Campaign Scheduling

Vinicius Pinheiro
Lab. for Parallel and Distributed Computing
University of Sdo Paulo, Brasil
Email: vinicius.pinheiro@ime.usp.br

Abstract—We study the problem of scheduling in parallel
systems with many users. We analyze scenarios with many
submissions issued over time by several users. These submissions
contain one or more jobs; the set of submissions are organized
in successive campaigns. Jobs belonging to a single campaign
are sequential and independent, but any job from a campaign
cannot start until all the jobs from the previous campaign are
completed. Each user’s goal is to minimize the sum of flow times
of his campaigns.

We define a theoretical model for Campaign Scheduling and
show that, in the general case, it is NP-hard. For the single-user
case, we show that an p-approximation scheduling algorithm
for the (classic) parallel job scheduling problem is also an p-
approximation for the Campaign Scheduling problem. For the
general case with & users, we establish a fairness criterion
inspired by time sharing. We propose FAIRCAMP, a scheduling
algorithm which uses campaign deadlines to achieve fairness
among users between consecutive campaigns. We prove that
FAIRCAMP increases the flow time of each user by a factor
of at most kp compared with a machine dedicated to the user.
We also prove that FAIRCAMP is a p-approximation algorithm
for the maximum stretch.

By simulation, we compare FAIRCAMP to the First-Come-
First-Served (FCFS). We show that, compared with FCFS,
FAIRCAMP reduces the maximum stretch by up to 3.4 times.
The difference is significant in systems used by many (k > 5)
users.

Our results show that, rather than just individual, independent
jobs, campaigns of jobs can be handled by the scheduler
efficiently and fairly.

I. INTRODUCTION

The hardware industry perpetrated several advances during
the last decades, leveraging the high performance computing
technology and spreading its applicability in a wide variety of
fields such as structural analysis, oil exploration, atmospheric
simulation, weather prediction, seismic data processing, bio-
informatics, defense applications and, most recently, molecular
dynamics [1]. One of the main challenges in high performance
computing (HPC) is how to schedule jobs from different
users while providing performance and fairness guarantees.
Classic scheduling algorithms, such as FCFS (First-Come-
First-Served), backfilling and priority queues, are not well-
adapted for multi-user environments as their main goal is to
achieve optimal system performance measured by makespan or
throughput. However, users are selfish—rather than the overall

This work has been supported by the French-Polish bilateral scientific
cooperation programme ‘“Polonium” and by the CAPES/COFECUB Program
(project number 4971/11-6)

Krzysztof Rzadca
Institute of Informatics
University of Warsaw, Poland
Email: krzadca@mimuw.edu.pl

Denis Trystram
Grenoble Institute of Technology
Institut Universitaire de France
Email: trystram @imag.fr

system efficiency, each user cares about the performance of his
own jobs.

High performance computing (HPC) systems, like clus-
ters, grids, supercomputers and desktop grids are shared by
many users who, in order to execute their jobs, compete
for system’s resources. The resources of these systems are
commonly managed by a centralized scheduler that accepts job
submissions and assigns resources. The BOINC platform [2]
is one of the most representative examples of a modern HPC
system. BOINC manages over 580,000 hosts that deliver
over 2,300 TeraFLOPs per day to several projects. Each
project has its own goals and distinct processing needs that
can be represented by objective functions. As early BOINC
projects had large workload, BOINC’s original goal was to
provide high throughput (completing large number of jobs).
Yet, popularity of BOINC attracted other types of projects.
Nowadays, response-time users are increasingly common [3].
Their jobs are divided into successive campaigns (batches of
independent jobs) released sequentially over time. For such
users, throughput is not meaningful; such users prefer a low
flow time of campaigns. How to take advantage of this multi-
user submission pattern is a problem that has not been well-
addressed by the HPC community.

In this work, we analyze scenarios with successive submis-
sions over time issued from different users. Each submission
contains at least one sequential job and the set of jobs of
one submission is what we call a campaign. In a campaign,
the jobs are independent, sequential, and can be processed
in parallel. However, there is a barrier at the end of each
campaign. Any job from a campaign cannot be started until
all the jobs from the previous campaign are completed. In
other words, as the submission of a new campaign depends on
the outcome of the previous campaign, campaigns belonging
to a single user must be scheduled one after the other. The
objective of each user is to minimize the flow time of each
campaign; the flow time is defined as the time interval between
the campaign’s submission and the completion of the last task
of the campaign. The problem of Campaign Scheduling is an
extension of the multi-users scheduling problem (MUSP, [4]).
In MUSP, each user has a set of sequential jobs to be
scheduled; however, unlike in the campaign scheduling, user’s
goal was either: the makespan or the sum of job’s completion
times.

We show that the campaign structure can be used to achieve
better schedule than proposed by classic algorithms. More

user 2: campaign 1

user 1: campaign 2

user 1: campaign 1 s
ng — s
I:l _ . user 2: campaign 2]
1 I BN]
1 (.
7 e -
(o AD cw {o aA® cw tme
1 1 1 2 2 2
{@ A®@ co (o A®@ co
1 1 1 2 1 2

Fig. 1.

TABLE 1
SUMMARY OF NOTATION

k | number of users
(w) | user index
a* | number of campaigns of user u
% | campaign index
tl(.“) submission time of campaign ¢ of user u
n{™ | number of jobs of ign % of
i jobs of campaign ¢ of user u
AZ(.“) length of campaign i of user u
Ji(l;.) job J of campaign ¢ of user u
(u) start time of job Ji(?)
“) completion time of job J 1(1;)
('u,) Lo L
C, completion time of a campaign ¢ of user u

specifically, we propose an algorithm that makes a compromise
between user fairness and execution performance. We bound
the flow time of user’s campaigns by a function proportional
to the number of users competing for the resources and the
expected execution time of a campaign on a machine entirely
dedicated to a single user. The function sets deadlines to each
campaign; the scheduling algorithm orders campaigns by its
deadlines.

