Two approximation algorithms for ATSP with strengthened triangle inequality

Łukasz Kowalik (speaker) and Marcin Mucha

University of Warsaw, Poland

WADS 2009

Asymmetric Traveling Salesman Problem (ATSP)

Problem Statement

Input:
A complete graph $G=(V, E)$ with a weight function $w: V^{2} \rightarrow \mathbb{R}_{\geq 0}$.

Output:
A minimum weight Hamiltonian cycle in G.

Asymmetric Traveling Salesman Problem (ATSP)

Problem Statement

Input:

A complete graph $G=(V, E)$ with a weight function $w: V^{2} \rightarrow \mathbb{R}_{\geq 0}$.

Output:
A minimum weight Hamiltonian cycle in G.

Some bad news...

In the general version ATSP does not admit $f(n)$-approximation, for any polynomially computable function $f(n)$, unless $\mathrm{P}=\mathrm{NP}$.

ATSP with Triangle Inequality

An extra assumption which makes some approximation possible is the triangle inequality:

The triangle inequality

$$
w(x, y) \leq w(x, z)+w(z, y) \quad \text { for all distinct } x, y, z
$$

ATSP with Triangle Inequality

An extra assumption which makes some approximation possible is the triangle inequality:

The triangle inequality

$$
w(x, y) \leq w(x, z)+w(z, y) \quad \text { for all distinct } x, y, z
$$

Approximation of ATSP with triangle inequality

- Symmetric variant has a $\frac{3}{2}$-approximation (Christofides),
- $\log n$-approximation (Frieze, Galbiati, Maffioli 1982),
- $0.999 \log n$-approximation (Bläser 2003),
- $0.842 \log n$-approximation (Kaplan et al. 2005),
- $\frac{2}{3} \log n$-approximation (Feige and Singh 2008),
- $O(1)$-approximation can still exist.

ATSP with Stregthened Triangle Inequality

Let γ be a constant, $\gamma \in\left[\frac{1}{2}, 1\right)$.

Strengthened triangle inequality

$$
w(x, y) \leq \gamma(w(x, z)+w(z, y)) \quad \text { for all distinct } x, y, z \text {. }
$$

ATSP with Stregthened Triangle Inequality

Let γ be a constant, $\gamma \in\left[\frac{1}{2}, 1\right)$.
Strengthened triangle inequality

$$
w(x, y) \leq \gamma(w(x, z)+w(z, y)) \quad \text { for all distinct } x, y, z
$$

Approximation of ATSP with strenghtened triangle inequality

- $\frac{\gamma}{1-\gamma}$-approximation (Chandran and Ram, STACS 2002),
- $1 /\left(1-\frac{1}{2}\left(\gamma+\gamma^{3}\right)\right)$-approximation (Bläser, ICALP 2003),
- $\frac{1+\gamma}{2-\gamma-\gamma^{3}}$-approximation (Bläser et al., J. Discr. Alg. 2006),
- $\frac{\gamma^{3}}{1-\gamma^{2}}+\max \left\{1, \frac{\gamma+\gamma^{2}+1}{2}\right\}$-approximation (Zhang, Li \& Li, J. Alg. 2009),

Previous Results

Our Results

- A simple $\frac{1}{2(1-\gamma)}$-approximation,
- An algorithm with approximtaion ratio of
- $\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)$ when $\gamma \in\left(\gamma_{0}, 1\right]$ where $\gamma_{0} \approx 0.7003$,
- $\frac{1}{2}(1+\gamma)^{2}+\epsilon$ for any $\epsilon>0$ when $\gamma \in\left[\frac{1}{2}, \gamma_{0}\right]$.

Comparision of Results

A simple algorithm

1. Find a minimum weight cycle cover (doable in polynomial time)

A simple algorithm

2. Remove a random edge from every cycle

A simple algorithm

3. Patch the resulting paths into a Hamiltonian cycle (arbitrarily)

A simple algorithm: Analysis

Consider a cycle $C=v_{1} v_{2} \ldots v_{l} v_{\ell}$ from the cycle cover.
C is replaced by a (directed) path P and an edge $u v$, where u is the last vertex on P.

