Two approximation algorithms for ATSP with strengthened triangle inequality

Łukasz Kowalik (speaker) and Marcin Mucha

University of Warsaw, Poland

WADS 2009

イロン イボン イヨン イヨン

Asymmetric Traveling Salesman Problem (ATSP)

Problem Statement

INPUT:

A complete graph G = (V, E) with a weight function $w : V^2 \to \mathbb{R}_{\geq 0}$.

OUTPUT: A minimum weight Hamiltonian cycle in *G*.

A better algorithm

Asymmetric Traveling Salesman Problem (ATSP)

Problem Statement

INPUT:

A complete graph G = (V, E) with a weight function $w : V^2 \to \mathbb{R}_{\geq 0}$.

OUTPUT: A minimum weight Hamiltonian cycle in G.

Some bad news...

In the general version ATSP does not admit f(n)-approximation, for any polynomially computable function f(n), unless P = NP.

ATSP with Triangle Inequality

An extra assumption which makes some approximation possible is the triangle inequality:

The triangle inequality

$$w(x,y) \le w(x,z) + w(z,y)$$
 for all distinct x, y, z .

ATSP with Triangle Inequality

An extra assumption which makes some approximation possible is the triangle inequality:

The triangle inequality

 $w(x,y) \le w(x,z) + w(z,y)$ for all distinct x, y, z.

Approximation of ATSP with triangle inequality

- Symmetric variant has a $\frac{3}{2}$ -approximation (Christofides),
- log n-approximation (Frieze, Galbiati, Maffioli 1982),
- 0.999 log *n*-approximation (Bläser 2003),
- 0.842 log *n*-approximation (Kaplan et al. 2005),
- $\frac{2}{3} \log n$ -approximation (Feige and Singh 2008),
- O(1)-approximation can still exist.

ATSP with **Stregthened** Triangle Inequality

Let γ be a constant, $\gamma \in [\frac{1}{2}, 1)$.

Strengthened triangle inequality

 $w(x,y) \leq \gamma(w(x,z) + w(z,y))$ for all distinct x, y, z.

ATSP with **Stregthened** Triangle Inequality

Let γ be a constant, $\gamma \in [\frac{1}{2}, 1)$.

Strengthened triangle inequality

 $w(x,y) \leq \gamma(w(x,z) + w(z,y))$ for all distinct x, y, z.

Approximation of ATSP with strenghtened triangle inequality

- $\frac{\gamma}{1-\gamma}$ -approximation (Chandran and Ram, STACS 2002),
- $1/(1 \frac{1}{2}(\gamma + \gamma^3))$ -approximation (Bläser, ICALP 2003),
- $\frac{1+\gamma}{2-\gamma-\gamma^3}$ -approximation (Bläser et al., J. Discr. Alg. 2006),
- $\frac{\gamma^3}{1-\gamma^2}$ + max{1, $\frac{\gamma+\gamma^2+1}{2}$ }-approximation (Zhang, Li & Li, J. Alg. 2009),

イロト 不得下 イヨト イヨト

A simple algorithm

A better algorithm

Previous Results

- A simple $\frac{1}{2(1-\gamma)}$ -approximation,
- An algorithm with approximtaion ratio of
 - $\frac{2-\gamma}{3(1-\gamma)} + O(\frac{1}{n})$ when $\gamma \in (\gamma_0, 1]$ where $\gamma_0 \approx 0.7003$,
 - $\frac{1}{2}(1+\gamma)^2 + \epsilon$ for any $\epsilon > 0$ when $\gamma \in [\frac{1}{2}, \gamma_0]$.

ヘロン 人間 とくほ とくほ と

A simple algorithm

A better algorithm

Comparision of Results

- A simple algorithm
- 0000

A better algorithm

A simple algorithm

- A simple algorithm
- 0000

A better algorithm

A simple algorithm

- A simple algorithm
- 0000

A better algorithm

A simple algorithm

3. Patch the resulting paths into a Hamiltonian cycle (arbitrarily)

Consider a cycle $C = v_1 v_2 \dots v_l v_\ell$ from the cycle cover. *C* is replaced by a (directed) path *P* and an edge uv, where *u* is the last vertex on *P*.