The rest of this paper is organized as follows. In the next
section, we present a formal model of Campaign Scheduling.
In Section III, we give an overview of the state-of-the-art of
scheduling with multiple users. Section IV is devoted to the
analysis of the offline problem for a single user. In Section V,
we extend the analysis of the offline problem to encompass
multiple users. Section VI is dedicated to the analysis of the
online problem regarding fairness among users and to the
description of our solution. The theoretical results are assessed
through simulations (Section VII). Finally, we present our
conclusions and future work in Section VIII.

II. DEFINITIONS AND NOTATIONS

Our model consists of k users (indexed by u) sharing the
resources on a parallel platform composed of m identical

Campaign Scheduling with 2 users (user 1 in light gray, user 2 in dark gray)

processors (indexed by ¢) managed by a centralized scheduler.
Figure 1 illustrates the model; Table I summarizes the notation.

A user workflow is composed by v(*) sequential campaigns.
Each user campaign i € [1,~(")] is submitted at a time denoted
by tE“) and is composed of independent and non-preemptive
sequential jobs. The submission time tg") of a campaign is
not fixed as it depends on the termination of the previous
campaign. A campaign is defined as the set of jobs released
in one submission, with nz(-u) being the number of jobs in the
i-th campaign and n(*) the total number of jobs released in
the workflow !. Ji(;;) denotes a job from the i-th campaign
issued by user u; j is the index of the job in a campaign; pgj;)
is the known job length (clairvoyant scheduling model). The
job start time is denoted by 053) while its completion time is

denoted by Ci(j;). As any job from campaign ¢ cannot be started
until all the jobs from the previous campaign ¢ — 1 have been

completed, min; 053) C'i(f)l’j,, where 0 < i < *y(“).

> max;s
The completion time of campaign ¢ is denoted by C w)
(C; (w) 2 max;C,)) and the campaign’s length of user u is
denoted by A B ™ — (") There is no idle time between
cam algns thus campaign’ s length can be also denoted by
A(u C(u) ()1 where Cy = 0.

For each user u, the objective is to optimize the sum of
campaigns’ lengths EAZ(-u) Zi(C’i(u) - tz(-“)). This objective
is motivated by interactive applications, in which an user is
more interested in results of the individual stages rather than
the job throughput obtained in a time frame.

In the offline version of the problem, all the campaigns and
their jobs are known in advance (the number and the lengths
of the jobs). In the online problem, campaigns are known only
after being submitted.

IThere is a particular case where the jobs can be infinitely divided into
smaller pieces (i.e. fine grained). That is the case of BOINC divisible loads [2].
In BOINC the scheduler can interrupt jobs of one user without loss of
computation. Campaigns from two or more users can even be split in several
parts and interleaved, without idle spaces between them.

The offline model may seem inappropriate at first, since
it is hard to predict the number of campaigns and their
respective job lengths. But this model is well-suited for some
types of applications, like clairvoyant fork-join applications.
Furthermore, the offline set can always be used as a reference
to analyze the competitiveness of online algorithms.

Using a natural extension of the classical three-field notation
[5], the resulting problem can be denoted by P|camp| > Al(-u).

III. STATE-OF-ART

The main works related to our research address the problem
of scheduling with multiple users competing for the use of the
resources. The Multi-Users Scheduling Problem (MUSP) was
first studied on a single processor with two users by Agnetis et
al. [6] and on multiple processors by Saule and Trystram [4].

Agnetis et al. [6] provided a < 1,1 >-approximation of
the problem for two users on a single processor. Saule and
Trystram [4] analyzed the Multi-Users Scheduling Problem
(MUSP), namely, the problem of scheduling independent
sequential jobs belonging to k different users on m identical
processors. In this problem, each user selects an objective
function among makespan and sum (weighted or not) of
completion times. This is an offline problem where all the jobs
are known in advance and can be immediately executed. This
problem becomes strongly NP-hard as soon as one user aims
at optimizing the makespan. For the case where all users are
interested in the makespan, denoted by MUSP(k : Cpaz),
the authors showed that the problem can not be approximated
with a vector ratio better than (1,2,...,k). This is a natural
extension of the approximation ratios notation where the u-th
number of the vector corresponds to the approximation ratio
on the u-th user objective.

Remark that the term “no vector-ratio better than
(p1,p2,---,pK)” stands for the component wise rela-
tion, which means that the vector-ratio (p1,...,pi—1,0i —

€, Pit1s- - -, Pk) is not feasible. However, this formulation does
not prevent a (pl, v Pi T €y P 6 ,pk) vector-ratio
from existing.

A. Inapproximability and Pareto optimality

The proof stating that MUSP(k : Cja.) can not be
approximated with a performance vector-ratio better than
(1,2,...,k) considers an instance where each user owns m
jobs, all the jobs having the same unit length [4]. In this
instance, the absolute best makespan that can be achieved for
each user is 1 while in any efficient schedule, one user will
have a makespan of 1, another one will have a makespan of 2,
and so on. Thus, it is impossible to obtain an algorithm that
guaranties a vector-ratio better than (1,2,... k).

