
Analiza matematyczna 2, cze↪́sć dwunasta

Tekst poprawiony 4 września 2011, godz. 00:02

Zwyk la prośba: prosze↪ o informacje↪ o zauważonych b le↪dach, poprawie↪.

Zajmiemy sie↪ teraz określeniem miary na rozmaitości M ⊆ IRk . Rozpoczniemy od przyk ladu

wskazuja↪cego na pewna↪ trudność.

Przyk lad Schwarza

Niech W oznacza walec o wysokości 1 i którego podstawa ma promień 1. Wykażemy, że w po-

wierzchnie↪ boczna↪ tego walec można wpisać wielościan, który ma dowolnie duża↪ powierzchnie↪ i

którego wszystkie krawe↪dzie sa↪ krótkie. Ścianami tego wielościanu be↪da↪ trójka↪ty równoramienne,

wie↪c pole be↪dziemy w stanie znaleźć bez k lopotu. Podzielimy walec p laszczyznami równoleg lymi

do podstaw na n przystaja↪cych walców (czyli prowadzimy n − 1 p laszczyzn). Mamy wie↪c n + 1

okre↪gów. W każdy z nich wpisujemy m –ka↪t foremny w ten sposób, że wierzcho lki wieloka↪ta wpi-

sanego w j + 1 –wszy (licza↪c od do lu) okra↪g znajduja↪ sie↪ nad środkami  luków j –tego okre↪gu wy-

znaczonych przez sa↪siednie wierzcho lki wieloka↪ta wpisanego w j –ty okra↪g. Mamy wie↪c m(n + 1)

punktów na powierzchni bocznej walca. Rozważamy powierzchnie↪ be↪da↪ca↪ suma↪ trójka↪tów, których

dwoma wierzcho lkami sa↪ sa↪siednie punkty jednego okre↪gu, a trzecim wierzcho lek znajduja↪cy sie↪

na sa↪siednim okre↪gu nad lub pod środkiem  luku wyznaczonego przez dwa pierwsze. Otrzymujemy

wie↪c 2m trójka↪tów „mie↪dzy” sa↪siednimi okre↪gami, w sumie 2mn trójka↪tów. Pole jednego takiego

trójka↪ta równe jest sin π
m

√
1
n2 + (1− cos π

m )2 , zatem pole Pm,n powierzchni ca lkowitej wielościanu

równe jest 2msin π
m

√
1 + 4n2 sin4 π

m . Przyja↪wszy n = m otrzymujemy

Pm,n = 2msin π
m

√
1 + 4m2 sin4 π

m −−−−−→m→∞
2π ,

jest to rezultat zgodny z oczekiwaniami: pole wielościanu którego wszystkie krawe↪dzie sa↪ bardzo

krótkie i którego wierzcho lki leża↪ na powierzchni bocznej walca w miare↪ ge↪sto przybliża pole po-

wierzchni bocznej walca. Przyjmijmy teraz n = m2 . Otrzymujemy w tym przypadku

Pm,n = 2msin π
m

√
1 + 4m4 sin4 π

m −−−−−→m→∞
2π
√

1 + 4π4 ,

a wie↪c „za dużo”. Niech n = m3 . Teraz

Pm,n = 2msin π
m

√
1 + 4m6 sin4 π

m −−−−−→m→∞
+∞ .

Oznacza to, że próba zdefiniowania pola powierzchni bocznej walca przez przybliżanie polami wielo-

ścianów wpisanych w te↪ powierzchnie↪ skończy sie↪ niepowodzeniem, chyba że zwie↪kszymy wymagania

wobec nich. Przyczyna↪ tych nieco dziwacznych rezultatów jest to, że rozpatrywane trójka↪ty maja↪c

wierzcho lki na powierzchni bocznej walca i krótkie krawe↪dzie nie przybliża ly jednak powierzchni

bocznej, bo ka↪t mie↪dzy p laszczyzna↪ trójka↪ta i powierzchnia↪ boczna↪ nie da↪ży l w drugim ani w trze-

cim przypadku do 0 (w pierwszym tak by lo). Oznacza to, że przy wprowadzaniu definicji należy

zadbać również o ten czynnik.
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Za lóżmy, że ψ : V −→M ⊆ IRk jest parametryzacja↪ pewnego otwartego podzbioru U = ψ(V )

rozmaitości m –wymiarowej M . Zdefiniujemy najpierw miare↪ borelowska↪ na zbiorze U . Przy-

pomnijmy, że wyznacznikiem Grama wektorów v1,v2, . . . ,vm nazywamy wyznacznik macierzy

(vivj)1≤i,j≤m . Pe lni on role↪ kwadratu obje↪tości m –wymiarowego równoleg lościanu rozpie↪tego przez

wektory v1,v2, . . . ,vm . Jeśli jest on równy 0 , to wektory sa↪ liniowo zależne, co jest zgodne z intui-

cyjnym pojmowaniem obje↪tości.

