Analiza matematyczna 2, czes¢ dwunasta

Tekst poprawiony 4 wrzesnia 2011, godz. 00:02
Zwykla prosba: prosze o informacje o zauwazonych bledach, poprawie.

Zajmiemy sie teraz okresleniem miary na rozmaitosci M C RF . Rozpoczniemy od przyktadu

wskazujacego na pewna, trudnosé.

Przyklad Schwarza
Niech W oznacza walec o wysokosci 1 i ktérego podstawa ma promien 1. Wykazemy, ze w po-
wierzchnie boczna tego walec mozna wpisaé wielo$cian, ktéry ma dowolnie duza powierzchnie i
ktorego wszystkie krawedzie sa krétkie. Scianami tego wielo$cianu beda tréjkaty réwnoramienne,
wiec pole bedziemy w stanie znalezé bez klopotu. Podzielimy walec plaszczyznami réwnoleglymi
do podstaw na n przystajacych walcéw (czyli prowadzimy n — 1 plaszczyzn). Mamy wiec n + 1
okregéw. W kazdy z nich wpisujemy m—kat foremny w ten sposéb, ze wierzcholki wielokata wpi-
sanego w j + 1—wszy (liczac od dohu) okrag znajduja sie nad $rodkami tukéw j—tego okregu wy-
znaczonych przez sasiednie wierzchotki wielokata wpisanego w j—ty okrag. Mamy wiec m(n + 1)
punktéw na powierzchni bocznej walca. Rozwazamy powierzchnie bedaca suma trojkatow, ktérych
dwoma wierzchotkami sa sasiednie punkty jednego okregu, a trzecim wierzcholek znajdujacy sie
na sasiednim okregu nad lub pod srodkiem luku wyznaczonego przez dwa pierwsze. Otrzymujemy

wiec 2m trojkatow ,miedzy” sasiednimi okregami, w sumie 2mn tréjkatéw. Pole jednego takiego

tréjkata rowne jest sin %\/ ?12 + (1 —cos )%, zatem pole P, powierzchni catkowitej wieloicianu

réwne jest 2msin’-4/1+ 4n? sin? = . Przyjawszy n = m otrzymujemy

m
P = 2msin-y /1 +4m? sin* &~ ——2m,
m— 00
jest to rezultat zgodny z oczekiwaniami: pole wielo$cianu ktoérego wszystkie krawedzie sa bardzo
krotkie i ktorego wierzcholki leza na powierzchni bocznej walca w miare gesto przybliza pole po-

wierzchni bocznej walca. Przyjmijmy teraz n = m?. Otrzymujemy w tym przypadku

Pon =2msin™/1+4misin* T ——— 27/1 + 474,
? m m m %)
a wiec ,za duzo”. Niech n = m?. Teraz

P =2msinZ /1 +4mbsin* & — — 1 0.
’ m M m—oo

Oznacza to, ze préba zdefiniowania pola powierzchni bocznej walca przez przyblizanie polami wielo-
Sciandw wpisanych w te powierzchnie skoriczy sie niepowodzeniem, chyba ze zwiekszymy wymagania
wobec nich. Przyczyna, tych nieco dziwacznych rezultatéw jest to, ze rozpatrywane tréjkaty majac
wierzchotki na powierzchni bocznej walca i krétkie krawedzie nie przyblizaly jednak powierzchni
bocznej, bo kat miedzy plaszczyzng tréjkata i powierzchnia boczna nie dazyt w drugim ani w trze-
cim przypadku do 0 (w pierwszym tak bylo). Oznacza to, ze przy wprowadzaniu definicji nalezy

zadbaé¢ réwniez o ten czynnik. H
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Zatézmy, ze ¢ : V. — M C R” jest parametryzacja pewnego otwartego podzbioru U = (V)
rozmaitosci m-wymiarowej M . Zdefiniujemy najpierw miare borelowska na zbiorze U. Przy-
pomnijmy, ze wyznacznikiem Grama wektoréw vy, vs,...,Vv,, nazywamy wyznacznik macierzy
(ViVj)i<i,j<m - Pelni on role kwadratu objetosci m —wymiarowego réwnolegloscianu rozpietego przez
wektory vi,va, ..., vy, . Jedli jest on rowny 0, to wektory sa liniowo zalezne, co jest zgodne z intui-
cyjnym pojmowaniem objetosci.