Note that in an efficient schedule, the set of jobs of one
user is scheduled all at once, as single blocks, one after the
other. If we take a job scheduled at time ¢; and change its
position with a job scheduled at time ¢; > ¢;, we end up
with a schedule whose vector-ratio is worst than (1,2,...,k)
since two users will have ¢; as their Cy,q, values. The

resulted vector-ratio will be (1,2,...,t;,...,t;,..., k). This

A
N e s
B I 18 A BF N
C 14 cpe
E-i_: 10 3 i
g s s
8 11 18

[« [= 1

Fig. 2. Pareto optimality for MUSP (user 1 in light gray, user 2 in dark
gray). Z denotes the zenith; N the nadire; remaining letters correspond to the
schedules on the left.

is analogous for ¢; > t;. Figure 2 illustrates the trade-offs
between the objectives of two users. User 1 (light gray) owns
two jobs of length 4 while user 2 (dark gray) has two jobs of
lengths 3 and 7. All the scheduling possibilities are presented
as points on the graph where the x-axis and y-axis represents
the C,,q, of user 1 and user 2 respectively. Point Z represents
the C),q. lower bound of both users (zenith) while the upper
bound is represented by point N (nadir). Points A and F
are optimal in the sense that there is no better solution that
improves one objective without degrading another one. This is
the definition of a Pareto set [7]. Points B and F' are derived
from A by exploring different positions for the first task of
user 2. But both solutions degrades the C,,,,, of user 1 without
improving the C), 4, of user 2. The same applies for points C
and D relative to E. Thus, according to the concept of Pareto
dominance, we say that B, C, D, and F' are Pareto-dominated
solutions. In multi-objective optimization problems, we are
interested in finding solutions that are not Pareto-dominated
by any other solution.

Based on these observations, Saule and Trystram [4] pro-
posed an algorithm for MUSP(k : Cypas) called MULTI-
CMAX and prove that it is a (p,2p, ..., kp)-approximation.
Each position of this vector ratio represents the performance
ratio of one of the k users and p is the approximation ratio of
an algorithm for the single-user case (Hochbaum and Shmoys
proposed a PTAS to this problem by using dual approximation
[8]). The algorithm MULTICMAX works as follows: for each
user u, compute a schedule S(*) with a p-approximation
algorithm. Then, sort the users by non-decreasing values
of C’r(,lfgm(S(“)). Finally, schedule jobs of user u according
to S(*) between Eu/<u07(ff¢;;(5(“/)) and Zuzgu(]ﬁrzi(S(“/)).
Considering again the example of Figure 2, solution A would
be the one generated by this algorithm.

The theorem and the proof stating that MULTICMAX is
a (p,2p,...,kp)-approximation of MUSP(k : Cyas) can
be seen in [4]. This theorem is valid for a given unknown
permutation of users as one user can not know in advance
his/her rank in the algorithm. The vector-ratios are computed

relatively to an absolute best solution which is usually un-
feasible, but the authors emphasize that this is reasonable
since it ensures the performance degradation of each user.
Indeed, despite of dealing with sequential tasks, this algorithm
generates a final schedule that might contain idle spaces.
Those may appear between the users’ schedules allowing many
portions of the system to remain unusable. As an example,
consider an instance with two users, each of them with |m /2]
jobs of length p and m > 1. MULTICMAX generates a
final schedule of length 2p using |m /2] machines, while the
optimal schedule is of length p, with each user occupying
one half of the machines. But this is a situation where the
absolute best makespan for both users is feasible, which is not
the general case. So, still in this work, the authors presented
a class of solutions where each user submits a reasonable
number of jobs that follows a linear function on the number of
machines. They showed that these solutions are MULTICMAX
with p = 2 and that it contains efficient schedules that are close
to the Pareto set.

B. Similarities with Campaign Scheduling

What is interesting regarding our work is that the
MUSP(k Cinaz) problem is equivalent to Cam-
paign Scheduling with one campaign and ready jobs (i.e.
Vu,Vi,tE“) = 0). We denote this problem by Plcamp =
1\A§“), where camp = 1 stands for one campaign only. This
equivalence is due to the fact that C*), = A™ for camp = 1.
The performance guarantees obtained from MULTICMAX can
be applied in the same way for this problem in the offline set.

In Campaign Scheduling, despite the arrival of the first
k campaigns, there are no synchronicity in the arrival of
campaigns from different users. This comes from the fact
that campaigns are of different lengths. So, in order to apply
MULTICMAX for successive campaigns, we can think of two
options:

The first option is to wait for the arrival of one or more
user submissions in order to form a batch of jobs. Then,
we execute the same algorithm in this batch to obtain a p-
approximation inside the batch. The problem is that we do
not know how much time we have to wait in order to form
the batch: some auxiliary offline information (i.e. arrival dates
of the submissions) or an extra mechanism (i.e. timeout)
are needed. From that point, we can apply an algorithm to
schedule the batch. For this scenario, MULTICMAX is a
(p+e1,2p+¢ea,...,k p+ eps)-approximation algorithm for
Plcamp = 1|A1(-”), where ¢; is the time that user ¢ must wait
between its submission and the start of the batch and k' < k
is the number of users participating in the batch.

The second option is to schedule the jobs as soon as
the submissions arrive using some order to be determined.
If we use the submission order (FCFS), we can not give
any guarantee to the user because we do not know when
the machines will be available before he/she submits. At the
moment of submission, all the machines might be occupied by
some jobs execution that was previously submitted by other
users. Knowing when the machines will be available leads

us to the problem of scheduling with machine release times.
This problem is a generalization of the classical multiprocessor
scheduling problem where each machine is available only at
a machine dependent release time. This was explored first in
[9] by Lee and later in [10] by Kellerer. Lee proposed an
algorithm called Modified LPT (MLPT), with a guaranteed
approximation ratio of % that was later shown [11] to be tight.
Kellerer extended this result presenting more a sophisticated
approximation algorithm with a worst case bound of g for the
problem. Even so, this result gives no absolute approximations
for Campaign Scheduling since it implies that the user must
wait an arbitrary time between the submission and the start of
execution of his/her jobs. Furthermore, any online algorithm
that dynamically changes the order of execution of the jobs
is subject to starvation: low priority jobs previously scheduled
might be postponed indefinitely as soon as submissions with
higher priority jobs arrives before the execution of them.