Zdefiniujmy g(v1,v2, . . . ,vm,w1,w2, . . . ,wm) = det(vi ·wj)1≤i,j≤m dla dowolnych wektorów

v1, . . . ,vm,w1, . . . ,wm ∈ IRk . Mamy wie↪c g(v1,v2, . . . ,vm,v1,v2, . . . ,vm) = G(v1,v2, . . . ,vm) .

Jasne jest, że funkcja g jest 2m –liniowa na (IRk)2m przy czym jest ona antysymetryczna jako

funkcja wektorów v1,v2, . . . ,vm przy ustalonych wektorach w1,w2, . . . ,wm . Jest też antysyme-

tryczna przy ustalonych wektorach v1,v2, . . . ,vm jako funkcja wektorów w1,w2, . . . ,wm . Mamy

g(v1,v2, . . . ,vm + tv1,v1,v2, . . . ,vm + tv1) = g(v1,v2, . . . ,vm,v1,v2, . . . ,vm) +

+ g(v1,v2, . . . , tv1,v1,v2, . . . ,vm) + g(v1,v2, . . . ,vm,v1,v2, . . . , tv1) +

+ g(v1,v2, . . . , tv1,v1,v2, . . . , tv1) =

= g(v1,v2, . . . ,vm,v1,v2, . . . ,vm) + 0 + 0 + 0 = G(v1,v2, . . . ,vm) ,

bo wyznacznik macierzy zawieraja↪cej proporcjonalne wiersze jest równy 0 . Oczywíscie wektor v1

można zasta↪pić dowolnym z wektorów v2, . . . ,vm−1 . W rezultacie: wartość wyznacznika Grama

uk ladu wektorów v1,v2, . . . ,vm nie zmienia sie↪ w wyniku dodania do wektora vm dowolnej kombi-

nacji liniowej wektorów v1,v2, . . . ,vm−1 . Można wie↪c odja↪ć od vm rzut tego wektora na podprze-

strzeń rozpie↪ta↪ przez wektory v1,v2, . . . ,vm−1 zachowuja↪c wartość wyznacznika Grama. Z definicji

wynika natychmiast, że jeśli vi ⊥ vm dla i = 1, 2, . . . ,m − 1 , to zachodzi G(v1,v2, . . . ,vm) =

G(v1,v2, . . . ,vm−1)‖vm‖2 . To żywo przypomina dosyć znany wzór na obje↪tość równoleg lościanu:

obje↪tość równoleg lościanu to iloczyn pola podstawy i wysokości. Druga mi la okoliczność to nie-

zmienniczość wyznacznika Grama przy izometriach: jeśli L: IRk −→ IRk jest izometria↪ liniowa↪, to

G(v1,v2, . . . ,vm) = G(Lv1, Lv2, . . . , Lvm) . Dla dowolnych wektorów v1,v2, . . . ,vm ∈ IRk istnieje

izometria liniowa L: IRk −→ IRk taka, że Lv1, Lv2, . . . , Lvm ∈ IRm × {0, . . . , 0︸ ︷︷ ︸
k−m

} . Dla wektorów

v1,v2, . . . ,vm ∈ IRm wyznacznik Grama G(v1,v2, . . . ,vm) jest równy kwadratowi wyznacznika

macierzy, której kolumnami sa↪ wektory v1,v2, . . . ,vm , czyli kwadratowi miary Lebesgue’a `m

równoleg lościanu rozpie↪tego przez te wektory. Rozsa↪dnie jest wie↪c przyja↪ć, że G(v1,v2, . . . ,vm)

jest kwadratem miary równoleg lościanu rozpie↪tego przez wektory v1,v2, . . . ,vm nie tylko w tym

przypadku, ale również, gdy sa↪ one po lożone w przestrzeni wyższego wymiaru (np. równoleg lobok

w IR3 ma jakieś pole).

