
n first organizations have each one a job (L, 1 + x) and
a job (1,m−x−1). For each i ∈ {1, . . . , x}, the local jobs
of organization On+2i−1 are: i jobs (L,m), n+3i− 2 jobs
(1,m), and n+2i−1 jobs (1,m−x+ i−1); and the local
jobs of organization On+2i are: i jobs (L,m), i jobs (1,m),
1 job (1,m−x+i−1), and n+2i jobs (L, x−i+1). Figure
7(a) depicts the local schedules (in the HF order) in the
case where x = 3 (for the sake of simplicity, we do not
distinguish the heights of the long thin tasks, likewise
we do not distinguish the heights of the jobs of length 1
and heights between m− 1 and m− x). The idea is that
organizations O1, . . . , On will only receive jobs. For each
i ∈ {1, . . . , x}, organization On+2i−1 will export its last
jobs of height m -one on each of the less loaded clusters
-, each of these jobs being followed by another heigh job,
slightly too heigh to fit in any gap but thin enough to
be scheduled with a long thin job that organization O2i

will export at the next step of the algorithm. Thus, the
n + 2i long thin jobs exported by organization O2i will
be each one on a different cluster. Note that these jobs
could not have been scheduled earlier since the length of
each task is L and the gaps in the schedule are of length
L − 1. The schedule returned by ILBA on this instance
is depicted in Figure 7(b).

ILBA returns a schedule whose makespan is (x+1)L+
x. The optimal schedule of these tasks would be:

• N − 2 = n + 2x − 2 clusters schedule each one one
job (L,m). Since n = x2−x+2, we have n+2x−2 =
2
∑x

i=1 i : it is possible to schedule each job (L,m)
alone on one of these n+ 2x− 2 clusters.

• one cluster schedules all the other jobs of processing
time L. The sum of the heights of all these jobs is
H =

∑x
i=1(n+ 2i)(x− i+ 1). By setting m = H , the

makespan of this cluster is L.
• the last cluster schedules all the other jobs. Each of

these jobs has a processing time of 1. By setting L
equal to the number of these jobs, the makespan of
this cluster is also L.

The makespan of an optimal schedule is thus L. The
approximation ratio of ILBA on this instance is thus
(x+1)L+x

L > (x + 1). Since we can fix x as large as
wanted, the approximation ratio of ILBA for MOSP is
unbounded.

7 EXPERIMENTS

In this section, we carry out the experimental evaluation
of MOCCA. We start with performance measures and
the methods used to generate the workloads.

7.1 Description of the methods

We considered three algorithms for the experiments,
namely: (1) the algorithm that schedules for each or-
ganization its jobs on its local cluster according to HF

... ...

...

... ...

... ...

...

...

M(n+1)

M(n+2)

M(n+3)

M(n+4)

M(n+5)

M(n+6)

M1,...,Mn

(a) local schedules

M1,...,Mn

M(n+1)

M(n+2)

M(n+3)

M(n+4)

M(n+5)

M(n+6)

(b) schedule returned by ILBA

Fig. 7. Instance which shows that the approximation

ratio of ILBA is unbounded. Here, the makespan of the

schedule returned by ILBA is more than 4 times larger

than the optimal makespan.

(called local); (2) MOCCA presented in Section 4 (we
implemented a slightly different version that combines
the second and the third phase, i.e., both high and low
jobs are scheduled together starting from 3LB; moreover,
in order to improve the average performance, then, the
schedules are compacted by advancing the moved jobs
if there is a gap in the schedule before them (see Fig-
ure 6 a); (3) ILBA presented in Section 6 that iteratively
improves the schedule returned by MOCCA.

The algorithms were compared regarding the pro-
duced global makespan. For each instance and each algo-
rithm, we computed the ratio of the produced makespan
to the lower bounds defined in Section 4.1:

s(alg, I) =
Cmax(alg, I)

max
(

W̄ (I), pmax(I)
) ,

where s(alg, I) is the score of algorithm alg on instance I
(and thus, an upper bound of the approximation ratio),
Cmax(alg, I) is the makespan produced by algorithm
alg on instance I , W̄ (I) and pmax(I) are respectively
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the average work and the length of the longest job in
instance I.

The algorithms were tested on two sets of randomly-
generated instances.

• uni instances in which jobs’ sizes pk,i and numbers
of required processors qk,i were produced by two in-
dependent uniform distributions over respectively,
{1, . . . , 50} and {1, . . . ,m};

• swf instances produced by a realistic workload gen-
erator [14]. We adjusted the generator as follows:
The maximum required number of processors is
smaller than m and all the release dates are set to 0.