Bounding E[w(P) + w(uv)]

$$E[w(P) + w(uv)] = w(C) - \frac{w(C)}{\ell} + \frac{\sum_{i=1}^{\ell} w(v_i v)}{\ell}$$
(1)

From the strengthened triangle inequality, for $i = 1, \ldots, \ell$:

$$w(v_i, v) \leq \gamma (w(v_i, v_{i+1}) + w(v_{i+1}, v))$$

Consider a cycle $C = v_1 v_2 \dots v_l v_\ell$ from the cycle cover. *C* is replaced by a (directed) path *P* and an edge uv, where *u* is the last vertex on *P*.

Bounding E[w(P) + w(uv)]

$$E[w(P) + w(uv)] = w(C) - \frac{w(C)}{\ell} + \frac{\sum_{i=1}^{\ell} w(v_i v)}{\ell}$$
(1)

From the strengthened triangle inequality, for $i = 1, \ldots, \ell$:

$$w(v_i, v) \leq \gamma (w(v_i, v_{i+1}) + w(v_{i+1}, v))$$

By summing the above inequality over all $i=1,\ldots,\ell$, we get

$$\sum_{i=1}^{\ell} w(v_i, v) \leq \gamma \left(w(C) + \sum_{i=1}^{\ell} w(v_i, v) \right)$$

.)

A simple algorithm: Analysis

Consider a cycle $C = v_1 v_2 \dots v_l v_\ell$ from the cycle cover. *C* is replaced by a (directed) path *P* and an edge *uv*, where *u* is the last vertex on *P*.

Bounding E[w(P) + w(uv)]

$$E[w(P) + w(uv)] = w(C) - \frac{w(C)}{\ell} + \frac{\sum_{i=1}^{\ell} w(v_i v)}{\ell}$$
(1)

$$\sum_{i=1}^{\ell} w(v_i, v) \leq \gamma \left(w(C) + \sum_{i=1}^{\ell} w(v_i, v) \right)$$

Hence,

$$\sum_{i=1}^{\ell} w(v_i, v) \leq \frac{\gamma}{1-\gamma} w(C).$$
(2)

Consider a cycle $C = v_1 v_2 \dots v_l v_\ell$ from the cycle cover. *C* is replaced by a (directed) path *P* and an edge uv, where *u* is the last vertex on *P*.

Bounding E[w(P) + w(uv)]

$$E[w(P) + w(uv)] = w(C) - \frac{w(C)}{\ell} + \frac{\sum_{i=1}^{\ell} w(v_i v)}{\ell}$$
(2)

$$\sum_{i=1}^{\ell} w(v_i, v) \leq \frac{\gamma}{1-\gamma} w(C).$$
 (2)

Finally, from (1) and (2): $E[w(P) + w(uv)] \leq \frac{\ell - 1 - (\ell - 2)\gamma}{\ell(1 - \gamma)}w(C).$

Consider a cycle $C = v_1 v_2 \dots v_\ell v_1$ from the cycle cover. C is replaced by a (directed) path P and an edge uv, where u is the last vertex on P.

Lemma 1

$$E[w(P)+w(uv)] \leq \frac{\ell-1-(\ell-2)\gamma}{\ell(1-\gamma)}w(C).$$

Since
$$\ell \geq 2$$
, and $\frac{\ell - 1 - (\ell - 2)\gamma}{\ell(1 - \gamma)} = 1 + \frac{2\gamma - 1}{\ell(1 - \gamma)}$ is decreasing in ℓ ,

Corollary 1

$$E[w(P) + w(uv)] \leq \frac{1}{2(1-\gamma)}w(C).$$

Corollary 2

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)}w(\mathcal{C})$, where \mathcal{C} is the initial cycle cover.

Corollary 2

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)}w(\mathcal{C})$, where \mathcal{C} is the initial cycle cover.

Corollary 3

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)} OPT.$

What have we got?

Theorem 1

There is a randomized algorithm for the ATSP problem with strengthened triangle inequality with expected approximation ratio of $\frac{1}{2(1-\gamma)}$.

What have we got?

Theorem 1

There is a randomized algorithm for the ATSP problem with strengthened triangle inequality with expected approximation ratio of $\frac{1}{2(1-\gamma)}$.

