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Some NP-hard problems are really hard

We will focus on the following, natural problems:

Set Cover

Bandwidth

Vertex Coloring

Maximum Independent Set

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Bruxelles, 26.11.2009 3 / 42



Coping with NP-hardness

1 (poly-time) approximation.

2 Fixed-parameter tractability

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.

Set Cover: no (1− ε) log n-approximation, unless
NP ⊆ DTIME(nlog log n).
Bandwidth: no O(1)-approximation, unless NP = P
Vertex Coloring: no n1−ε-approximation, unless NP = ZPP
Maximum Independent Set: no n1−ε-approximation, unless
NP = ZPP

2 Fixed-parameter tractability

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.
2 Fixed-parameter tractability

Set Cover: W [2]-complete.
Bandwidth: W [t]-hard, for any t > 0.
k-coloring: NP-complete for any k ≥ 3.
Maximum Independent Set: W [1]-complete

3 Moderately exponential-time exact algorithms

4 Moderately exponential-time approximation algorithms
(our approach)
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Coping with NP-hardness

1 (poly-time) approximation.

2 Fixed-parameter tractability
3 Moderately exponential-time exact algorithms

Set Cover: O∗(2m), O∗(4n), O∗(20.299(n+m)).
Bandwidth: O∗(5n)-time and O∗(2n)-space; O∗(10n) poly-space,.
k-coloring: O∗(2n)-time and space.
Maximum Independent Set: O(20.276n)-time, exp-space;
O(20.288n)-time, poly-space.

4 Moderately exponential-time approximation algorithms
(our approach)
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Approach One

Approach One:
Reducing the Instance Size
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Maximum Independent Set

Let us recall the Maximum Independent Set problem:

Instance

Undirected graph G = (V ,E )

I ⊆ V is an independent set in G when for any x , y ∈ I , xy 6∈ E .

Problem

Find the largest possible independent set in G .

Denote n = |V |.

Exact algorithms

O∗(20.288n)-time, poly space [Fomin et al. SODA’06]

O∗(20.276n)-time, exp space [Robson, 80-ties]
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Independent Set: r -approximation, r ∈ N

Input graph: G = (V ,E ); denote n = |V |.
1 Partition V into r parts V0, . . . ,Vr−1, each of size dn/re.

2 In each induced graph G [Vi ], find the optimal solution OPTi

in time O(20.288n/r ).

3 Return the largest of OPTi .

Total time: O(r · 20.288n/r ) = O∗(20.288n/r ).
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Independent set – approximation guarantee

V0

O0 V1

O1

V2

O2

V3

O3

V4

O4

V5

O5

V6

O6 OPT

G
1 Recall: OPTi = optimal solution

in G [Vi ].

2 Let OPT be a maximum
independent set in G .

3 Let Oi = OPT ∩ Vi .

4 Then for some i∗,
|Oi∗ | ≥ OPT/r .

5 Since |OPTi∗ | ≥ |Oi∗ |, so
|OPTi∗ | ≥ OPT/r .
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Independent Set: r -approximation, r ∈ Q

Input graph: G = (V ,E ); denote n = |V |, r = p/q.

1 Partition V into p parts V0, . . . ,Vp−1, each of size dn/pe.

2 For i = 0, . . . , p − 1, let Ui = Vi ∪ Vi+1 ∪ . . . ∪ Vi+q−1.
Note: |Ui | ≤ qdn/pe = n/r + O(1)

3 In each induced graph G [Ui ], find the optimal solution OPTi

in time O(20.288n/r ).

4 Return the largest of OPTi .

Total time: O(r · 20.288n/r ) = O∗(20.288n/r ).
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Independent set – approximation guarantee

r = p/q, p = 7, q = 2.

V0

V1

V2

V3

V4

V5

V6

O4

OPT

G

1 Recall: OPTi = optimal solution
in G [Ui ].

2 Let OPT be a maximum
independent set in G .

3 Let Oi = OPT ∩ Ui .

4 Then for some i∗,
|Oi∗ | ≥ OPT · q/p.
(Otherwise

∑
i |Oi | < qOPT,

but each element of OPT is in
exactly q sets Oi , contradiction.)

5 Since |OPTi∗ | ≥ |Oi∗ |, so
|OPTi∗ | ≥ OPT/r .
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Maximum Independent Set, summary

Assume we have an exact O(cn)-time algorithm for Maximum
Independent Set.

Theorem (folklore?)

For any r ∈ Q we have r -approximation in O(Cn/r ) time
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Reducing the instance: General approach

1 From the input instance I generate a polynomial number of smaller
instances I1, . . . , Ik .

2 Solve the problem exactly in each of the instances I1, . . . , Ik by an
exponential time algorithm

3 Merge the solutions for I1, . . . , Ik to a solution for I .
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Unweighted Set Cover

Let us recall the Unweighted Set Cover problem:

Instance

Collection of sets S = {S1, . . . ,Sm}

The union
⋃

S is called the universe and denoted by U.