Bounding $E[w(P)+w(u v)]$

$$
\begin{equation*}
E[w(P)+w(u v)]=w(C)-\frac{w(C)}{\ell}+\frac{\sum_{i=1}^{\ell} w\left(v_{i} v\right)}{\ell} \tag{1}
\end{equation*}
$$

From the strengthened triangle inequality, for $i=1, \ldots, \ell$:

$$
w\left(v_{i}, v\right) \leq \gamma\left(w\left(v_{i}, v_{i+1}\right)+w\left(v_{i+1}, v\right)\right)
$$

A simple algorithm: Analysis

Consider a cycle $C=v_{1} v_{2} \ldots v_{l} v_{\ell}$ from the cycle cover.
C is replaced by a (directed) path P and an edge $u v$, where u is the last vertex on P.

Bounding $E[w(P)+w(u v)]$

$$
\begin{equation*}
E[w(P)+w(u v)]=w(C)-\frac{w(C)}{\ell}+\frac{\sum_{i=1}^{\ell} w\left(v_{i} v\right)}{\ell} \tag{1}
\end{equation*}
$$

From the strengthened triangle inequality, for $i=1, \ldots, \ell$:

$$
w\left(v_{i}, v\right) \leq \gamma\left(w\left(v_{i}, v_{i+1}\right)+w\left(v_{i+1}, v\right)\right)
$$

By summing the above inequality over all $i=1, \ldots, \ell$, we get

$$
\sum_{i=1}^{\ell} w\left(v_{i}, v\right) \leq \gamma\left(w(C)+\sum_{i=1}^{\ell} w\left(v_{i}, v\right)\right)
$$

A simple algorithm: Analysis

Consider a cycle $C=v_{1} v_{2} \ldots v_{l} v_{\ell}$ from the cycle cover.
C is replaced by a (directed) path P and an edge $u v$, where u is the last vertex on P.

Bounding $E[w(P)+w(u v)]$

$$
\begin{align*}
E[w(P)+w(u v)] & =w(C)-\frac{w(C)}{\ell}+\frac{\sum_{i=1}^{\ell} w\left(v_{i} v\right)}{\ell} \tag{1}\\
\sum_{i=1}^{\ell} w\left(v_{i}, v\right) & \leq \gamma\left(w(C)+\sum_{i=1}^{\ell} w\left(v_{i}, v\right)\right)
\end{align*}
$$

Hence,

$$
\begin{equation*}
\sum_{i=1}^{\ell} w\left(v_{i}, v\right) \leq \frac{\gamma}{1-\gamma} w(C) \tag{2}
\end{equation*}
$$

A simple algorithm: Analysis

Consider a cycle $C=v_{1} v_{2} \ldots v_{l} v_{\ell}$ from the cycle cover.
C is replaced by a (directed) path P and an edge $u v$, where u is the last vertex on P.

Bounding $E[w(P)+w(u v)]$

$$
\begin{gather*}
E[w(P)+w(u v)]=w(C)-\frac{w(C)}{\ell}+\frac{\sum_{i=1}^{\ell} w\left(v_{i} v\right)}{\ell} \tag{1}\\
\sum_{i=1}^{\ell} w\left(v_{i}, v\right) \leq \frac{\gamma}{1-\gamma} w(C) . \tag{2}
\end{gather*}
$$

Finally, from (1) and (2):

$$
E[w(P)+w(u v)] \leq \frac{\ell-1-(\ell-2) \gamma}{\ell(1-\gamma)} w(C) .
$$

A simple algorithm: Analysis

Consider a cycle $C=v_{1} v_{2} \ldots v_{\ell} v_{1}$ from the cycle cover.
C is replaced by a (directed) path P and an edge $u v$, where u is the last vertex on P.

Lemma 1

$$
E[w(P)+w(u v)] \leq \frac{\ell-1-(\ell-2) \gamma}{\ell(1-\gamma)} w(C) .
$$

Since $\ell \geq 2$, and $\frac{\ell-1-(\ell-2) \gamma}{\ell(1-\gamma)}=1+\frac{2 \gamma-1}{\ell(1-\gamma)}$ is decreasing in ℓ,

Corollary 1

$$
E[w(P)+w(u v)] \leq \frac{1}{2(1-\gamma)} w(C) .
$$

Corollary 2

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)} w(\mathcal{C})$, where \mathcal{C} is the initial cycle cover.

A simple algorithm: Analysis

Corollary 2

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)} w(\mathcal{C})$, where \mathcal{C} is the initial cycle cover.

Corollary 3

The expected weight of the resulting Hamiltonian cycle is at most $\frac{1}{2(1-\gamma)}$ OPT.

What have we got?