After derandomizing it with the standard method of conditional expectation we get:

Theorem 2

There is a deterministic algorithm for the ATSP problem with strengthened triangle inequality with approximation ratio of $\frac{1}{2(1-\gamma)}$.

Optimality

This is optimal if we use the cycle cover relaxation.

Another relaxation

In the better algorithm we use a different TSP relaxation:

Theorem 3 (Kaplan, Lewenstein, Shafrir and Sviridenko 2003)

Let G be a directed weighted graph. One can find in polynomial time a pair of cycle covers C_1 , C_2 such that

- **①** C_1 and C_2 share no 2-cycles,
- ② $w(C_1) + w(C_2) \le 2$ OPT, where OPT is the weight of the minimum weight Hamiltonian cycle in *G*.

Our algorithm begins with finding such a pair. In what follows, *G* will refer to the 2-regular directed graph corresponding to $\mathcal{C}_1 \cup \mathcal{C}_2$.

Our Approach

General Idea

• Replace every connected component of G by a (light) path and patch the paths to a Hamiltonian cycle.

Our Approach

General Idea

- Replace every connected component of G by a (light) path and patch the paths to a Hamiltonian cycle.
- We process the *small* components and *large* components in a different manner.
- Here, *large* means with at least K = f(γ) vertices, for a certain function f. (Note that K = O(1) for any fixed γ).

Large Components

For large components we proceed in two stages:

- Replace each connected component Q by a (light) simple cycle incident to all vertices of Q,
- Break the cycles and patch them into a path as in the simple algorithm.

A better algorithm

Transforming a large components to a cycle

Consider a connected component.

A simple algorithm 0000

A better algorithm

Transforming a large components to a cycle

Find an Eulerian cycle in the component. Eulerian cycle = closed walk with each vertex appearing twice.

A simple algorithm 0000

A better algorithm

Transforming a large components to a cycle

For each vertex choose one of the two occurances (green) uniformly at random.

A simple algorithm 0000

A better algorithm

Transforming a large components to a cycle

Go along the Eulerian cycle and stop only in the green ocurrences of vertices.

ヘロン 人間 とくほど 人間 とう

A simple algorithm 0000

A better algorithm

Transforming a large components to a cycle

Thus we've got a simple cycle C.

A better algorithm

Transforming a large components to a cycle

Thus we've got a simple cycle C.

Large cycles: Analysis

Let $\mathcal{E} = v_1, v_2, \dots, v_{2|V(Q)|}, v_1$ be the Eulerian cycle we use. Let $C = v_{a_1}v_{a_2}\dots v_{a_{|Q|}}v_{a_1}$ be the resulting simple cycle.

Shortcutting Lemma

Let $v_p v_q$ be an edge of C. Then $w(v_p v_q) \leq \gamma w(v_p v_{p+1}) + \gamma^2 \sum_{i=p}^{q-2} w(x_i x_{i+1}) + \gamma w(x_{q-1} x_q).$

So, each edge $v_p v_q$ of the Eulerian cycle contributes to the weight of the resulting simple cycle at most $\gamma^c w(v_p v_q)$ for some c.

- $\leq 1 \cdot w(v_p v_q)$ if both p and q are green (probablity $\frac{1}{4}$),
- $\leq \gamma \cdot w(v_p v_q)$ if p is green and q is red (probablity $\frac{1}{4}$),
- $\leq \gamma \cdot w(v_{\rho}v_{q})$ if p is red and q is green (probablity $\frac{1}{4}$),
- $\leq \gamma^2 \cdot w(v_p v_q)$ if both p and q are red (probablity $\frac{1}{4}$).
- \implies expected contribution of $v_p v_q$ is $\leq \frac{1}{4}(1+\gamma)^2 w(v_p v_q)$.

Large cycles: Analysis

Lemma 4 (again, we can derandomize...)

Let C be the resulting simple cycle. Then $w(C) \leq \frac{1}{4}(1+\gamma)^2 w(Q)$.

Then cycles are broken and patched to a path like in the simple algorithm.