Problem

Find the smallest possible subcollection C ⊆ S so that
⋃

C = U.

Exact algorithms

O∗(2m)-time, poly space (naive)

O∗(2n)-time, poly space (Bjorklund et al FOCS’06)
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Weighted Set Cover

Let us recall the Weighted Set Cover problem:

Instance

Collection of sets S = {S1, . . . ,Sm}
Each set has its weight w(Si ).

The union
⋃

S is called the universe and denoted by U.

Problem

Find the lightest possible subcollection C ⊆ S so that
⋃

C = U.

Exact algorithms

O∗(2m)-time, poly space (naive)

O∗(2n)-time, O(2n) space (dynamic programming)

O∗(4n)-time, poly space (divide and conquer)
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:

1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.
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Approximation algorithm:
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S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.

Proposition

This is a 2-approximation

Proof.

Let OPT be the size of the optimal cover for S. In S′ there is a cover of
size ≤ OPT Hence |C′| ≤ OPT and |C| ≤ 2OPT.
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:
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Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
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Question

Does it work for the weighted case?
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Unweighted Set Cover, reducing the number of sets

Approximation algorithm:

1 Join the sets of S into pairs:
S ′i = S2i−1 ∪ S2i , for i = 1, . . . ,m/2 (assume m even),
Create new instance S′ = {S ′i | i = 1, . . . ,m/2}.

2 Solve the problem for instance S′ by the exact algorithm, in time
O(2m/2). Let C′ be the solution.

3 Transform C′ into a cover of S: C = {S2i−1 ∪ S2i | S ′i ∈ C′}.

Question

Does it work for the weighted case?

Answer

Not quite: light sets from OPT may join with heavy sets. Sorting sets ???
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Weighted Set Cover, reducing the number of sets

The sets from optimal solution are marked green.
We want to show that the weight of purple pairs of sets is ≤ 2OPT.

S3 ≤ S6 ≤ S8 ≤ S9 ≤ S11 ≤ S12S1 ≤ S2 ≤ S4 ≤ S5 ≤ S7 ≤ S10 ≤

?
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Weighted Set Cover, reducing the number of sets

Assume we have an exact O(cm)-time algorithm for (weighted) Set
Cover.

Theorem (Cygan, K., Pilipczuk, Wykurz 2008)

There is O∗(cm/r )-time 2-approximation algorithm for (weighted) Set
Cover

This trick can be generalized for any r ∈ N.

Theorem (Cygan, K., Pilipczuk, Wykurz 2008)

For any r ∈ N we have r -approximation in O∗(cm/r ) time

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Bruxelles, 26.11.2009 18 / 42



Example 2: Set Cover, reducing the universe

Recall the standard greedy O(log n)-approximation algorithm:

Greedy

1: C← ∅.
2: while C does not cover U do
3: Find T ∈ S so as to minimize w(T )

|T\
S

C|
4: C← C ∪ {T}.

5: for each e ∈ T \
⋃

C do

6: price(e)← w(T )
|T\

S
C|

Lemma (from the standard analysis of greedy algorithm)

Let e1, . . . , en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k ∈ 1, . . . , n,
price(ek) ≤ w(OPT)/(n − k + 1)
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Example 2: Set Cover, reducing the universe

Lemma (from the standard analysis of greedy algorithm)

Let e1, . . . , en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k ∈ 1, . . . , n,
price(ek) ≤ w(OPT)/(n − k + 1)

Observation

In the early phase of Greedy elements are covered cheaply.

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).
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Example 2: Set Cover, reducing the universe

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

(Lucky) analysis

Assume we are lucky and t = n/2 (not bigger).

1 We pay (Hn −Hn/2)OPT ≈ (ln n− ln(n/2))OPT = ln 2 ·OPT for the
first phase,

2 we pay ≤ OPT for the second phase.

Together we get (1 + ln 2)OPT.

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Bruxelles, 26.11.2009 21 / 42



Example 2: Set Cover, reducing the universe

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

(Lucky) analysis

Assume we are lucky and t = n/2 (not bigger).

1 We pay (Hn −Hn/2)OPT ≈ (ln n− ln(n/2))OPT = ln 2 ·OPT for the
first phase,

2 we pay ≤ OPT for the second phase.

Together we get (1 + ln 2)OPT.

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Bruxelles, 26.11.2009 21 / 42



Example 2: Set Cover, reducing the universe

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

Analysis
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Example 2: Set Cover, reducing the universe

Exponential-Time (ln 2 + 2)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run the greedy algorithm until t ≥ n/2 elements are covered,

2 Cover the remaining elements by the exact algorithm, in time
T (n − t).

Analysis

1 We pay ≤ (Hn − Hn/2)OPT ≈ ln 2 ·OPT for the elements covered in
phase 1, excluding the last set (that covers en/2),

2 We pay ≤ OPT for the set that covers en/2,

3 we pay ≤ OPT for the second phase.