Theorem 1

There is a randomized algorithm for the ATSP problem with strengthened triangle inequality with expected approximation ratio of $\frac{1}{2(1-\gamma)}$.

What have we got?

Theorem 1

There is a randomized algorithm for the ATSP problem with strengthened triangle inequality with expected approximation ratio of $\frac{1}{2(1-\gamma)}$.

After derandomizing it with the standard method of conditional expectation we get:

Theorem 2

There is a deterministic algorithm for the ATSP problem with strengthened triangle inequality with approximation ratio of $\frac{1}{2(1-\gamma)}$.

Optimality

This is optimal if we use the cycle cover relaxation.

Another relaxation

In the better algorithm we use a different TSP relaxation:

Theorem 3 (Kaplan, Lewenstein, Shafrir and Sviridenko 2003)

Let G be a directed weighted graph. One can find in polynomial time a pair of cycle covers $\mathcal{C}_{1}, \mathcal{C}_{2}$ such that
(1) \mathfrak{C}_{1} and \mathfrak{C}_{2} share no 2-cycles,
(2) $w\left(\mathcal{C}_{1}\right)+w\left(\mathrm{C}_{2}\right) \leq 2 \mathrm{OPT}$, where OPT is the weight of the minimum weight Hamiltonian cycle in G.

Our algorithm begins with finding such a pair. In what follows, G will refer to the 2-regular directed graph corresponding to $\mathcal{C}_{1} \cup \mathcal{C}_{2}$.

Our Approach

General Idea

- Replace every connected component of G by a (light) path and patch the paths to a Hamiltonian cycle.

Our Approach

General Idea

- Replace every connected component of G by a (light) path and patch the paths to a Hamiltonian cycle.
- We process the small components and large components in a different manner.
- Here, large means with at least $K=f(\gamma)$ vertices, for a certain function f. (Note that $K=O(1)$ for any fixed γ).

Large Components

For large components we proceed in two stages:
(1) Replace each connected component Q by a (light) simple cycle incident to all vertices of Q,
(2) Break the cycles and patch them into a path as in the simple algorithm.

Transforming a large components to a cycle

Consider a connected component.

Transforming a large components to a cycle

Find an Eulerian cycle in the component. Eulerian cycle = closed walk with each vertex appearing twice.

Transforming a large components to a cycle

For each vertex choose one of the two occurances (green) uniformly at random.

Transforming a large components to a cycle

Go along the Eulerian cycle and stop only in the green ocurrences of vertices.

Transforming a large components to a cycle

Thus we've got a simple cycle C.

Transforming a large components to a cycle

Thus we've got a simple cycle C.

Large cycles: Analysis

Let $\mathcal{E}=v_{1}, v_{2}, \ldots, v_{2|V(Q)|}, v_{1}$ be the Eulerian cycle we use. Let $C=v_{a_{1}} v_{a_{2}} \ldots v_{a_{|Q|}} v_{a_{1}}$ be the resulting simple cycle.

Shortcutting Lemma

Let $v_{p} v_{q}$ be an edge of C. Then
$w\left(v_{p} v_{q}\right) \leq \gamma w\left(v_{p} v_{p+1}\right)+\gamma^{2} \sum_{i=p}^{q-2} w\left(x_{i} x_{i+1}\right)+\gamma w\left(x_{q-1} x_{q}\right)$.
So, each edge $v_{p} v_{q}$ of the Eulerian cycle contributes to the weight of the resulting simple cycle at most $\gamma^{c} w\left(v_{p} v_{q}\right)$ for some c.

- $\leq 1 \cdot w\left(v_{p} v_{q}\right)$ if both p and q are green (probablity $\frac{1}{4}$),
- $\leq \gamma \cdot w\left(v_{p} v_{q}\right)$ if p is green and q is red (probablity $\frac{1}{4}$),
- $\leq \gamma \cdot w\left(v_{p} v_{q}\right)$ if p is red and q is green (probablity $\frac{1}{4}$),
- $\leq \gamma^{2} \cdot w\left(v_{p} v_{q}\right)$ if both p and q are red (probablity $\frac{1}{4}$).
\Longrightarrow expected contribution of $v_{p} v_{q}$ is $\leq \frac{1}{4}(1+\gamma)^{2} w\left(v_{p} v_{q}\right)$.

Large cycles: Analysis

Lemma 4 (again, we can derandomize...)

