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Asymmetric Traveling Salesman Problem (ATSP)

Problem Statement

Input:
A complete graph G = (V ,E ) with a weight function
w : V 2 → R≥0.

Output:
A minimum weight Hamiltonian cycle in G .

Some bad news...

In the general version ATSP does not admit f (n)-approximation,
for any polynomially computable function f (n), unless P = NP.
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ATSP with Triangle Inequality

An extra assumption which makes some approximation possible is
the triangle inequality:

The triangle inequality

w(x , y) ≤ w(x , z) + w(z , y) for all distinct x , y , z .

Approximation of ATSP with triangle inequality

Symmetric variant has a 3
2 -approximation (Christofides),

log n-approximation (Frieze, Galbiati, Maffioli 1982),

0.999 log n-approximation (Bläser 2003),

0.842 log n-approximation (Kaplan et al. 2005),
2
3 log n-approximation (Feige and Singh 2008),

O(1)-approximation can still exist.
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ATSP with Stregthened Triangle Inequality

Let γ be a constant, γ ∈ [1
2 , 1).

Strengthened triangle inequality

w(x , y) ≤ γ(w(x , z) + w(z , y)) for all distinct x , y , z .

Approximation of ATSP with strenghtened triangle inequality
γ

1−γ -approximation (Chandran and Ram, STACS 2002),

1/(1− 1
2(γ + γ3))-approximation (Bläser, ICALP 2003),

1+γ
2−γ−γ3 -approximation (Bläser et al., J. Discr. Alg. 2006),

γ3

1−γ2 + max{1, γ+γ
2+1

2 }-approximation (Zhang, Li & Li, J.

Alg. 2009),
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Previous Results
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Our Results

A simple 1
2(1−γ) -approximation,

An algorithm with approximtaion ratio of
2−γ

3(1−γ) + O( 1
n ) when γ ∈ (γ0, 1] where γ0 ≈ 0.7003,

1
2 (1 + γ)2 + ε for any ε > 0 when γ ∈ [ 1

2 , γ0].
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Comparision of Results
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A simple algorithm

1. Find a minimum weight cycle cover
(doable in polynomial time)
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A simple algorithm

2. Remove a random edge from every cycle
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A simple algorithm

3. Patch the resulting paths into a Hamiltonian cycle (arbitrarily)
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A simple algorithm: Analysis

Consider a cycle C = v1v2 . . . vlv` from the cycle cover.
C is replaced by a (directed) path P and an edge uv , where u is
the last vertex on P.

Bounding E [w(P) + w(uv)]

E [w(P) + w(uv)] = w(C )− w(C )

`
+

∑`
i=1 w(viv)

`
(1)

From the strengthened triangle inequality, for i = 1, . . . , `:

w(vi , v) ≤ γ (w(vi , vi+1) + w(vi+1, v))

v1

v2

v3

v4

v5

v6

v

By summing the above inequality over all i = 1, . . . , `, we get Lukasz Kowalik and Marcin Mucha Two approximation algorithms for ATSP ...
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A simple algorithm: Analysis

Consider a cycle C = v1v2 . . . vlv` from the cycle cover.
C is replaced by a (directed) path P and an edge uv , where u is
the last vertex on P.

Bounding E [w(P) + w(uv)]

E [w(P) + w(uv)] = w(C )− w(C )

`
+

∑`
i=1 w(viv)

`
(1)

From the strengthened triangle inequality, for i = 1, . . . , `:

w(vi , v) ≤ γ (w(vi , vi+1) + w(vi+1, v))

By summing the above inequality over all i = 1, . . . , `, we get

∑̀
i=1

w(vi , v) ≤ γ

(
w(C ) +

∑̀
i=1

w(vi , v)

)
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A simple algorithm: Analysis

Consider a cycle C = v1v2 . . . vlv` from the cycle cover.
C is replaced by a (directed) path P and an edge uv , where u is
the last vertex on P.