IV. OFFLINE SCHEDULING OF SINGLE USER’S CAMPAIGNS

In this section, we analyze an offline version of the multi-
campaign problem restricted to a single user. The problem
constitutes an absolute lower bound for the multi-user case,
since no objective value can be lower than the one achieved
as the user was the single one in the system. We denote
this problem by P|camp|>_ A;. Note that for any “reason-
able” (Definition 1) schedule this problem is equivalent to
Plcamp|Crax (Lemma 1).

We show that the problem is NP-hard. Then, we show that
the optimal makespan of Plcamp|>_ A; is at most 7 times
longer than the optimal makespan of an instance with the
same jobs, but no campaigns (P||Ciax). Finally, we show
that a p-approximation algorithm for P||Cyax is also a p-
approximation for P|camp| > A,.

Proposition 1: Plcamp| > A; is NP-hard. The boundary
problem is P2|q; = 1, camp|Cinqz (sequential tasks, arbitrary
processing times).

Proof: (straightforward) The proof is by reduction from
the two-processor scheduling problem P2||C),q.. An instance
of P2||Cjuq: can be converted to an instance of P2|g; =
1, camp|C by placing all the jobs in the same campaign (J; —
J 1, j). |

For the subsequent analysis, we restrict the type of analyzed
schedules to campaign-compact schedules.

Definition 1: A campaign-compact schedule .. (also called
a non-delay schedule) is a schedule in which jobs from a sub-
sequent campaign start immediately after the completion of the
previous campaign, i.e., Vi € {1,...,v—1}3j : 5(41),; = Ci.

A schedule that is not campaign-compact can be trans-
formed to a campaign-compact schedule. The transformation
reduces completion times of some jobs and the length of the

whole schedule. Thus, the optimal schedule is also campaign-
compact.

The following lemma binds the completion time C; of a
campaign with the durations; moreover, it shows that C, =

Cmax = Z A’L

Lemma 1: Completion time of i-th campaign C; is equal
to the sum of durations of the previous campaigns and the

K2
current campaign: V;C; = Z Ay

/=1

Proof: Follows directly from the definition of A;.]

The notion of a campaign restricts the set of feasible
schedules; thus the optimal schedule for the campaign problem
Plcamp| > A; might be longer than the optimal schedule for
a similar instance with the same jobs, but no constraints.

Proposition 2: An optimal schedule for an instance of the
problem P|camp|C),q, With v campaigns is at most ~y times
longer than the optimal schedule for an instance of P||Ciqx
with the same jobs, that is: C} .. < YCr&>, where ClG*

denotes the optimal Cp,4, Of P||Cphar (6. “nc” for no
Campaign Scheduling). This bound is tight.

113

Proof: C},.. = >, Af (Lemma 1.), where A} is the
duration of the i-th campaign in the optimal schedule. A} <

Cle*, as each campaign is a subset of jobs. Thus C .. <
one*
/'y max*

For the tightness of the bound, consider an instance with
n = m jobs of a unit length. An optimal schedule with no
campaigns schedules all the jobs in parallel, with the com-
pletion time of C} = 1. If all the jobs belong to different
campaigns (7 = n), they must be executed sequentially, thus
C;knam = ,‘Y' .

Consequently, the notion of campaign “costs” the system at
most v, the total number of campaigns.

How should the jobs and the campaigns be scheduled?
The following result states that we can use any p-competitive
algorithm for the standard job scheduling problem to obtain a
p-approximation of the campaign problem.

Proposition 3: Any scheduling algorithm A that is an p-
approximation for P||Cy,q. is also an p-approximation for
Plcamp| > A;. The algorithm for P|camp|d A; (denoted
by camp(A)) creates a schedule by, firstly, performing -~y
executions of A, that is, executing A separately for jobs from
each campaign; then shifting the schedule for ¢-th campaign
by Cifl.

Proof: From Lemma 1, Crq = >, A;. As the algorithm
used to schedule each campaign is an p-approximation, A; <
pAY (where AY is an optimal makespan of i-th campaign).
Thus, Crae < p>; Af, and as C,,. = > . AF (Lemmal),
Cmax S pC* n

max*

In summary, the barrier between subsequent campaigns
affects the system by increasing the makespan at most ~y times.
Yet, the resulting scheduling problem is similar to the standard
scheduling; and has the same approximation ratio.

V. OFFLINE SCHEDULING WITH MULTIPLE USERS

In this section, we study the Campaign Scheduling problem
P|camp] ZAZ(“) with multiple users, each having multiple
campaigns. The problem is NP-hard as the boundary problems
Pleamp| S A; and Plecamp = 1|A™) are NP-hard (Sec-
tion IIT and Section IV). We show that the problem cannot
be approximated better than (1,2,...,k); then, we apply a
multi-campaign version of the MULTICMAX algorithm to
obtain (p,2p, ..., kp)-approximation. Finally, we argue that
this algorithm is not “fair” to users and that another solution
should be proposed.

Proposition 4: Plcampl| Al(-") can not be approximated
with a performance vector-ratio better than (1,2,... k).

Proof: Let us consider the following instance. All cam-
paigns of all k£ users have m jobs of unit length, where m
is the number of machines. All users have the same number
n of campaigns. Obviously, for each user independently, the
best ZAg“) achievable is equal to n. But, in any efficient
schedule, one user will have Ag“) equal to n, another one
will have ZAE“) of 2n and so on. Thus, it is impossible to
guarantee a vector-ratio better than (1,2,...,k).]

Remark that any permutation of this vector-ratio can be
obtained (as explained in Section III). But this vector-ratio
is not accomplished by all schedules. Consider for example a
schedule that interleaves campaigns of users similarly to the
round-robin scheduling. Each Agu) will be of length 1. So,
in this schedule, one user will have ZAE") = kn, another
one will have kn — 1, and so on until kn — k. Clearly, the
corresponding vector-ratio will be worse than (1,2,...,k).