Each instance produced consisted of n (a parameter
of the experiments) jobs. To determine the owner Ok of
each job Jx,i, we used a Zipf’s distribution. We set the
number of elements equal to the total number of organi-
zations (N ) and exponent s = 1.4267. These parameters
correspond to the distribution of Virtual Organizations
owning the jobs in data analyzed in [15].

7.2 Performance in Homogeneous Grids

In this series of experiments, we analyze the perfor-
mance of the presented algorithms in grids composed
of clusters that have the same number of proces-
sors. Both uni and swf instances were generated with
N ∈ {2, 5, 10, 20}, n ∈ {10, 50, 100, 500} and m ∈
{32, 128, 512}. N was chosen to represent academic grids,
where the number of participating laboratories is about
10. The number of processors varied between small and
large clusters currently used in grid systems. For in-
stance, clusters in Grid’5000 [16] currently have between
32 and 342 nodes. For each possible distribution type
(uni and swf ) and each possible combination of values
of n, N and m, 50 instances were generated. In total,
4,800 instances were generated. The average scores of
algorithms in function of n and N are presented on
Figure 8 (uni dataset) and Figure 9 (swf dataset).

The following phenomena can be observed.

7.2.1 The Inefficiency of Local Scheduling

The inefficiency of local scheduling can be observed in
uni instances (Figure 8(a)). The average score of local
is deteriorating quickly with the increased number of
organizations. The trend is even more visible when the
smallest instances (n = 10) are omitted. The average
score grows from 1.57 (N = 2) through 3.00 (N = 5) and
4.93 (N = 10) till 7.35 (N = 20). The linear correlation
coefficient between N and the score of local is equal to
0.69 for uni (and 0.38 when both data sets are combined).
This supports our claim that in larger systems the drop
in performance resulting from the lack of cooperation is
proportional to N .

7.2.2 Improvement by Iterative Load Balancing Algo-

rithm

The final refinement of schedules performed by ILBA
considerably improves the results in all settings. The
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Fig. 8. Average scores, or the ratios of the returned

makespan to the lower bound, of algorithms in function

of number of jobs n or the number of organizations N .

Error bars denote the standard deviation.

overall average score for uni instances drops from 2.40
(for MOCCA) to 1.24 (for ILBA), whereas for swf from
1.16 to 1.03. Moreover, ILBA returned optimal schedules
(with score equal to 1) for at least 40% of instances,
whereas MOCCA returned such schedules in 26% of the
considered instances. Notice that the score of an optimal
schedule can be higher than 1 (as we are comparing the
makespan with its lower bound). In this case, even if an
algorithm returns the optimal schedule, such a simple
analysis will not consider it as an optimal.

7.2.3 Performance on Realistic Instances

The performance of all the algorithms is much better on
instances created with the realistic workload generator
(swf dataset, Figures 9(a) and 9(b)). These instances are
easier to schedule because of the increased diversity
of both the sizes of jobs and the number of required
processors. For example, in the smallest (n = 10) swf
instances, ILBA was optimal in all but one instances, in
which the makespan was determined by the length of
the longest job.
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Fig. 9. Average scores, or the ratios of the returned

makespan to the lower bound, of algorithms in function of

the total number of jobs n or the number of organizations

N .

7.2.4 Influence of the Increased Load

The lack of cooperation makes the system inefficient
under heavy load, i.e. n is large (Figure 8(b) and 9(b)).
For all but uni instances with N = 2 and N = 5,
the average score of local scheduling rises with n. The
differences of load between organizations result from
Zipf’s distribution. The increased number of jobs makes
the load differences more visible. Scores of MOCCA
and ILBA deteriorate in swf instances, but improve (or
stay similar) in uni instances (after omitting the smallest
instances). In swf instances, the deterioration is directly
caused by the increased number of jobs. In contrast to
swf, jobs produced by the uniform distribution are, in
general, harder to match and, thus, to pack efficiently.
If the number of such jobs is increased, it is easier to
match jobs of different sizes, and thus the algorithm
achieves better packing (notice that the resulting score
is still higher than for swf instances).