Zdefiniujmy ¢(vi,va, ..., Vi, Wi, Wa, ..., Wy,) = det(v; - W;)1<; j<m dla dowolnych wektoréw
Viseoo Vi, Wi, .., Wy, € IRF . Mamy wiec g(Vi,Va, ..., Vin, Vi, Vo, ..oy Vin) = G(V1, Vo, ..., V).
Jasne jest, ze funkcja ¢ jest 2m-liniowa na (IRk)Zm przy czym jest ona antysymetryczna jako
funkcja wektoréw vi,va,...,v,, przy ustalonych wektorach wi,wa,..., w,,. Jest tez antysyme-
tryczna przy ustalonych wektorach vi,vs,...,v,, jako funkcja wektoréw wi,wo, ..., w,, . Mamy
g(V1, Vo, oo Vi V1, Ve, Vo, oo Vi V1) = g(V1, Vo, oo, Vi, VI, Vo, oo, Vi) +

+9(vi, Vo, ..., tV1, V1, Vo, .o, V) + g(V1, Vo, oo, Vi, VI, Va, . BV F
+g(vi, Ve, ..., tV1, V1, Vo, ..., tV]) =

=g(Vi,Va, o, Vi, VI, Ve, ., Vi ) F 04+ 04+ 0 = G(vy, Ve, ..., Vin )
bo wyznacznik macierzy zawierajacej proporcjonalne wiersze jest rowny 0. Oczywidcie wektor vy
mozna zastapi¢ dowolnym z wektorow va,...,v,,—1. W rezultacie: wartos¢ wyznacznika Grama
uktadu wektoréw vi,vs,...,v,, nie zmienia sie w wyniku dodania do wektora v,, dowolnej kombi-
nacji liniowej wektoréw vi,va, ..., vy, 1. Mozna wiec odjaé od v,, rzut tego wektora na podprze-
strzen rozpieta przez wektory vi,va,...,v,,_1 zachowujac wartos¢ wyznacznika Grama. Z definicji
wynika natychmiast, ze jesli v; L v, dla i = 1,2,...,m — 1, to zachodzi G(vi,va,...,Vy) =
G(v1,va, ..., Vi—1)|[vim||? . To Zywo przypomina dosyé znany wzér na objeto$é réwnolegloscianu:
objetosé rownolegloécianu to iloczyn pola podstawy i wysokosci. Druga mita okoliczno$é to nie-
zmienniczos¢ wyznacznika Grama przy izometriach: jesli L:RF — R* jest izometria liniowa, to
G(vi,va,...,vp) = G(Lvy, Lvs, ..., Lv,,). Dla dowolnych wektoréw vi,va,..., vy, € R* istnieje
izometria liniowa L:IRF — R taka, ze Lvy,Lvs,...,Lv,, € R™ x {0,...,0}. Dla wektoréw

——
k—m

Vi,Vo, ...,V € IR™ wyznacznik Grama G(vy,Va,..., V) jest réwny kwadratowi wyznacznika
macierzy, ktorej kolumnami sa wektory vi,va,...,V,,, czyli kwadratowi miary Lebesgue’a £,
réwnoleglodcianu rozpietego przez te wektory. Rozsadnie jest wiec przyjaé, ze G(vi,Vva,..., V)
jest kwadratem miary rownolegloécianu rozpietego przez wektory vi,ve,...,Vv,, nie tylko w tym
przypadku, ale réwniez, gdy sa one polozone w przestrzeni wyzszego wymiaru (np. réwnoleglobok
w IR*® ma jakies pole).