Based on this observations, we propose an algorithm for the
offline problem called MULTICAMP. The algorithm schedules
users’ campaigns in blocks. First, for each campaign 7 of each
user u, the algorithm computes a schedule gi(“) with a p-
approximation algorithm. Then, for each user, the algorithm
puts all its campaigns side by side to form a single block,
i.e. a campaign-compact schedule ¢(*) (see Definition 1). The
schedule ¢(*) has length of 3, AE“). Next, the users are sorted
by non-decreasing values of), Ag“). Finally, the algorithm
puts the block ¢(*) of user u in the final schedule between

Zu’<u Zz Agu/) and Zu’ﬁu Zz A'EUI)

Proposition 5: MULTICAMP is a
approximation algorithm of P|camp| A,Eu).

(p’ 2P7 e '7kp)_

Proof: First, we have to verify the validity of the final
schedule. In fact, the campaign’s blocks are scheduled in
disjoint intervals of length ", AE")(g(“)) according to ¢(*),

Second, we verify that the final schedule as a performance
vector-ratio of (p,2p,...,kp). The users are ordered by in-
creasing values of 37, A"(S™)) and each block is sched-

uled in sequence according to this order. Thus, . AE”) <

uSTAM(S™). Moreover, ¢!} was generated by a p-
approximation algorithm. Thus, Zl Agu) < UZPAE‘“)* =
up >, A,E")*.]

Usually, a performance vector-ratio depending on k, a
parameter of an instance, is not an efficient solution. However,
the optimal value of each particular objective function is
obtained by scheduling the jobs of the user as if she was
the only user on the system. The performance vector-ratio
represents the distance between the schedule given by our
algorithm and these absolutely optimal solutions for every user
(the zenith point). In the general case, the zenith solution is
not feasible.

In MULTICAMP, although the response time of entire cam-
paign blocks (complete workflows) are bounded, individual
campaigns are arbitrarily delayed. User u may be disappointed
that she has to wait u—1 workflows before her workflow starts
executing. It should be more fair to the users that everybody
was equally affected or proportionally affected according to
her workflow length.

In Section III we saw that, considering just one shot of
campaigns, interleaving jobs is not a good idea as it leads to
inefficient, Pareto dominated solutions. However, the efficient
solutions inherits an imbalance between users with respect to
the response time, given that campaigns are ordered according
to their lengths. With multiple campaigns, we can reduce this
imbalance by giving higher priority in the next scheduling
decisions for the users that were “unhappy” in the previous
ones. We tackle this problem in the next section.

VI. ONLINE SCHEDULING WITH MULTIPLE USERS

In the online problem, jobs belonging to campaigns are
known only at their submission time. An online algorithm
should consider both between-user fairness and system per-
formance. As we do not know the lengths of the workflows,
both criteria should be respected at any time. In this section,
we argue that the maximum stretch should be the considered
fairness measure. Then, we show that First-Come-First-Served
(FCFS) algorithm can produce an arbitrary large stretch, thus
it is not applicable for fair scheduling. Finally, we present
FAIRCAMP, a scheduling algorithm that bounds the stretch
and, at the same time, is k-competitive.

A. Measuring fairness by max stretch

In the context of sharing resources by different parties,
fairness is defined as resources being equally available. How-
ever, there is no universally accepted model for fairness
when scheduling jobs; there are various interpretations of
“availability” and “equality”.

In this work, as each user is interested in the sum of
campaigns response times, we tackle the problem of fairness
by measuring stretch. More specifically, stretch is defined

as the time the task spent in the system normalized by its
processing time. Thus, the idea is to optimize a stretch-like
function derived from the sum of campaigns response times.
We denote this function as D(W) = 3, AE“ /> Agu)*, where
> A" is the optimal sum of campaigns response time
for user u. To guarantee fairness is necessary to choose an
aggregation function. Three of them are normally considered,
corresponding to the standard norms L., L1, Lo: minimiz-
ing maximum of stretches, sum of stretches and product of
stretches. Ideally, a fair schedule should minimize the max-
stretch while producing the same stretch for all users. Thus,
minimizing the max-stretch (max, D) is the natural choice.

B. Fairness in FCFS schedules

FCFS is one of the most commonly used policies in job
scheduling; however, as we show in this section, it is arbitrary
bad both for the fairness and for the system. In FCFS, the jobs
are scheduled as soon as they arrive; the start time depends on
the availability of the machines at the time of the submission.
When an user w submits a campaign ¢ at a moment tl(-u),
it will be scheduled after all the previous submissions sent
before tE“). This means that the jobs from user v may start its
execution in a moment tgu) + &, where the length of ¢ is not
bounded. The following proposition formally states this result
(see also Figure 3).

Proposition 6: FCFS is at least a-approximation algorithm
for Plcamp|> A and for the max-stretch where « is the
ratio between the longest and the shortest workflow.

Proof: Consider m processors and k = 2 users. Consider
that both users have 7 submissions to be made and each
submission is composed of m jobs. Jobs of user 1 are of
length p and jobs of user 2 are of length 1. Now, consider
the following situation: user 1 makes his/her first submission
at time 0 and the user 2 makes his/her first submission
immediately after the first user in a time € ~ 0. As the
jobs will be executed following a FIFO order, initially all the
machines are occupied by the jobs from user 1. User 2 will
have to wait a time p — ¢ before his/her tasks get scheduled.
While the optimal schedule for the first campaign of user
2 is of length 1, the schedule given by FCFS is of length
p+1—¢€¢ =~ p+ 1. Consequently, if this submission order
is repeated in the subsequent campaigns, the schedule given
by FCFS is of length ~ (p + 1)y while the optimal sum of
campaigns’ completion times (3" A(") is of length ~. Thus,
we can not give any guarantees to the user 2 for the sum
of campaigns’ length based solely on an approximation from
his/her particular optimal schedule. []

Consequently, in the online problem, FCFS is an arbitrary
bad strategy for fairness.