Bounding E [w(P) + w(uv)]

E [w(P) + w(uv)] = w(C )− w(C )

`
+

∑`
i=1 w(viv)

`
(1)

∑̀
i=1

w(vi , v) ≤ γ

(
w(C ) +

∑̀
i=1

w(vi , v)

)
Hence, ∑̀

i=1

w(vi , v) ≤ γ

1− γ
w(C ). (2)
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A simple algorithm: Analysis

Consider a cycle C = v1v2 . . . vlv` from the cycle cover.
C is replaced by a (directed) path P and an edge uv , where u is
the last vertex on P.

Bounding E [w(P) + w(uv)]

E [w(P) + w(uv)] = w(C )− w(C )

`
+

∑`
i=1 w(viv)

`
(1)

∑̀
i=1

w(vi , v) ≤ γ

1− γ
w(C ). (2)

Finally, from (1) and (2):

E [w(P) + w(uv)] ≤ `− 1− (`− 2)γ

`(1− γ)
w(C ).
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A simple algorithm: Analysis

Consider a cycle C = v1v2 . . . v`v1 from the cycle cover.
C is replaced by a (directed) path P and an edge uv , where u is
the last vertex on P.

Lemma 1

E [w(P) + w(uv)] ≤ `−1−(`−2)γ
`(1−γ) w(C ).

Since ` ≥ 2, and `−1−(`−2)γ
`(1−γ) = 1 + 2γ−1

`(1−γ) is decreasing in `,

Corollary 1

E [w(P) + w(uv)] ≤ 1
2(1−γ)w(C ).

Corollary 2

The expected weight of the resulting Hamiltonian cycle is at most
1

2(1−γ)w(C), where C is the initial cycle cover.

Corollary 3

The expected weight of the resulting Hamiltonian cycle is at most
1

2(1−γ)OPT.
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A simple algorithm: Analysis
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What have we got?

Theorem 1

There is a randomized algorithm for the ATSP problem with
strengthened triangle inequality with expected approximation ratio
of 1

2(1−γ) .

After derandomizing it with the standard method of conditional
expectation we get:

Theorem 2

There is a deterministic algorithm for the ATSP problem with
strengthened triangle inequality with approximation ratio of 1

2(1−γ) .

Optimality

This is optimal if we use the cycle cover relaxation.
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Another relaxation

In the better algorithm we use a different TSP relaxation:

Theorem 3 (Kaplan, Lewenstein, Shafrir and Sviridenko 2003)

Let G be a directed weighted graph. One can find in polynomial
time a pair of cycle covers C1, C2 such that

1 C1 and C2 share no 2-cycles,

2 w(C1) + w(C2) ≤ 2OPT, where OPT is the weight of the
minimum weight Hamiltonian cycle in G .

Our algorithm begins with finding such a pair.
In what follows, G will refer to the 2-regular directed graph
corresponding to C1 ∪ C2.
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Our Approach

General Idea

Replace every connected component of G by a (light) path
and patch the paths to a Hamiltonian cycle.

We process the small components and large components in a
different manner.

Here, large means with at least K = f (γ) vertices, for a
certain function f . (Note that K = O(1) for any fixed γ).
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Large Components

For large components we proceed in two stages:

1 Replace each connected component Q by a (light) simple
cycle incident to all vertices of Q,

2 Break the cycles and patch them into a path as in the simple
algorithm.
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Transforming a large components to a cycle

Consider a connected component.
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Transforming a large components to a cycle

Find an Eulerian cycle in the component. Eulerian cycle = closed
walk with each vertex appearing twice.
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Transforming a large components to a cycle

For each vertex choose one of the two occurances (green)
uniformly at random.
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Transforming a large components to a cycle

Go along the Eulerian cycle and stop only in the green ocurrences
of vertices.
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Transforming a large components to a cycle

Thus we’ve got a simple cycle C .
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Transforming a large components to a cycle
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Large cycles: Analysis

Let E = v1, v2, . . . , v2|V (Q)|, v1 be the Eulerian cycle we use. Let
C = va1va2 . . . va|Q|va1 be the resulting simple cycle.