Jesli ¥: V — R” jest parametryzacja otwartego podzbioru U rozmaitosci M C R” ,qeV,
to rézniczka Dip(q):IR™ — IRF odwzorowuje przestrzeri R™ na TyqM . Jedli @ jest kostka

o érodku q, to DY(q)(Q) C Ty(q) jest m-wymiarowym réwnolegloscianem, ktérego objetosé réw-
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na jest \/det (DY(q)T - DY(q)) - €m(Q) . To sugeruje nastepujaca definicje: jesli A C V, to

Or((A) = [y \Jdet (DY(@)T - Dy(a)) dé
Tutaj ¢jp; oznacza miare na rozmaitosci, ktéra wlasnie definiujemy. Nazywaé ja bedziemy miara
Lebesgue’a—Riemanna na M . Taka definicja wymaga po pierwsze stwierdzenia, ze wynik jest zalezny
jedynie od zbioru ¥(A), anie od A, % itp. Po drugie trzeba wyjasni¢, dla jakich zbioréw okreslamy
miare, po trzecie trzeba rozszerzy¢ te definicje na zbiory, ktére nie sa zawarte w dziedzinie jednej
mapy, czyli na taki, ktérych nie mozna sparametryzowaé za pomoca jednego przeksztalcenia .
Zaczniemy od pierwszej kwestii. Dowdd odpowiedniego lematu poprzedzimy dosyé waznym
twierdzeniem opisujacym strukture przeksztalcenia klasy C”, ktorego rézniczka ma rzad niezalezny
od punktu.
Twierdzenie o rzedzie
Jesli ¢:V — IR' jest przeksztalceniem klasy C”, r > 1 i dla kazdego x € V C IR¥ zachodzi
réwnos$é r(Dv)(x) = m, to dla kazdego punktu q € V istnieja otwarte otoczenia V; 5 q oraz
Vo 3 9(q) oraz dyfeomorfizmy (na obraz) f:V; — R, g: Vo — R! takie, ze
govo f Ny, xe,...,7k) = (1,22, ..., T, 0,...,0)
——
l-m
Dowdéd. Niech ¢ = (¢1,%2,...,1;). Niech q € V. Poniewaz rzad przeksztalcenia Di(q)

réwny jest m, wiec pewien minor wymiaru m macierzy Di(q) = (gf’f (q)) jest rézny od 0.
J

Po ewentualnej zmianie numeracji wspéhrzednych w dziedzinie lub w obrazie mozna przyjaé, ze

gf; (q)|1§Z,J§m 7& 0. Niech f(X) = f(xla s l‘k) = (¢1(X)7¢2(X)7 ey ¢77L(X)7xm+17x7n+2a s axk:> )

oczywiscie jesli m = k, to wspoétrzednych o numerach wiekszych niz m = k nie ma. Przeksztalcenie

f jest oczywiscie tej samej klasy co ¥ (a przynajmniej nie mniejszej). Mamy

o o ) d
@) . gt@) gp(a) - gei(a)
o ) d d
2@ o 52 2@ - 52(q)
_| ovm " Om O O
Di@=| ga@ - G2@ amip@ - 3@
0 . 0 1 . 0
0 0 0 1
1 0
Wyznacznik tej macierzy réwny jest |ng (q)’1 <ij<m’ ‘.. 1| # 0. Wynika stad (twierdzenie
0o ... 1

o odwracaniu funkcji), ze istnieje otoczenie Vi punktu q, po obcieciu do ktérego [ jest dyfe-
omorfizmem. Pierwszych m wspéhrzednych przeksztalcenia 1) o f~! pokrywa sie z pierwszymi m

wspotrzednymi przeksztalcenia f o f~1 =id. Niech ¥(f~1(x)) = (21,...,Tm, 'l/’;erl(X), - 7zZl(x)) .
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Bez trudu stwierdzamy, ze

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

Do f (X)) =| 5 23 o o9 o9
Ge(x) Tgml(x) L. Gpmil(x) ghesl o Omil(x)
B0 B0 . B G B

Zlozenie przeksztalcenia liniowego z izomorfizmem nie zmienia rzedu. Wobec tego rzad D (o f~1)(x)
jest rowny m, czyli taki sam jak macierz jednostkowa znajdujaca sie w lewym gérnym rogu ma-

cierzy D( o f~1)(x). Wynika stad, ze gi‘(x) =0dlai=m+1,...,01, 7 =m+1,...,k.