7.2.5 Influence of the Number of Processors

The number of processors on each cluster m does not
influence the performance of the considered algorithms.
After averaging over all the other variables, p-values
of two-tailed, type 3 t-test, for m = 32 and m = 128
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Fig. 10. Average scores, or the ratios of the returned

makespan to the lower bound, of algorithms under differ-

ent local policies in function of the number of organiza-

tions N .

are 0.35, 0.11 and 0.28, for the local, MOCCA and ILBA
scores, respectively. Similarly p-values for the difference
between m = 128 and m = 512 are, respectively, 0.56,
0.24 and 0.31. Consequently, we do not report results
averaged over different values of m.

7.2.6 Worst Cases

The worst result of the local algorithm was 12.12 on an
uni instance with N = 20 organizations and n = 100 jobs.
The makespan is determined by a number of relatively
short jobs executed on one cluster. MOCCA achieved the
worst results in 9% of instances. This is caused by the
construction of the algorithm. Notice that the score of
the algorithm is computed relatively to the lower bound
of the makespan, and not the optimal solution that, in
this instance, is definitely higher than the lower bound.

7.3 Performance with Different Local Policies

MOCCA is a 3-approximation only when HF is used in
the local schedules. If the order of jobs is different, the
approximation ratio becomes 4 (Section 5.2). The follow-
ing series of experiments investigates the influence of the
local ordering on the performance of the algorithm. We
compare five algorithms using the same workloads as in
the previous section. Firstly, in local scheduling phase,
we order jobs by different factors: decreasing height
(HF), largest processing times (LPT), shortest processing
times (SPT), and random order (RND). Notice that in
order to emphasize the role of different local scheduling
policies, we do not reschedule jobs with HF as done in
Section 5.2. Then, we run MOCCA algorithm, that either
deschedules jobs after 3LB (HF3) or after 4LB. Finally,
we run ILBA on the resulting schedules. The results are
summarized in Figure 10 for uni dataset (we do not show
the results for swf dataset as they are similar).

Different local policies do not influence the perfor-
mance of the algorithm. Firstly, the algorithm was fea-
sible in all the instances (notice that Section 5.2 proves



13

that MOCCA (4) returns feasible solutions if the local
makespans are not larger than their corresponding HF
local makespans, otherwise local jobs have to be resched-
uled with HF). Secondly, HF3 is very similar to HF4 with
the largest difference in average score around 0.01 and p-
value of two-tailed, type 1 t-test equal to 0.02. Moreover,
on the average, all the algorithms achieved very similar
scores (1.01 – 1.02 in swf and 1.24 – 1.31 in uni). Out
of all the tested local policies, LPT has best average-
case behavior with the lowest average score (1.0113,
σ = 0.0379 in swf and 1.2422, σ = 0.0808 in uni).

7.4 Performance in Heterogeneous Grids

In this series of experiments, we analyze how the het-
erogeneity of the grid influences the performance of the
presented algorithms.

We simulated the heterogeneity of the grid by varying
the number of processors between clusters. We analyzed
grids with N = 10 organizations. The number of proces-
sors in each cluster was generated by a Pareto distri-
bution with minimal number of processors mmin = 128,
and a cutoff value mmax = 1024. To generate grids with
various measures of heterogeneity, we varied the param-
eter of Pareto distribution by setting it between 1 and 10
Values higher than 5 correspond to highly homogeneous
grids, similar to those tested in the previous round of
experiments. In total, 6,000 instances are considered.

The heterogeneity of the grid does not worsen the
behavior of ILBA. In uni instances, the average score
varied between 1.15 (for the most heterogeneous grid)
and 1.12, with standard deviation less than 0.04. In
swf instances, MOCCA +ILBA is almost optimal, with
average score less than 1 + 10−4 and variance less than
10−3. In both cases, local policy and pure MOCCA are
significantly worse.

7.5 Summary of the Results

The results of our experiments show that MOCCA
with ILBA is an efficient algorithm that considerably
improves the performance in comparison with local
scheduling. Even the worst observed results remain
far from the theoretical approximation ratios. We also
observed that the workloads generated by the realistic
workload generator were easier to schedule.

8 DISCUSSION ON RELATED WORK

In this paper we have studied the interest of collabo-
ration between independent parties. We based our work
on the idea that if a proposed collaborative solution does
not deteriorate any participant’s selfish goal, it should
be adopted by all the participants. Using reasonable as-
sumptions, we have demonstrated that it is always pos-
sible to produce such collaborative solutions. Moreover,
we have developed an algorithm which has a worst-
case guarantee on a global objective (the makespan of
the system) which represents a social goal, at the same

time respecting selfish interests of participants. In this
section we will briefly summarize how the concept of
collaboration and the distributed nature of systems has
been understood by and used in other works.