Let C be the resulting simple cycle. Then $w(C) \leq \frac{1}{4}(1+\gamma)^{2} w(Q)$.
Then cycles are broken and patched to a path like in the simple algorithm.

Corollary 5

Assume we call a cycle long when it has length at least K. Long cycles C_{1}, \ldots, C_{s} contribute to the solution by at most $\frac{1}{4}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)\left(w\left(C_{1}\right)+\ldots+w\left(C_{s}\right)\right)$.

Lemma 6 (Proof skipped)

Short cycles C_{s+1}, \ldots, C_{r} contribute to the solution by at most $\left(\frac{2-\gamma}{6(1-\gamma)}+O\left(\frac{1}{n}\right)\right)\left(w\left(C_{s+1}\right)+\ldots+w\left(C_{r}\right)\right)$.

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$
\begin{aligned}
& \max \left\{\frac{1}{4}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{6(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} w\left(\mathfrak{C}_{1} \cup \mathfrak{C}_{2}\right) \leq \\
& \max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \cdot 2 \mathrm{OPT} \leq \\
& \max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \mathrm{OPT} .
\end{aligned}
$$

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$
\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \text { OPT. }
$$

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most

$$
\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\} \mathrm{OPT}
$$

- $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)$ is small when K is large.

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most
$\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$ OPT.

- $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)$ is small when K is large.
- There is a number $\gamma_{0} \approx 0.7003$ s.t. when $\gamma \in\left(\gamma_{0}, 1\right)$, we have $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K=f(\gamma)$.

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most
$\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$ OPT.

- $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)$ is small when K is large.
- There is a number $\gamma_{0} \approx 0.7003$ s.t. when $\gamma \in\left(\gamma_{0}, 1\right)$, we have $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K=f(\gamma)$.
- So, when $\gamma \in\left(\gamma_{0}, 1\right)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)$.

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most $\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$ OPT.

- $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)$ is small when K is large.
- There is a number $\gamma_{0} \approx 0.7003$ s.t. when $\gamma \in\left(\gamma_{0}, 1\right)$, we have $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K=f(\gamma)$.
- So, when $\gamma \in\left(\gamma_{0}, 1\right)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)$.
- For $\gamma \in\left[\frac{1}{2}, \gamma_{0}\right], \frac{1}{2}(1+\gamma)^{2} .\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \geq \frac{2-\gamma}{3(1-\gamma)}$.

Approximation ratio of the better algorithm

Assume we call a cycle long when it has length at least K. The weight of the returned Hamiltonian cycle is at most
$\max \left\{\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right), \frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)\right\}$ OPT.

- $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right)$ is small when K is large.
- There is a number $\gamma_{0} \approx 0.7003$ s.t. when $\gamma \in\left(\gamma_{0}, 1\right)$, we have $\frac{1}{2}(1+\gamma)^{2} \cdot\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \leq \frac{2-\gamma}{3(1-\gamma)}$ for some $K=f(\gamma)$.
- So, when $\gamma \in\left(\gamma_{0}, 1\right)$, approximation ratio is $\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)$.
- For $\gamma \in\left[\frac{1}{2}, \gamma_{0}\right], \frac{1}{2}(1+\gamma)^{2} .\left(1+\frac{2 \gamma-1}{K(1-\gamma)}\right) \geq \frac{2-\gamma}{3(1-\gamma)}$.
- So, by taking K large enough, then we get a ratio of $\frac{1}{4}(1+\gamma)^{2}+\epsilon$ for any $\epsilon>0$.

Conclusion

- We showed a simple algorithm with approximtaion ratio $\frac{1}{2(1-\gamma)}$. It is optimal w.r.t. the cycle cover relaxation.
- We showed a algorithm with approximtaion ratio of
- $\frac{2-\gamma}{3(1-\gamma)}+O\left(\frac{1}{n}\right)$ when $\gamma \in\left(\gamma_{0}, 1\right]$ where $\gamma_{0} \approx 0.7003$,
- $\frac{1}{2}(1+\gamma)^{2}+\epsilon$ for any $\epsilon>0$ when $\gamma \in\left[\frac{1}{2}, \gamma_{0}\right]$.

It is optimal w.r.t. the double cycle cover relaxation for $\gamma \in\left(\gamma_{0}, 1\right)$.

- Open: get a ratio $\frac{2-\gamma}{3(1-\gamma)}$ for all γ.
- ... or an even better ratio!

The end

Thank you for your attention!