Oznacza to, ze funkcje 7/;m+17 zzm“, N ,z/le nie zaleza od zmiennych 41, Tm42,. .., Tk, PO ewen-
tualnym zmniejszeniu Vi mozna przyjaé, ze f(V1) jest k—wymiarowym przedzialem, wiec nie mam
klopotu z wywnioskowaniem stalosci funkcji, ktérej pochodna jest zerowa. Mamy wiec prawo pisaé
1/3]-(3:1, ..., Ty) zamiast 1[)]'(171, s Ty Tipt1, - - -, k) W przypadku j = m +1,..., 1. Definiujemy
teraz g(y1,-- -, y) = (Y1, Yms Y1 — Pt W1y -« Ym) - ¥ — YY1, -+ - Ym)) . Mozna z la-
twodcia przekonaé sie o tym, ze go o fl(xy,...,2x) = (¥1,...,Tm,0,...,0) oraz ze g jest
dyfeomorfizmem: ¢~ (y1,...,u) = (Y1, -+ Ym, Ym+1 + Vst (Y1s - Ym)s -y 4+ Vi (yas - - - S Ym)) -
Dowdd zostal zakonczony. B

Lemat o przechodzeniu od jednej mapy do drugiej mapy
Jesli :V — RF i 1;:17 — IR" sa homeomorfizmami klasy C”, r > 1, ktérych rézniczki we
wszystkich punktach sa réznowartosciowe, (V) = JJ(V) , to przeksztalcenie 1~ o jest dyfeomor-
fizmem.

Dowdéd. Niech q € V. Zgodnie z twierdzeniem o rzedzie istnieja (lokalnie) dyfeomorfizmmy ¢
i f takie, ze gov o f~ Y xy,...,om) = (1,...,2Zm,0...,0) W pewnym otoczeniu punktu f(q).
Przeksztalcenie g o1 o f~! formalnie przeksztalca pewien podzbiér przestrzeni IR™ w przestrzen
IR”, ale faktycznie — w IR™. Mozna je wiec odwracaé, odwrotne jest klasy C” . Zachodzi réwnosé

Y lod=f"to(goyof ) Togoi.

Z niej wynika, ze ¢! oz/; klasy C", bo jest zlozeniem przeksztalcen takiej klasy (rézniczkowalnosé w
punkcie jest wlasnoscia lokalng, wiec niczemu w dowodzie nie przeszkadza to, ze rozwazane zlozenie
jest okredlone jedynie w dostatecznie malym otoczeniu punktu f(q)). Jest to oczywiscie prawda
réwniez w przypadku przeksztalcenia odwrotnego 1/;*1 01, zatem jest to dyfeomorfizm.Dowdd zos-
tal zakoriczony. B

Lemat o niezaleznosci miary od mapy

Jesli vV — RY i ¢:V — R* sa homeomorfizmami klasy C”, r > 1, ktérych rézniczki we
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wszystkich punktach sa réznowartosciowe, A C (V) = (V) jest zbiorem borelowskim, to

Jo-10a) \/det (Dy(@)” - Dy(q)) dbm = [ 1A \/det (D(a)T - Dijp(q)) de

Dowéd. Skorzystamy z tego, ze przeksztalcenie v loq jest dyfeomorfizmem (poprzedni

lemat). Z twierdzenia o zamianie zmiennych wynika, ze (We wzorach ponizej q = (12*1 o) (x) )

Jsr 0y y/det (DY@ - DY) deom(a) =

= Jy10a) \/det (DP(@)T - Dip(q)) -| det D(H~ 09p)(x)| dbm (x) =

— [y (et (D@ - Di(@) - (det D" 0 1)(x)) dbm(x) =

= Jy1ay Vet (D@1 0 )(x))" - det (D) Dik(q) - det DG~ 0 1) (x) dby () =

— Jyr o) Vet (D@0 1) ()" - Dib(@)” - Di(a) - D&+ 0 ) (x)] dlom(x) =

= [y Vdet [(Dd(@) - DI 0 0)(x)) D (0§ 0 9) ()] dlon (x) =
= [yr) \/det [(DY(x)) T D(x)] dby (%) -