Jeśli ψ:V −→ IRk jest parametryzacja↪ otwartego podzbioru U rozmaitości M ⊆ IRk , q ∈ V ,

to różniczka Dψ(q): IRm −→ IRk odwzorowuje przestrzeń IRm na Tψ(q)M . Jeśli Q jest kostka↪

o środku q , to Dψ(q)(Q) ⊆ Tψ(q) jest m –wymiarowym równoleg lościanem, którego obje↪tość rów-
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na jest
√

det
(
Dψ(q)T ·Dψ(q)

) · `m(Q) . To sugeruje naste↪puja↪ca↪ definicje↪: jeśli A ⊆ V , to

`M (ψ(A)) =
∫
A

√
det
(
Dψ(q)T ·Dψ(q)

)
d`m .

Tutaj `M oznacza miare↪ na rozmaitości, która↪ w laśnie definiujemy. Nazywać ja↪ be↪dziemy miara↪

Lebesgue’a–Riemanna na M . Taka definicja wymaga po pierwsze stwierdzenia, że wynik jest zależny

jedynie od zbioru ψ(A) , a nie od A , ψ itp. Po drugie trzeba wyjaśnić, dla jakich zbiorów określamy

miare↪, po trzecie trzeba rozszerzyć te↪ definicje↪ na zbiory, które nie sa↪ zawarte w dziedzinie jednej

mapy, czyli na taki, których nie można sparametryzować za pomoca↪ jednego przekszta lcenia ψ .

Zaczniemy od pierwszej kwestii. Dowód odpowiedniego lematu poprzedzimy dosyć ważnym

twierdzeniem opisuja↪cym strukture↪ przekszta lcenia klasy Cr , którego różniczka ma rza↪d niezależny

od punktu.

Twierdzenie o rze↪dzie

Jeśli ψ:V −→ IRl jest przekszta lceniem klasy Cr , r ≥ 1 i dla każdego x ∈ V ⊆ IRk zachodzi

równość r(Dψ)(x) = m , to dla każdego punktu q ∈ V istnieja↪ otwarte otoczenia V1 3 q oraz

V2 3 ψ(q) oraz dyfeomorfizmy (na obraz) f :V1 −→ IRk , g:V2 −→ IRl takie, że

g ◦ ψ ◦ f−1(x1, x2, . . . , xk) = (x1, x2, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
l−m

)

Dowód. Niech ψ = (ψ1, ψ2, . . . , ψl) . Niech q ∈ V . Ponieważ rza↪d przekszta lcenia Dψ(q)

równy jest m , wie↪c pewien minor wymiaru m macierzy Dψ(q) =
(
∂ψi
∂xj

(q)
)

jest różny od 0 .

Po ewentualnej zmianie numeracji wspó lrze↪dnych w dziedzinie lub w obrazie można przyja↪ć, że
∣∣∂ψi
∂xj

(q)
∣∣
1≤i,j≤m 6= 0 . Niech f(x) = f(x1, . . . xk) =

(
ψ1(x), ψ2(x), . . . , ψm(x), xm+1, xm+2, . . . , xk

)
,

oczywíscie jeśli m = k , to wspó lrze↪dnych o numerach wie↪kszych niż m = k nie ma. Przekszta lcenie

f jest oczywíscie tej samej klasy co ψ (a przynajmniej nie mniejszej). Mamy

Df(q) =




∂ψ1
∂x1

(q) . . . ∂ψ1
∂xm

(q) ∂ψ1
∂xm+1

(q) . . . ∂ψ1
∂xk

(q)
∂ψ2
∂x1

(q) . . . ∂ψ2
∂xm

(q) ∂ψ2
∂xm+1

(q) . . . ∂ψ2
∂xk

(q)
...

. . .
...

...
. . .

...
∂ψm
∂x1

(q) . . . ∂ψm
∂xm

(q) ∂ψm
∂xm+1

(q) . . . ∂ψm
∂xk

(q)

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1




Wyznacznik tej macierzy równy jest
∣∣∂ψi
∂xj

(q)
∣∣
1≤i,j≤m ·

∣∣∣∣∣∣

1 . . . 0
...

. . .
...