C. Fair Online Schedules with FAIRCAMP

In order to maintain fairness between processes, a standard
operating system commonly uses a round-robin (RR) strategy

Fig. 3. FCFS competitiveness. k = 2, v = 2, user 1 in light gray, user 2 in dark gray. Max-stretch is (2p + 2)/2

= p (for large p); the optimal max-stretch

is (2p + 2)/(2p) = 1 (for large p). The faded campaign represents the optimal position of the second campaign for user 2.

with preemption. Each process is given the processor for a
fixed quantum of time; when the time expires, the process is
preempted and put at the end of the queue. This strategy results
in reasonable fairness among processes, as each process is
slowed down proportionally to the total number of processes,
in contrast to the total load, as in FCFS or Longest Processing
Time (LPT). The problem is that, in HPC scheduling, preemp-
tion is usually impossible.

FAIRCAMP, the scheduling algorithm we propose, approx-
imates fairness of the round-robin preemptive schedules. For
each user, the maximum delay in execution of the current
campaign depends only on the previous campaigns of the user
and the total number of users. For each submitted campaign
we set a deadline dl(u)

d" =k A" (M) 4+, (1)

where AE“)(gi(u)) is the length of the campaign schedule
gi(u) generated by a p-approximation algorithm using all the
processors. The deadline is proportional to the number k of
users; and shifted by the deadline of the previous campaign
d(u) This deadline is computed based on the max-stretch
of kp for the whole campaign workflow. If the schedule
is feasible, the deadlines guarantee that no user is worse-
off than if the supercomputer was shared between the users
with a Round-Robin, preemptive scheduler. When a campaign
is submitted, we do not know if the workflow is ended or
not. Thus, setting a deadline for each campaign is a way to
ensure that the max-stretch will be respected for the whole
workflow. For example: with & = 2 users, user (1) has
v = 2 campaigns of calculated length Agl) 5 and
Aél) = 3, their respective deadlines are dgl) =2-5=10
and dgl) =2-34 10 = 16; user (2) has v = 3 campaigns
of calculated 1ength A (2) _ 3, A(2) 3 and A = 10, their
deadlines are dg = 6, d(g) 12, and d(z) = 22.
FAIRCAMP uses earliest deadline ﬁrst (EDF) to choose the
campaign to be executed. FAIRCAMP is composed of two
modules that run in parallel. They share a queue in order to
place the campaigns that are ready to execute. The first module
generates information about arriving campaigns and puts them
into a queue. The second module chooses campaigns by EDF

and schedule them as soon the resources are available.
1) Details of FAIRCAMP: The gathering module handles
submissions and computes the deadlines.

1: ready < new(queue)

2: while TRUE do

3: wait(campaign ¢, user u)
g(W o p(i, resources)
A(- length(s (u))
a8 e - A 1 g,
T (¢,)
enqueue(Ti(u) ,

end while.

ready)

R e A A

In line 3, the process stops and waits some user u to release
a new campaign ¢. Next, in line 4, we generate a schedule for ¢
and the resources list based on a polynomial p-approximation
algorithm. Then the campaign deadline is calculated from the
number of users k, the schedule length Aﬁ“) and the deadline
of the previous user campaign (line 6 and 7). Finally, a tuple
containing the schedule and its deadline is generated and added
to the queue.

The scheduling module performs EDF over the submitted
campaigns.

1: while TRUE do

2 if not empty(ready) and available(resources) then
3 Thewt — NULL

4 Snext — NULL

5: dpext < 0O

6 for all 7 on ready do

7 if d(T\™) < dypeqr then

8
9

Tnert <~ T(u)
: drewt < d(T(“))
10 end if
11: end for
12: dequeue(Q, Thext)
13: update(resources, S(Tnext))
14: end if

15: end while.

This procedure iterates over the tuples on the queue search-
ing which one has the schedule with the lowest deadline
(lines 6-11). In the end, the chosen campaign schedule is
placed on the resources (line 13).

2) Feasibility of FAIRCAMP: FAIRCAMP uses deadlines
to guarantee fairness. Here, we show that a schedule produced
by FAIRCAMP is always feasible, i.e., all the deadlines are
met. First, we assume that a campaign misses its deadline and
then we show that this leads to a contradiction.

Proposition 7: In a schedule S produced by FAIRCAMP,
all campaigns finish their executions before their respective
deadlines.

Proof: Consider m processors and k users. For each
campaign i, a schedule g(u) is generated whose length is
A" (™)) This length is calculated by a p-approximation
algorithm using all the processors. According to FAIRCAMP,
each campaign has deadline d(“) k- AE“ (s (u)) + dEu)l =
ke A 1k AM M)k AN Y =k
S A (™). This deadline states that the length of each
user workﬂow can be stretched at a maximum factor of k.
In other words, dl(.u) also can be seen as the deadline of the
partial workload (from the first campaign until campaign 7).

Now, consider a schedule S constructed by FAIRCAMP
where at least one campaign misses its deadline and, without
loss of generality, let campaign ¢ from user u be the first
campaign to miss its deadline on S. By definition, dl(u) =
k-3, A (™), where ST, A (c(") s the length of the
(partial) workflow issued from w.

Two conclusions can be observed from this scenario. First,
the sum of the length of the workloads issued from the
other £ — 1 users, between the beginning of the schedule
(t = 0) and the be%lnmng of campaign ¢, is bigger than
(k—1)-3, AM(Otherwise, the schedule would have
an idle space, Vlolatlng the campaign-compact constraint (Def-
inition 1). All the campaigns after this idle space (including
campaign 7) could be shifted to end before dE“). So, more
formally,

k @))

¢« Toa X NG > (-1 T AT),

where (") is the number of campaigns on each partial
workload for Vv # u.