W tym rozumowaniu korzystaliSmy z tego, ze wyznacznik iloczynu macierzy kwadratowych jest

iloczynem wyznacznikéw macierzy oraz, ze w mnozenie liczb jest przemienne (mnozenie macierzy
niestety przemienne nie jest). W

Teraz mozna juz zdefinjowaé miare na rozmaitosci M C IR . Istnieje na kazdej z nich atlas

zlozony z nie wiecej niz przeliczalnej liczby map @1, @2, .... Zaldézmy, ze ich dziedzinami sa
zbiory Uy, Us, ... Jesli A C M jest zbiorem borelowskim, to kazdy ze zbioréw V; := ANUy,
Vo= ANUx\ Uy, V3 := ANU;\ (U UUs), ... jest borelowski, sa one parami rozlaczne, wiec

mozna miare okresli¢é wzorem

A) = Z KM(Vn), gdzie é]\/[(vn) = fvn(Vn) \/det (D(p*l(x)TD(pfl(X” dém(x) .

Wykazalismy, ze wynik nie zalezy od wyboru mapy. Jest jasne, ze jest on réwniez niezalezny od spo-
sobu rozbicia zbioru A na rozlaczne podzbiory mieszczace sie w dziedzinach map z jednego atlasu (na
dziedzinie jednej mapy /¢, jest miara, wiec majac dwa rozbicia przeliczalne rozbicia {V,} i {W,,}
zbioru A mozemy rozwazy¢é rozbicie przeliczalne {V,, NW,,} zbioru A). Miare okredliliémy na zbio-
rach borelowskich. Mozna ja uzupehié (np. korzystajac z twierdzenia Caratéodory’go) dotaczajac
do o —ciata podzbiory zbioréw miary 0. Mozna tez od razu przyjaé, ze zbidér A jest mierzalny wte-
dy i tylko wtedy, gdy zbiér ¢(A NU) jest mierzalny dla dowolnej mapy ¢ okreslonej na zbiorze
U . Rozumowanie nie ulega zmianie, bo dyfeomorfizmy przeksztalcaja zbiory mierzalne na zbiory
mierzalne.
Przyklad (sfera)

Znajdziemy miare sfery k-wymiarowej S¥ C R*T! . Miara zbiory skonczonego jest oczywiscie
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réwna 0. Rzut stereograficzny przeksztalca sfere bez jednego punktu na IR* . Wystarczy wiec znalezé

calke [ \/det (Db(@)T - Dib(a)) dl, gdzie $(x) = (2 Bhrt) » x = (1,22, 21) € RE

Zaczniemy od znalezienia D (x). Korzystajac ze standardowych praw rézniczkowania otrzymu-

jemy:

Dy ()b = (575 — 2Xqfadoe o oe) -
Mamy wice || Dy(e)h]|” = iy — sy + U R+ T = e - Wykazalismy
wiec, ze przeksztalcenie liniowe D)(x) przeksztalca wektor h na wektor o dhugosci % Jest

wiec podobieristwem w skali . Oznacza to, ze kolumny macierzy di(x) sa wzajemnie pro-

2
T+Ix[1?

a stad wynika, ze det (Dy(q)” - Dy(q)) = (=7 )k'

stopadlymi wektorami o dlugosci =

2

THIx[2
Miara sfery S* jest wiec réwna fle (ﬁ) * dly, . Dla obliczenia tej calki zastosujemy wspdtrzedne
sferyczne (biegunowe). Przyjmujemy wiec jak w czesci dziewiatej, gdy obliczaliSmy miare kuli k—wy-

miarowej, ze

r1 =pcosficosbsy-...-cosblp_ocosb_1
Lo =pcosficosbs ... cosbr_osinfy_ 4
r3 =pcosfycosly-... -sinf;_o