Shortcutting Lemma

Let vpvq be an edge of C . Then

w(vpvq) ≤ γw(vpvp+1) + γ2
∑q−2

i=p w(xixi+1) + γw(xq−1xq).

So, each edge vpvq of the Eulerian cycle contributes to the weight
of the resulting simple cycle at most γcw(vpvq) for some c .

≤ 1 · w(vpvq) if both p and q are green (probablity 1
4),

≤ γ · w(vpvq) if p is green and q is red (probablity 1
4),

≤ γ · w(vpvq) if p is red and q is green (probablity 1
4),

≤ γ2 · w(vpvq) if both p and q are red (probablity 1
4).

=⇒ expected contribution of vpvq is ≤ 1
4(1 + γ)2w(vpvq) .
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Large cycles: Analysis

Lemma 4 (again, we can derandomize...)

Let C be the resulting simple cycle. Then w(C ) ≤ 1
4(1 + γ)2w(Q).

Then cycles are broken and patched to a path like in the simple
algorithm.

Corollary 5

Assume we call a cycle long when it has length at least K .
Long cycles C1, . . . ,Cs contribute to the solution by at most
1
4(1 + γ)2 ·

(
1 + 2γ−1

K(1−γ)

)
(w(C1) + . . .+ w(Cs)).

Lemma 6 (Proof skipped)

Short cycles Cs+1, . . . ,Cr contribute to the solution by at most(
2−γ

6(1−γ) + O
(

1
n

))
(w(Cs+1) + . . .+ w(Cr )).
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Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K .
The weight of the returned Hamiltonian cycle is at most

max

{
1
4(1 + γ)2 ·

(
1 +

2γ − 1

K (1− γ)

)
,

2− γ
6(1− γ)

+ O
(

1
n

)}
w(C1 ∪ C2) ≤

max

{
1
2(1 + γ)2 ·

(
1 +

2γ − 1

K (1− γ)

)
,

2− γ
3(1− γ)

+ O
(

1
n

)}
· 2OPT ≤

max

{
1
2(1 + γ)2 ·

(
1 +

2γ − 1

K (1− γ)

)
,

2− γ
3(1− γ)

+ O
(

1
n

)}
OPT.
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Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K .
The weight of the returned Hamiltonian cycle is at most

max

{
1
2(1 + γ)2 ·

(
1 +

2γ − 1

K (1− γ)

)
,

2− γ
3(1− γ)

+ O
(

1
n

)}
OPT.

1
2(1 + γ)2 ·

(
1 + 2γ−1

K(1−γ)

)
is small when K is large.

There is a number γ0 ≈ 0.7003 s.t. when γ ∈ (γ0, 1), we have
1
2(1 + γ)2 ·

(
1 + 2γ−1

K(1−γ)

)
≤ 2−γ

3(1−γ) for some K = f (γ).

So, when γ ∈ (γ0, 1), approximation ratio is 2−γ
3(1−γ) + O

(
1
n

)
.

For γ ∈ [1
2 , γ0], 1

2(1 + γ)2 ·
(

1 + 2γ−1
K(1−γ)

)
≥ 2−γ

3(1−γ) .

So, by taking K large enough, then we get a ratio of
1
4(1 + γ)2 + ε for any ε > 0.
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Conclusion

We showed a simple algorithm with approximtaion ratio
1

2(1−γ) . It is optimal w.r.t. the cycle cover relaxation.

We showed a algorithm with approximtaion ratio of
2−γ

3(1−γ) + O( 1
n ) when γ ∈ (γ0, 1] where γ0 ≈ 0.7003,

1
2 (1 + γ)2 + ε for any ε > 0 when γ ∈ [ 1

2 , γ0].

It is optimal w.r.t. the double cycle cover relaxation for
γ ∈ (γ0, 1).

Open: get a ratio 2−γ
3(1−γ) for all γ.

... or an even better ratio!
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The end

Thank you for your attention!
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