Second, the deadline of each partial workload is equal or
less than the deadline of ¢, otherwise it would be not executed
before 7. More formally, Yv # u:

. d\) s{gﬁ“&

e VG < AN
)3 A < - 1) T AN)

But this clearly contradlcts the first conclusion. [|

3) Performance of FAIRCAMP: We analyze FAIRCAMP
from two perspectives. First, Corollary 1 shows that FAIR-
CAMP is efficient for the performance of each user, as AE")

is increased by at most kp measured relatively to a system
dedicated to the user. Second, Theorem 1 demonstrates that
FAIRCAMP is fair, as it is a p-approximation for minimizing
the maximum stretch over all users.

Corollary 1: FAIRCAMP is (kp,...,kp)-approximation
for Plcamp| " Agu).

Proof: By definition, the length of an user workflow
is denoted by ZA(U The deadline of a workflow is the

~() u), (u
deadline of the last campalgn a™ (u) =k-y A())

kp- Z¢:1 , where Z¢:1 i (W* i the optlmal length of
the workflow. Since all deadlines are met, each workflow is
stretched by a factor of kp, at maximum. []

Theorem 1: FAIRCAMP is p-approximation for max-
stretch that does not depend on k.

Proof: Let us consider a solution S constructed by
FAIRCAMP for an instance of P |camp\A§u). Now, consider
without loss of generality 2, that the first [scheduled cam-
paigns belong to user v while the campaign [+ 1 belongs to
user v. Assume that s; is the start time and C is completion
time of campaign /. Similarly, s;4; and C}1, are the start and
completion time of campaign [+ 1. As campaign [+ 1 starts
immediately after campaign [, s;; = Cj. The arrival time of
campaigns [and [4 1 are ¢; = s; and ¢;4; = 0, respectively.

As S was constructed by FAIRCAMP, the deadline of [+1 is
bigger or equal to the deadline of [, otherwise, campaign [+ 1
would be scheduled earlier (after one of the [first campaigns).
So, k - Al(fr)l(qlﬂ) > k-3 AM (™). We also can denote
this as Cj41 — C; > C} or, more conveniently, C;1 > 2C;.

Regarding only these [+ 1 campalgns the stretch of
user w is D* = Cp/3} Al = PO Al /A Al =
p AT SSEAME —) while user v has D” =
(Crr — tig1) /ALY = p(Crpr — t11)/(Crir — s11) =
p(Ci41)/(Cryr — C1). As (Ci41)/(Cryr = C1) > 1, then
D? > p and max(D%, D¥) = D".

Assume by contradiction that a better solution S’ is achieved
by changing the positions of campaigns [and [+ 1. In this
solution, the stretch of u is D' = p(Cy41 —s;)/(Ci — s;) and
the stretch of user v is D"V = p(Ciy1— Ci+51)/(Cip1 — C)).
For this solution to be better, both stretches of S’ should be
lower than D":

o DV > DV
o p(Ci41)/(Cry1 — C1) > p(Cry1 — Cr + 81) /(Cra — C)
o (Cit1) > (Cry1 — Cr+ 59).

2One can argue that considering only campaigns ! 4+ 1 and I causes the
proof to lose its generality. But, in fact, we could place [4+ 1 between any
place before [since this does not alter the new position of [as well as the final
contradiction finded by the proof. Another argument is that we are considering
only the first [+ 1 campaigns from the beginning of the schedule, but the
same logic applies if we consider any campaign completion time C; as the
start point. Furthermore, changing the position of [+ 1 with a later campaign,
would produce a stretch even bigger for campaign [+ 1 and clearly is not a
better solution.

35 I T I T T

FCFS
30 H Faircamp —— [.
Upper bound (k) ------ 1
25 e .

Maximum stretch

1O e S .

Number of users

Fig. 4. FCFS vs FAIRCAMP; each point is an average over 10.000 instances;
error bars denote 95% confidence intervals

Since C; + s; is positive, we proved that DY > D’”. Now,
for D'%:

e DV > D™
p(Cr1)/(Cipr = C1) > p(Cry1 — s1) /(Cr — 1)

o Ci11(Cr—s1) > (Crp1 — s1)(Cry1 —)

e C11101 = Cryrs > Cfy = Cia Oy = Crisi + Crsy

. Cl+1 <20 — (CZSZ/CZ+1)~
But C; 1 > 2Cy, so DY > D' is false which contradicts the
assumption. [|

VII. SIMULATIONS

In this section, we present a simulation that demonstrates
that FAIRCAMP results in lower stretch (and thus, better
performance) than FCFS. The simulator plays the role of a
centralized scheduler: it takes instances of user workloads
as inputs; and it calculates the max-stretch obtained by each
algorithm in an environment composed of m = 10 identical
processors.

Each instance is composed of 10* jobs. For each job we
set its length p (uniformly taken from the range [1,100]). The
job starts a new campaign with probability of 0.1; otherwise,
it belongs to the previous campaign. If the job starts a new
campaign, we set the owner of this campaign according to
a Zipf distribution with exponent equal to 1.4267 which
best models submissions behaviors in large social distributed
computing environment [12].

We created 102 instances for different number of users (k):
2, 3, 5, 10 and 20. The simulator runs both algorithm with
the same instances. The results of the simulation are shown
on Figure 4. All results are presented with confidence level of
95%.

First, the max stretch of FAIRCAMP (solid line) is always
well below the upper bound k (red dashed line).

Second, the results showed that, in systems with at least 5
users, FAIRCAMP results in significantly lower max stretches
than FCFS. With 20 users, the max-stretch of FAIRCAMP is

Number of occurences

wlie 0o L L1 L L 1
0 50 100 150 200 250 300 350 400
Max Stretch

Fig. 5.

Max-stretch distribution for FCFS with 20 users

approximately 3.4 times lower. Good results are also achieved
with 5 and 10 users, with improvements of 1.35 and 2.24,
respectively. With few users, the difference is irrelevant.