Tp_o =pcos 1 cos Oy sin O3
Tp_1 =pcosbqsinfby
xp =osinfy
Niech H = {(91,92, .. .,ek_g,ek_l): |91| < %, |92‘ < g, RN |9k—2| < g, |9k—1| < 7T} . Z twierdzenia

o zamianie zmiennych wynika, ze (nie przejmujemy sie zbiorami miary 0)

Cor(S%) = Jre (ﬁ)kdﬁk = f(o,oo)xH (ﬁ)k (Qki1 cos® 261 cos* 36, .. . cos 0k72) dly, =

Fubini ko _ _
%f(om) (ﬁ) oF 1cl‘(_)~chos’C 201 cosk 30y ... cos0p_odli_1 =

& k k- o=tgt /2 ( 2 k-1
=I5 (Eg) " de- i(B(0,1)) === 2 (1+z§§t) dt - kly(B(0,1)) =

2 [/ sink 1 2t dt - kty,(B(0,1)) = [T sin* ' 7dr - kty(B(0,1)) =

o

B k=2 ﬁ—:g co..o%om-klg(B(0,1)), jesli k> 1 jest nieparzyste ;
| =2t 2.2 k0(B(0,1)),  jesli k > 2 jest parzyste.

k

Mozemy wiec napisaé £gx (S*) = rlgg) k-0, (B(0,1)), przy czym ten ostatni wzér zachodzi dla
2

k=1,2,... do sprawdzenia jego prawdziwosci zachecam studentéw: przy okazji mozna przypomnie¢

sobie czym jest jest funkcja I'. Na wszelki wypadek : I'(3) = /7, D(z+ 1) = 2I'(z) dla 2 > 0. &

Otrzymalismy wiec wzér ma miare sfery wielowymiarowej o promieniu 1. Jasne jest, ze z tego
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wzoru bez trudu mozna otrzymaé¢ wzor na miare sfery k—wymiarowej o promieniu r > 0.
Zadanko

Wykazaé, ze jesli S, jest k—wymiarowa sfera o promieniu r, to

£, (S,) = rhese(S%) = vk TG /7 k- 0,(B(0,1)). m

r(==)

Zadanko
Wykazaé, ze liczba fOR ls, (Sy)dr jest miara k 4+ 1-wymiarowej kuli o promieniu R > 0. H
Drugie zadanie jest wazne. Nalezy sprobowaé zrozumieé¢ dlaczego to twierdzenie jest prawdziwe.
Ono obejmuje wzory, ktore wszyscy koniczacy licea znaja, ale nieliczni je zauwazaja.:

(7rr2), = 27r, (%777”3)I =dmr?.

W zasadzie niewiele zostato tu do zrobienia, wystarczy sie uwaznie przyjrze¢ temu, co zrobiliSmy.
W czesci dziewiatej zdefiniowalismy $rodek ciezkosci zbioru borelowskiego A C IR¥. Pojecie
to mozemy teraz stosowaé do rozmaitoéci. Mozna tez wykazaé twierdzenie Pappusa—Guldina dla

powierzchni obrotowych.

Twierdzenie Pappusa—Guldina *

Jesli ACM C {xe€R>® 25 =0<z} jest zbiorem, ktéry ma srodek ciezkoéci wzgledem miary
Lo s M jest rozmaitoscia, B jest zbiorem, ktéry powstaje w wyniku obrotu zbioru A o kat 27
wokot prostej xy = x2 =0, to £y (B) = 2l (A), gdzie r jest odleglodcia $rodka ciezkosci zbioru
A od osi obrotu, M C IR? jest rozmaitoscia powstala w wyniku obrotu rozmaitosci M wokét prostej
r1 =20 =0.