0 . . . 1

∣∣∣∣∣∣
6= 0 . Wynika sta↪d (twierdzenie

o odwracaniu funkcji), że istnieje otoczenie V1 punktu q , po obcie↪ciu do którego f jest dyfe-

omorfizmem. Pierwszych m wspó lrze↪dnych przekszta lcenia ψ ◦ f−1 pokrywa sie↪ z pierwszymi m

wspó lrze↪dnymi przekszta lcenia f ◦ f−1 = id . Niech ψ(f−1(x)) = (x1, . . . , xm, ψ̃m+1(x), . . . , ψ̃l(x)) .
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Bez trudu stwierdzamy, że

D(ψ ◦ f−1)(x) =




1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0
∂ψ̃m+1
∂x1

(x) ∂ψ̃m+1
∂x2

(x) . . . ∂ψ̃m+1
∂xm

(x) ∂ψ̃m+1
∂xm+1

. . . ∂ψ̃m+1
∂xk

(x)
...

...
. . .

...
...

. . .
...

∂ψ̃l
∂x1

(x) ∂ψ̃l
∂x2

(x) . . . ∂ψ̃l
∂xm

(x) ∂ψ̃l
∂xm+1

. . . ∂ψ̃l
∂xk

(x)




Z lożenie przekszta lcenia liniowego z izomorfizmem nie zmienia rze↪du. Wobec tego rza↪d D(ψ◦f−1)(x)

jest równy m , czyli taki sam jak macierz jednostkowa znajduja↪ca sie↪ w lewym górnym rogu ma-

cierzy D(ψ ◦ f−1)(x) . Wynika sta↪d, że ∂ψ̃i
∂xj

(x) = 0 dla i = m + 1, . . . , l , j = m + 1, . . . , k .

Oznacza to, że funkcje ψ̃m+1, ψ̃m+2, . . . , ψ̃l nie zależa↪ od zmiennych xm+1, xm+2, . . . , xk , po ewen-

tualnym zmniejszeniu V1 można przyja↪ć, że f(V1) jest k –wymiarowym przedzia lem, wie↪c nie mam

k lopotu z wywnioskowaniem sta lości funkcji, której pochodna jest zerowa. Mamy wie↪c prawo pisać

ψ̃j(x1, . . . , xm) zamiast ψ̃j(x1, . . . , xm, xm+1, . . . , xk) w przypadku j = m + 1, . . . , l . Definiujemy

teraz g(y1, . . . , yl) =
(
y1, . . . , ym, ym+1 − ψ̃m+1(y1, . . . , ym), . . . , yl − ψ̃l(y1, . . . , ym)

)
. Można z  la-

twościa↪ przekonać sie↪ o tym, że g ◦ ψ ◦ f−1(x1, . . . , xk) = (x1, . . . , xm, 0, . . . , 0) oraz że g jest

dyfeomorfizmem: g−1(y1, . . . , yl) =
(
y1, . . . , ym, ym+1 + ψ̃m+1(y1, . . . , ym), . . . , yl + ψ̃l(y1, . . . , ym)

)
.

Dowód zosta l zakończony.

Lemat o przechodzeniu od jednej mapy do drugiej mapy

Jeśli ψ:V −→ IRk i ψ̃: Ṽ −→ IRk sa↪ homeomorfizmami klasy Cr , r ≥ 1 , których różniczki we

wszystkich punktach sa↪ różnowartościowe, ψ(V ) = ψ̃(Ṽ ) , to przekszta lcenie ψ−1 ◦ ψ̃ jest dyfeomor-

fizmem.

Dowód. Niech q ∈ V . Zgodnie z twierdzeniem o rze↪dzie istnieja↪ (lokalnie) dyfeomorfizmy g

i f takie, że g ◦ ψ ◦ f−1(x1, . . . , xm) = (x1, . . . , xm, 0 . . . , 0) w pewnym otoczeniu punktu f(q) .

Przekszta lcenie g ◦ ψ ◦ f−1 formalnie przekszta lca pewien podzbiór przestrzeni IRm w przestrzeń

IRk , ale faktycznie — w IRm . Można je wie↪c odwracać, odwrotne jest klasy Cr . Zachodzi równość

ψ−1 ◦ ψ̃ = f−1 ◦ (g ◦ ψ ◦ f−1
)−1 ◦ g ◦ ψ̃ .