Non-cooperative game theory [17] studies situations in
which selfish users (called players) optimize their own
objectives, which also depend on strategies undertaken
by other players. Moreover, in order to measure the
performance of the system as a whole, a social (global)
objective function is often defined. The central notion
is the Nash equilibrium, which describes a situation in
which no player can improve their own objective by uni-
laterally changing their strategy. The ratio between the
values of the social objective function in the worst Nash
equilibrium and in the optimal solution is called the Price
of Anarchy [18]. It is interpreted as the cost of the lack
of cooperation. For instance, in the context of schedul-
ing, [19] measures the price of anarchy when selfish
sequential jobs choose one of the available processors:
the goal of each job is to minimize its completion time,
whereas the social goal is to minimize the makespan of
the schedule.

A related measure, the Price of Stability [20] compares
the socially-best Nash equilibrium with the socially-
optimal result. Usually, in order to reach such an equi-
librium, a centralized protocol gathers information from,
and then suggests a strategy to, each player. Since the
proposed solution is a Nash equilibrium, the players
do not have incentive to unilaterally refuse to follow
it. The price of stability can be interpreted as the cost
when players optimize their own objective functions
rather than the global objective function. It is possible to
view our problem as a non-cooperative game where the
players are the organizations (which have the possibility
to accept the proposed solution, or to choose to execute
their own jobs locally) and the social goal is to min-
imize the global makespan. The collaborative solution
proposed by our algorithm approximates the socially-
best Nash equilibrium, because it optimizes the social
goal with a guarantee that no player has incentive to
deviate from the proposed solution.

In cooperative game theory [17], players still have
their selfish goals, but they can communicate and enforce
agreements on their strategies. As a result, coalitions
appear and compete instead of individual players. The
payoff of such a game describes how much a set of
players gains by forming a coalition. The players choose
which coalitions to form, according to the way the allo-
cation of gains obtained by the coalition will be divided
among the coalition members. As the only payoff of a
player in our problem is the completion time of his or her
jobs, payoffs are not arbitrarily transferable. Therefore,
our solution is based on an extra centralized mechanism
enforcing the cooperation.

Papers proposing distributed resource management
usually solve the problem of optimizing a common
objective with a decentralized algorithm. [21] shows a
fully decentralized algorithm that always converges to
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a steady state. [22] presents a similar algorithm with
the divisible load job model. Those approaches contrast
with our algorithm. Although the algorithm is central-
ized, it respects decentralized goals of participants. We
are, however, aware that load balancing algorithms in
large scale systems tend to be decentralized. In [23],
a distributed algorithm balances selfish, identical jobs
on a network of identical processors. There are several
differences with our work since there is no notion of
organization, and agents are jobs whose aim is to be on
the least loaded machine. The authors focus on the time
needed to converge to a Nash equilibrium, and do not
consider, like we do, a social goal to optimize.

Finally, more there exist some conventional combi-
natorial optimization methods for scheduling indepen-
dent jobs on clusters or grids composed of multiple
clusters. For one cluster, the best algorithms are based
on 2D packing (also called strip packing). A survey of
such methods has been published in [24] and the best
known approximation is 2 for low cost algorithms (the
inapproximation bound is 3

2 ). Tchernykh et al. proposed
a hierarchical 3-approximation algorithm for multiple
clusters under the same hypotheses as our’s, without
the locality constraints [9].

9 CONCLUSION AND PERSPECTIVES

In this work, we have considered the problem of coop-
eration between selfish participants of a computational
grid. More specifically, we studied a model in which
selfish organizations minimize the maximum completion
time of their local jobs. We have proved that it is always
possible to respect the selfish objectives and, at the same
time, improve the performance of the whole system.
The cooperative solutions have a constant approximation
ratio, a significant gain compared to selfish solutions that
can be arbitrarily far from the optimum. Moreover, the
proposed algorithms turned out to be efficient during ex-
perimental evaluation by simulation. Our aim was not to
design an algorithm solving the general problem of grid
resource management, which complexity is overwhelm-
ing for any kind of mathematical modeling. However,
we claim that the positive results given in this paper
proves that cooperation achieved at the algorithmic (as
opposed to e.g. economic) level is possible.

As a perspective, we would like to study the effect
of the increased effort of individuals on the global
goal, especially in the case of on-line systems. More
specifically, we would like to relax the hard constraint
of “not being worse than the initial local solutions” to
an approximation of “not worsening too much the local
solutions”.
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