Dowdéd. Zaczniemy oczywiscie od wykazania, ze M jest rozmaitoscia zakladajac, ze M jest
rozmaitoscia jednowymiarows. Przypadek dwuwymiarowej rozmaitoéci M jest objety poprzednia,
wersja tego twierdzenia, rozmaitosci wymiaru 0 nie sa przesadnie interesujace: sa to przestrze-
nie dyskretne. Niech U bedzie dziedzing mapy @ i niech ¢ = ¢!, V = @(U). Niech t)(z) =
(¢1(2),0,13(x)) . Definiujemy ¥ (z,t) = (¢1(z) cost, ¥ (x)sint, s(z)) . Jesli liczby ¢ wybierane sa
z przedzialu («, 5) o dlugosci mniejszej niz 27, to przeksztalcenie ¢ jest ciagle i ré6znowartosciowe.
Réznowarto$ciowosé wynika natychmiast z réznowartosciowodei ¥ i réznowartosciowosci przeksztal-
cenia t — (cost,sint) na przedziale dlugosci < 27 . Przeksztalcenie v jest homeomorfizmem: jesli

¢(In,tn)m¢(y,5), to ¢3($n)m¢(y) i

2 . 2 2 . N2
Ya(en) = (alan) costa)” + (@) sintn)’ ——/ (Ga(y) coss)” + (r(9) sins)” = 0(o).
Stad i z ciaglosci ¢ wynika, ze x, ——y. Co najmniej jedna z liczb |coss|, |sins| jest rézna
n—oo
od 1. Dla ustalenia uwagi niech —1 < coss < 1. Wtedy w pewnym otoczeniu liczby s funkcja cos

jest homeomorfizmem. Wobec tego z rownosci lim cost, = coss wynika, ze lim ¢, = s. Mamy

n—oo n—oo

* Pappus (290-350), Guldin(1577-1643)
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i (x)cost —py(x)sint
Dip(x,t) = ¥)(x)sint  1Py(x)cost
5() 0
Mamy wiec

Dip(z, )T Dy (,t) :<wi(x)2 ?)_ v 77/?% )

Wobec tego det (Dy(x, )T Dy(x,t)) = (¢4 (2)? + ¢4(2)?)¢1(2)? > 0, bo Dij(x) jest réznowartos-
ciowe, zatem Dw(x,t) réwniez jest réznowartosciowe (rzad tego przeksztalcenia liniowego jest réw-
ny 2). Wskazalismy wiec atlas dla M . Mozemy teraz znalez¢ miare zbioru ¢ (p(A) x (0,27)). Jest

ona na mocy definicji réwna
Sty 0.2 V(4202 + 05 (2)2) 1 ()2 B0 [ i () /9 ()2 + P4 ()2l () =

= QWfoldEM(x) =27l (A) - Tl(A)fAscldéM(z).

Liczba Tl(A) / 4 T1dl 7 () to pierwsza wspélrzedna srodka ciezkosci zbioru A wzgledem miary £,

zatem jest to odleglos¢ od prostej x1 = 0 = x5, czyli od osi obrotu, jest wiec réwna . B

Widaé wiec, ze jest to taki sam dowdd, jak poprzedniej wersji tego twierdzenia. Z tego twierdze-
nia tatwo mozna wyprowadzi¢ wzory na pole powierzchni bocznej stozka, lub ogdlniej stozka Scietego
— wystarczy stwierdzié, ze srodkiem ciezkosci odcinka jest jego $rodek. Mozna znalezé wzér na pole
powierzchni torusa, jesli tylko zdotamy wykazaé, ze Srodkiem ciezkosci okregu (nie kotal) jest jego
$rodek. Wzor jest uzyteczny i latwy w dowodzie. W zasadzie to szczegélny przypadek twierdzenia
Fubiniego.

Warto dodaé jeszcze, ze jesli f: M — [0,00] jest funkcja mierzalng a zbiér A C M jest
zawarty w obrazie parametryzacji ¥:V — M C R”, to

fA fdly = fw—l(A) fo ¢\/Wd5m(x)-

Ten wzér pozwala w wielu przypadkach na catkowanie funkcji okreslonych na rozmaitosciach. Oczy-
wiscie funkcje nieujemna mozna zastapi¢ funkcja catkowalna lub taka, ktora ma catke, niekoniecznie

skoniczona,.
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