Z niej wynika, że ψ−1◦ψ̃ klasy Cr , bo jest z lożeniem przekszta lceń takiej klasy (różniczkowalność w

punkcie jest w lasnościa↪ lokalna↪, wie↪c niczemu w dowodzie nie przeszkadza to, że rozważane z lożenie

jest określone jedynie w dostatecznie ma lym otoczeniu punktu f(q) ). Jest to oczywíscie prawda↪

również w przypadku przekszta lcenia odwrotnego ψ̃−1 ◦ψ , zatem jest to dyfeomorfizm.Dowód zos-

ta l zakończony.

Lemat o niezależności miary od mapy

Jeśli ψ:V −→ IRk i ψ̃: Ṽ −→ IRk sa↪ homeomorfizmami klasy Cr , r ≥ 1 , których różniczki we
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wszystkich punktach sa↪ różnowartościowe, A ⊆ ψ(V ) = ψ̃(Ṽ ) jest zbiorem borelowskim, to

∫
ψ−1(A)

√
det
(
Dψ(q)T ·Dψ(q)

)
d`m =

∫
ψ̃−1(A)

√
det
(
Dψ̃(q)T ·Dψ̃(q)

)
d`m .

Dowód. Skorzystamy z tego, że przekszta lcenie ψ̃−1 ◦ ψ jest dyfeomorfizmem (poprzedni

lemat). Z twierdzenia o zamianie zmiennych wynika, że
(

we wzorach poniżej q =
(
ψ̃−1 ◦ ψ)(x)

)

∫
ψ̃−1(A)

√
det
(
Dψ̃(q)T ·Dψ̃(q)

)
d`m(q) =

=
∫
ψ−1(A)

√
det
(
Dψ̃(q)T ·Dψ̃(q)

) ·
∣∣ detD(ψ̃−1 ◦ψ)(x)

∣∣d`m(x) =

=
∫
ψ−1(A)

√
det
(
Dψ̃(q)T ·Dψ̃(q)

) · ( detD(ψ̃−1 ◦ ψ)(x)
)2
d`m(x) =

=
∫
ψ−1(A)

√
det
(
D(ψ̃−1 ◦ ψ)(x)

)T · det
(
Dψ̃(q)TDψ̃(q)

) · detD(ψ̃−1 ◦ ψ)(x)d`m(x) =

=
∫
ψ−1(A)

√
det
[(
D(ψ̃−1 ◦ ψ)(x)

)T ·Dψ̃(q)T ·Dψ̃(q) ·D(ψ̃−1 ◦ ψ)(x)
]
d`m(x) =

=
∫
ψ−1(A)

√
det
[(
Dψ̃(q) ·D(ψ̃−1 ◦ ψ)(x)

)T
D
(
ψ̃ ◦ ψ̃−1 ◦ ψ)(x)

]
d`m(x) =

=
∫
ψ−1(A)

√
det
[(
Dψ(x)

)T
Dψ(x)

]
d`m(x) .

W tym rozumowaniu korzystalísmy z tego, że wyznacznik iloczynu macierzy kwadratowych jest

iloczynem wyznaczników macierzy oraz, że w mnożenie liczb jest przemienne (mnożenie macierzy

niestety przemienne nie jest).

Teraz można już zdefiniować miare↪ na rozmaitości M ⊆ IRk . Istnieje na każdej z nich atlas

z lożony z nie wie↪cej niż przeliczalnej liczby map ϕ1 , ϕ2 , . . . . Za lóżmy, że ich dziedzinami sa↪

zbiory U1 , U2 , . . . Jeśli A ⊆ M jest zbiorem borelowskim, to każdy ze zbiorów V1 := A ∩ U1 ,

V2 := A ∩ U2 \ U1 , V3 := A ∩ U3 \ (U1 ∪ U2) , . . . jest borelowski, sa↪ one parami roz la↪czne, wie↪c

można miare↪ określić wzorem

`M (A) =
∞∑
n=1

`M (Vn) , gdzie `M (Vn) =
∫
ϕn(Vn)

√
det
(
Dϕ−1(x)TDϕ−1(x)

)
d`m(x) .