Corollary 5

Assume we call a cycle long when it has length at least K. Long cycles C_1, \ldots, C_s contribute to the solution by at most $\frac{1}{4}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) (w(C_1)+\ldots+w(C_s)).$

Lemma 6 (Proof skipped)

Short cycles C_{s+1}, \ldots, C_r contribute to the solution by at most $\left(\frac{2-\gamma}{6(1-\gamma)} + O\left(\frac{1}{n}\right)\right) (w(C_{s+1}) + \ldots + w(C_r)).$

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{4}(1+\gamma)^{2} \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{6(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} w(\mathcal{C}_{1}\cup\mathcal{C}_{2}) \leq \\ \max\left\{\frac{1}{2}(1+\gamma)^{2} \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \cdot 2\mathrm{OPT} \leq \\ \max\left\{\frac{1}{2}(1+\gamma)^{2} \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \mathrm{OPT}.$$

A simple algorithm

A better algorithm

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

A simple algorithm

A better algorithm

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

•
$$\frac{1}{2}(1+\gamma)^2 \cdot \left(1 + \frac{2\gamma-1}{K(1-\gamma)}\right)$$
 is small when K is large.

A simple algorithm

A better algorithm ○○○○○○●○○

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

- $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right)$ is small when K is large.
- There is a number $\gamma_0 \approx 0.7003$ s.t. when $\gamma \in (\gamma_0, 1)$, we have $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K = f(\gamma)$.

A simple algorithm

A better algorithm ○○○○○○●○○

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

• $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right)$ is small when K is large.

• There is a number $\gamma_0 \approx 0.7003$ s.t. when $\gamma \in (\gamma_0, 1)$, we have $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K = f(\gamma)$.

• So, when $\gamma \in (\gamma_0, 1)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)} + O\left(\frac{1}{n}\right)$.

A simple algorithm

A better algorithm ○○○○○○●○○

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

• $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right)$ is small when K is large.

- There is a number $\gamma_0 \approx 0.7003$ s.t. when $\gamma \in (\gamma_0, 1)$, we have $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K = f(\gamma)$.
- So, when $\gamma \in (\gamma_0, 1)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)} + O\left(\frac{1}{n}\right)$.

• For
$$\gamma \in [\frac{1}{2}, \gamma_0]$$
, $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \geq \frac{2-\gamma}{3(1-\gamma)}$.

A simple algorithm

A better algorithm ○○○○○○●○○

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$\max\left\{\frac{1}{2}(1+\gamma)^2\cdot\left(1+\frac{2\gamma-1}{K(1-\gamma)}\right),\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$$
 OPT.

• $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right)$ is small when K is large.

- There is a number $\gamma_0 \approx 0.7003$ s.t. when $\gamma \in (\gamma_0, 1)$, we have $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K = f(\gamma)$.
- So, when $\gamma \in (\gamma_0, 1)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)} + O\left(\frac{1}{n}\right)$.
- For $\gamma \in [\frac{1}{2}, \gamma_0]$, $\frac{1}{2}(1+\gamma)^2 \cdot \left(1+\frac{2\gamma-1}{K(1-\gamma)}\right) \geq \frac{2-\gamma}{3(1-\gamma)}$.
- So, by taking K large enough, then we get a ratio of $\frac{1}{4}(1+\gamma)^2 + \epsilon$ for any $\epsilon > 0$.

Conclusion

- We showed a simple algorithm with approximtaion ratio $\frac{1}{2(1-\gamma)}$. It is optimal w.r.t. the cycle cover relaxation.
- We showed a algorithm with approximtaion ratio of

•
$$rac{2-\gamma}{3(1-\gamma)}+O(rac{1}{n})$$
 when $\gamma\in(\gamma_0,1]$ where $\gamma_0pprox 0.7003$,

•
$$\frac{1}{2}(1+\gamma)^2 + \epsilon$$
 for any $\epsilon > 0$ when $\gamma \in [\frac{1}{2}, \gamma_0]$.

It is optimal w.r.t. the double cycle cover relaxation for $\gamma \in (\gamma_0, 1)$.

- Open: get a ratio $\frac{2-\gamma}{3(1-\gamma)}$ for all γ .
- … or an even better ratio!

Thank you for your attention!

Łukasz Kowalik and Marcin Mucha Two approximation algorithms for ATSP ...