This behavior is motivated by the Zipf distribution that
assigns campaigns to their owners. According to Zipf’s law,
the most frequent user has probability twice the second most
frequent user, three times the third most frequent user, etc. The
more users, the greater the difference in number of campaigns
between the first user and the last one in the frequency rank.
So, it is more likely that FCFS generates some schedules that
will affect users with few campaigns and, consequently, will
result in high values for the max-stretch.

Figure 5 depicts the distribution of max-stretch for FCFS
with 20 users. The overwhelming majority of instances pro-
duces max-stretch values between 10 and 50 (which is higher
than approx. 8 produced by FAIRCAMP). Nonetheless, in a
few instances, the max-stretches are extremely high, some of
them reaching the hundreds (7 of them can be seen in the Fig-
ure 5). This happens because, despite its clear predominance
around the average, FCFS is not bounded since it does not
take stretch into account, like FAIRCAMP.

VIII. CONCLUSION

The popularization of parallel systems leveraged by scien-
tific clouds and grids promotes the emergence of new user pro-
files and applications, whose needs impose new challenges for
the HPC community, particularly for researches on scheduling
theory.

In this work, we define the Campaign Scheduling problem.
In Campaign Scheduling, each user submits campaigns of
many independent jobs; yet all the jobs from a campaign must
be completed before the first job from the next campaign starts.

We believe that Campaign Scheduling models an emergent
pattern of execution of increasing number of HPC workloads.

We demonstrated that the problem is NP-hard. We proposed
an approximation algorithm called FAIRCAMP. The algorithm
achieves fairness among users by guaranteeing that no user
is worse-off than in a time-shared machine. The guarantee
is based on deadlines that bound the max-stretch of user
workloads. At the same time FAIRCAMP gives performance
guarantees from the absolute optimal solutions. We proved
that for each user FAIRCAMP is kp-competitive for the flow
time comparing with a dedicated, single-user system (where
k is the number of users, and p is the approximation ratio
of the auxiliary scheduling algorithm). We also proved that
FAIRCAMP is p-approximate for the max-stretch comparing
with a shared system with an optimal scheduler.

We verified the average performance of FAIRCAMP by
simulation. From k& = 5 users, FAIRCAMP schedules result
in max stretches significantly lower than FCFS; with k£ = 20
users, FAIRCAMP schedules have the maximum stretch 3.4
times lower.

Our future work tackles both theory and practice of Cam-
paign Scheduling. We plan to extend the theoretical model by
considering delays between subsequent campaigns of a single
user (the delays model the time needed for, e.g., analysis
and interpretation of the obtained results). We also plan to
derive the quantitative characteristics of users’ campaigns from
HPC systems’ workloads. We intend to construct probabilistic
profiles of users: a profile will define campaign’s average
workload and a submission frequency. We expect that the
distribution of workloads between users will follow a power-
law distribution. Classic systems (with the average job per-
formance as the main goal) mix high- and low-volume users;
thus large number of low-volume users are affected by a few
high-volume ones. This phenomenon stressed the need for
scheduling algorithms that use fairness as its main criterion.

ACKNOWLEDGMENT

Krzysztof Rzadca thanks Jaroslaw Zola for the inspiration
for the campaign scheduling model.

Krzysztof Rzadca is partly supported by Foundation for
Polish Science “Homing Plus” Programme co-financed by the
European Regional Development Fund (Innovative Economy
Operational Programme 2007-2013).

REFERENCES

[11 S. Emmott and S. Rison, “Towards 2020 science,” Working Group
Reserach. Microsoft Research Cambridge, Tech. Rep., 2006.

[2] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in 5th IEEE/ACM International Workshop on Grid Computing,
2004, pp. 4-10.

[3] B. Donassolo, A. Legrand, and C. Geyer, “Non-cooperative scheduling
considered harmful in collaborative volunteer computing environments,”
in Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, ser. CCGRID 11, 2011, pp.
144-153.

[4] E. Saule and D. Trystram, “Multi-users scheduling in parallel systems,”
in Proc. of IEEE International Parallel and Distributed Processing

Symposium 2009, Washington, DC, USA, may 2009, pp. 1-9.
[5] R. Graham, E. Lawler, J. K. Lenstra, and A. R. Kan, in Optimization

and approximation in deterministic sequencing and scheduling theory:
A survey, ser. Annals of Discrete Mathematics. Elsevier, 1979, vol. 5,
pp. 287-326.

[6] A. Agnetis, P. B. Mirchandani, D. Pacciarelli, and A. Pacifici, “Schedul-
ing problems with two competing agents,” Operations Research, vol. 52,
no. 2, pp. 229-242, 2004.

[71 M. Voorneveld, “Characterization of Pareto dominance,” Operations
Research Letters, vol. 31, pp. 7-11, january 2003.

[8] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation
algorithms for scheduling problems theoretical and practical results,”
J. ACM, vol. 34, pp. 144-162, January 1987. [Online]. Available:
http://doi.acm.org/10.1145/7531.7535

[9] C.-Y. Lee, “Parallel machines scheduling with nonsimultaneous machine
available time,” Discrete Appl. Math., vol. 30, pp. 53-61, January 1991.
[Online]. Available: http://dx.doi.org/10.1016/0166-218X(91)90013-M

[10] H. Kellerer, “Algorithms for multiprocessor scheduling with
machine release times,” [IIE Transactions, vol. 30, pp.
991-999, 1998, 10.1023/A:1007526827236. [Online]. Available:

http://dx.doi.org/10.1023/A:1007526827236

[11] L. Guo-Hui, “The exact bound of Lee’s MLPT,” Discrete Applied
Mathematics, vol. 85, no. 3, pp. 251 — 254, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X9700139X

[12] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters, “How
are real grids used? the analysis of four grid traces and its
implications,” in Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, ser. GRID ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 262-269. [Online]. Available:
http://dx.doi.org/10.1109/ICGRID.2006.311024