Wykazalísmy, że wynik nie zależy od wyboru mapy. Jest jasne, że jest on również niezależny od spo-

sobu rozbicia zbioru A na roz la↪czne podzbiory mieszcza↪ce sie↪ w dziedzinach map z jednego atlasu (na

dziedzinie jednej mapy `m jest miara↪, wie↪c maja↪c dwa rozbicia przeliczalne rozbicia {Vn} i {Wm}
zbioru A możemy rozważyć rozbicie przeliczalne {Vn∩Wm} zbioru A ). Miare↪ określilísmy na zbio-

rach borelowskich. Można ja↪ uzupe lnić (np. korzystaja↪c z twierdzenia Caratéodory’go) do la↪czaja↪c

do σ –cia la podzbiory zbiorów miary 0 . Można też od razu przyja↪ć, że zbiór A jest mierzalny wte-

dy i tylko wtedy, gdy zbiór ϕ(A ∩ U) jest mierzalny dla dowolnej mapy ϕ określonej na zbiorze

U . Rozumowanie nie ulega zmianie, bo dyfeomorfizmy przekszta lcaja↪ zbiory mierzalne na zbiory

mierzalne.

Przyk lad (sfera)

Znajdziemy miare↪ sfery k –wymiarowej Sk ⊆ IRk+1 . Miara zbiory skończonego jest oczywíscie

150



równa 0 . Rzut stereograficzny przekszta lca sfere↪ bez jednego punktu na IRk . Wystarczy wie↪c znaleźć

ca lke↪
∫

IRk

√
det
(
Dψ(q)T ·Dψ(q)

)
d`k , gdzie ψ(x) =

(
2x

1+‖x‖2 ,
‖x‖2−1
‖x‖2+1

)
, x = (x1, x2, . . . , xk) ∈ IRk .

Zaczniemy od znalezienia Dψ(x) . Korzystaja↪c ze standardowych praw różniczkowania otrzymu-

jemy:

Dψ(x)h =
(

2h
1+‖x‖2 − 2x 2x·h

(1+‖x‖2)2 ,
−4x·h

(1+‖x‖2)2

)
.

Mamy wie↪c
∥∥Dψ(x)h

∥∥2
= 4‖h‖2

(1+‖x‖2)2 − 16(x·h)2

(1+‖x‖2)3 + 16‖x‖2(x·h)2

(1+‖x‖2)4 + 16(x·h)2

(1+‖x‖2)4 = 4‖h‖2
(1+‖x‖2)2 . Wykazalísmy

wie↪c, że przekszta lcenie liniowe Dψ(x) przekszta lca wektor h na wektor o d lugości 2‖h‖
1+‖x‖2 . Jest

wie↪c podobieństwem w skali 2
1+‖x‖2 . Oznacza to, że kolumny macierzy dψ(x) sa↪ wzajemnie pro-

stopad lymi wektorami o d lugości 2
1+‖x‖2 , a sta↪d wynika, że det

(
Dψ(q)T · Dψ(q)

)
=
(

2
1+‖x‖2

)k
.

Miara sfery Sk jest wie↪c równa
∫

IRk
(

2
1+‖x‖2

)k
d`k . Dla obliczenia tej ca lki zastosujemy wspó lrze↪dne

sferyczne (biegunowe). Przyjmujemy wie↪c jak w cze↪́sci dziewia↪tej, gdy obliczalísmy miare↪ kuli k –wy-

miarowej, że

x1 =% cos θ1 cos θ2 · . . . · cos θk−2 cos θk−1

x2 =% cos θ1 cos θ2 · . . . · cos θk−2 sin θk−1

x3 =% cos θ1 cos θ2 · . . . · sin θk−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk−2 =% cos θ1 cos θ2 sin θ3

xk−1 =% cos θ1 sin θ2

xk =% sin θ1

Niech H = {(θ1, θ2, . . . , θk−2, θk−1): |θ1| < π
2 , |θ2| < π

2 , . . . , |θk−2| < π
2 , |θk−1| < π} . Z twierdzenia

o zamianie zmiennych wynika, że (nie przejmujemy sie↪ zbiorami miary 0 )

`Sk(Sk) =
∫

IRk
(

2
1+‖x‖2

)k
d`k =

∫
(0,∞)×H

(
2

1+%2

)k(
%k−1 cosk−2 θ1 cosk−3 θ2 . . . cos θk−2

)
d`k =

Fubini=======
∫

(0,∞)

(
2

1+%2

)k
%k−1d% · ∫

H
cosk−2 θ1 cosk−3 θ2 . . . cos θk−2d`k−1 =

=
∫∞

0

(
2

1+%2

)k
%k−1d% · k`k(B(0, 1))

%=tg t
==========
d%=(1+tg2 t)

2
∫ π/2

0

(
2 tg t

1+tg2 t

)k−1
dt · k`k(B(0, 1)) =

= 2
∫ π/2

0 sink−1 2tdt · k`k(B(0, 1)) =
∫ π

0 sink−1 τ dτ · k`k(B(0, 1)) =

=

{
k−2
k−1 · k−4

k−3 · . . . · 1
2 · π · k`k(B(0, 1)), jeśli k > 1 jest nieparzyste ;

k−2
k−1 · k−4

k−3 · . . . · 2
3 · 2 · k`k(B(0, 1)), jeśli k > 2 jest parzyste.

Możemy wie↪c napisać `Sk(Sk) = Γ( k2 )
Γ( k+1

2 )
·√π ·k ·`k(B(0, 1)) , przy czym ten ostatni wzór zachodzi dla

k = 1, 2, . . . do sprawdzenia jego prawdziwości zache↪cam studentów: przy okazji można przypomnieć

sobie czym jest jest funkcja Γ . Na wszelki wypadek : Γ( 1
2 ) =

√
π , Γ(x+ 1) = xΓ(x) dla x > 0 .

Otrzymalísmy wie↪c wzór ma miare↪ sfery wielowymiarowej o promieniu 1 . Jasne jest, że z tego
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wzoru bez trudu można otrzymać wzór na miare↪ sfery k –wymiarowej o promieniu r > 0 .

Zadanko

Wykazać, że jeśli Sr jest k –wymiarowa↪ sfera↪ o promieniu r , to

`Sr (Sr) = rk`Sk(Sk) = rk
Γ( k2 )

Γ( k+1
2 )
· √π · k · `k(B(0, 1)) .

Zadanko

Wykazać, że liczba
∫ R

0 `Sr (Sr)dr jest miara↪ k + 1 –wymiarowej kuli o promieniu R > 0 .

Drugie zadanie jest ważne. Należy spróbować zrozumieć dlaczego to twierdzenie jest prawdziwe.

Ono obejmuje wzory, które wszyscy kończa↪cy licea znaja↪, ale nieliczni je zauważaja↪:(
πr2
)′

= 2πr ,
(

4
3πr

3
)′

= 4πr2 .

W zasadzie niewiele zosta lo tu do zrobienia, wystarczy sie↪ uważnie przyjrzeć temu, co zrobilísmy.

W cze↪́sci dziewia↪tej zdefiniowalísmy środek cie↪żkości zbioru borelowskiego A ⊆ IRk . Poje↪cie

to możemy teraz stosować do rozmaitości. Można też wykazać twierdzenie Pappusa—Guldina dla

powierzchni obrotowych.

Twierdzenie Pappusa–Guldina ∗

Jeśli A ⊆ M̃ ⊆ {x ∈ IR3 : x2 = 0 < x1} jest zbiorem, który ma środek cie↪żkości wzgle↪dem miary

`M̃ , M̃ jest rozmaitościa↪, B jest zbiorem, który powstaje w wyniku obrotu zbioru A o ka↪t 2π

wokó l prostej x1 = x2 = 0 , to `M (B) = 2πr`M̃ (A) , gdzie r jest odleg lościa↪ środka cie↪żkości zbioru

A od osi obrotu, M ⊆ IR3 jest rozmaitościa↪ powsta la↪ w wyniku obrotu rozmaitości M̃ wokó l prostej

x1 = x2 = 0 .

Dowód. Zaczniemy oczywíscie od wykazania, że M jest rozmaitościa↪ zak ladaja↪c, że M̃ jest

rozmaitościa↪ jednowymiarowa↪. Przypadek dwuwymiarowej rozmaitości M̃ jest obje↪ty poprzednia↪

wersja↪ tego twierdzenia, rozmaitości wymiaru 0 nie sa↪ przesadnie interesuja↪ce: sa↪ to przestrze-

nie dyskretne. Niech Ũ be↪dzie dziedzina↪ mapy ϕ̃ i niech ψ̃ = ϕ̃−1 , Ṽ = ϕ̃(Ũ) . Niech ψ̃(x) =

(ψ1(x), 0, ψ3(x)) . Definiujemy ψ(x, t) =
(
ψ1(x) cos t, ψ1(x) sin t, ψ3(x)

)
. Jeśli liczby t wybierane sa↪

z przedzia lu (α, β) o d lugości mniejszej niż 2π , to przekszta lcenie ψ jest cia↪g le i różnowartościowe.

Różnowartościowość wynika natychmiast z różnowartościowości ψ̃ i różnowartościowości przekszta l-

cenia t −→ (cos t, sin t) na przedziale d lugości < 2π . Przekszta lcenie ψ jest homeomorfizmem: jeśli

ψ(xn, tn)−−−−→
n→∞

ψ(y, s) , to ψ3(xn)−−−−→
n→∞

ψ(y) i

ψ1(xn) =
√(

ψ1(xn) cos tn
)2

+
(
ψ1(xn) sin tn

)2−−−−→
n→∞

√(
ψ1(y) cos s

)2
+
(
ψ1(y) sin s

)2
= ψ(y) .

Sta↪d i z cia↪g lości ϕ wynika, że xn−−−−→
n→∞

y . Co najmniej jedna z liczb | cos s| , | sin s| jest różna

od 1 . Dla ustalenia uwagi niech −1 < cos s < 1 . Wtedy w pewnym otoczeniu liczby s funkcja cos

jest homeomorfizmem. Wobec tego z równości lim
n→∞

cos tn = cos s wynika, że lim
n→∞

tn = s . Mamy

∗ Pappus (290–350), Guldin(1577–1643)
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Dψ(x, t) =



ψ′1(x) cos t −ψ1(x) sin t
ψ′1(x) sin t ψ1(x) cos t
ψ′3(x) 0


.

Mamy wie↪c

Dψ(x, t)TDψ(x, t) =
(
ψ′1(x)2 + ψ′3(x)2 0

0 ψ2
1

)
.

Wobec tego det
(
Dψ(x, t)TDψ(x, t)

)
=
(
ψ′1(x)2 + ψ′3(x)2

)
ψ1(x)2 > 0 , bo Dψ̃(x) jest różnowartoś-

ciowe, zatem Dψ(x, t) również jest różnowartościowe (rza↪d tego przekszta lcenia liniowego jest rów-

ny 2). Wskazalísmy wie↪c atlas dla M . Możemy teraz znaleźć miare↪ zbioru ψ(ϕ(A)× (0, 2π)) . Jest

ona na mocy definicji równa
∫
ϕ(A)×(0,2π)

√(
ψ′1(x)2 + ψ′3(x)2

)
ψ1(x)2 Fubini======= 2π

∫
ϕ(A) ψ1(x)

√
ψ′1(x)2 + ψ′3(x)2d`1(x) =

= 2π
∫
A
x1d`M̃ (x) = 2π`M̃ (A) · 1

`M̃ (A)

∫
A
x1d`M̃ (x) .

Liczba 1
`M̃ (A)

∫
A
x1d`M̃ (x) to pierwsza wspó lrze↪dna środka cie↪żkości zbioru A wzgle↪dem miary `M̃ ,

zatem jest to odleg lość od prostej x1 = 0 = x2 , czyli od osi obrotu, jest wie↪c równa r .

Widać wie↪c, że jest to taki sam dowód, jak poprzedniej wersji tego twierdzenia. Z tego twierdze-

nia  latwo można wyprowadzić wzory na pole powierzchni bocznej stożka, lub ogólniej stożka ście↪tego

— wystarczy stwierdzić, że środkiem cie↪żkości odcinka jest jego środek. Można znaleźć wzór na pole

powierzchni torusa, jeśli tylko zdo lamy wykazać, że środkiem cie↪żkości okre↪gu (nie ko la!) jest jego

środek. Wzór jest użyteczny i  latwy w dowodzie. W zasadzie to szczególny przypadek twierdzenia

Fubiniego.

Warto dodać jeszcze, że jeśli f :M −→ [0,∞] jest funkcja↪ mierzalna↪ a zbiór A ⊆ M jest

zawarty w obrazie parametryzacji ψ:V −→M ⊆ IRk , to
∫
A
f d`M =

∫
ψ−1(A) f ◦ ψ

√
Dψ(x)TDψ(x)d`m(x) .

Ten wzór pozwala w wielu przypadkach na ca lkowanie funkcji określonych na rozmaitościach. Oczy-

wíscie funkcje↪ nieujemna można zasta↪pić funkcja↪ ca lkowalna↪ lub taka↪, która ma ca lke↪, niekoniecznie

skończona↪.
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