Together we get (2 + ln 2)OPT.
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Example 2: Set Cover, reducing the universe

Exponential-Time (ln r + 2)-approximation

Assume we have an exact T (n)-time algorithm for Set Cover.

1 Run Greedy until there are ≤ n/r elements not covered,

2 Cover the remaining elements by the exact algorithm, in time T (n/r).

Remark 1

By stopping the Greedy algorithm when there are ≤ n/r uncovered
elements, we get (ln r + 2)-approximation in T (n/r) time.

Remark 2

We show an improved algorithm with (ln r + 1)-approximation in
m × T (n/r) time.
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Weighted Set Cover, reducing the universe

Theorem (Cygan, K., Pilipczuk, Wykurz 2008)

Assume we have an exact O(cn)-time algorithm for (weighted) Set
Cover. For any r ∈ Q there is a (ln r + 1)-approximation algorithm in
O∗(cn/r ) time

 Lukasz Kowalik (University of Warsaw) Exponential-Time Approximation Bruxelles, 26.11.2009 23 / 42



Vertex Coloring

Let us recall the Vertex Coloring problem:

Instance

Undirected graph G = (V ,E )

Problem

Find a partition of V into smallest possible number of independent sets.

Exact algorithms

O∗(2n)-time, O(2n) space (Bjorklund et al. FOCS’06)

O∗(21.167n)-time, poly space (Bjorklund et al. FOCS’06)
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Vertex Coloring: Reducing the number of vertices

Approximation algorithm (Bjorklund, Husfeldt 2006)

1 Repeat k times (we will choose k later):

Remove the largest independent set I from G in O(20.288n)-time.
In the original graph G0 color all vertices in I by a new color.

2 Color vertices of the remaining graph G ′ by an exact algorithm.

Let χ denote the optimum number of colors for the input graph G0.

In each iteration G is a subgraph of G0, so G is χ-colorable, and
hence |I | ≥ |V (G)|

χ .

It follows that in each iteration the number of vertices decreases by a
factor of (1− 1

χ).

|V (G ′)| ≤ (1− 1
χ)kn ≤ e−k/χn and we used k + χ colors.

Put k = dln r · χe.
Then |V (G ′)| ≤ n/r , and we used d(1 + ln r)χe colors.
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Our results via instance reduction

Let T ∗(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

1 Maximum Independent Set:
r -approximation in T ∗(n/r)-time.

2 (Weighted) Set Cover:
r -approximation in T ∗(m/r) time,
(1 + ln r)-approximation in T ∗(n/r) time.

3 Vertex Coloring:
Björklund & Husfeldt:
(1 + ln r)-approximation in max{T ∗(n/r),O∗(20.288n)}-time.
(1 + 0.247r ln r)-approximation in T ∗(n/r)-time
(best for r ∈ [4.05, 58)).
r -approximation in T ∗(n/r)-time
(best for r ≥ 58).

4 Bandwidth:
9-approximation in T ∗(n/2) time.

5 Asymmetric TSP with Triangle Inequality:
(1 + log2 r)-approximation in O∗(2n/r ) time and space.
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Reducing the instance: Summary

If faster exact algorithm appears, immediately we have faster
approximation.

Approximation via instance reduction extends the applicability of
(exact) exponential-time algorithms:

Don’t have enough time for running your algorithm for n = 200?
Get approximate solution.
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Reducing the instance: Open Problems

For coloring, in exponential time you can reduce the instance r
times and get (ln r + 1)-approximation (Björklund and Husfeldt).
Can you do it for Independent Set?

Can reduction of the instance size be applied to Bandwidth?
(Yes, but we have 9-approximation for reducing the graph by a half.)
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Some reading...

Cygan, Kowalik, Pilipczuk, Wykurz, Exponential-Time Approximation
of Hard Problems, arXiv.

Cygan, Kowalik, Wykurz, Exponential-Time Approximation of
Weighted Set Cover, IPL 2009.

Bourgeois, Escoffier, Paschos, Efficient Approximation of Min Set
Cover by Moderately Exponential Time Algorithms, Theor. Comp.
Sci. 2009.

Bourgeois, Escoffier, Paschos, Approximation of Min Coloring by
Moderately Exponential Time Algorithms, IPL 2009.
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Approach Two

Approach Two:
Cutting the Search Tree
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The Bandwidth problem

Input: Graph G = (V ,E ), integer b.
Problem: Find an ordering of vertices

π : V → {1, . . . , n},

such that “edges have length at most b”, i.e.

for every uv ∈ E , |π(u)− π(v)| ≤ b.
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Our results: Bandwidth

3/2-approximation in O∗(5n) time (poly-space),

2-approximation in O∗(3n) time (poly-space),

Main result: (4r − 1)-approximation in O∗(2n/r ) time (poly-space).
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Warm-up: 2-approximation in O∗(3n) time

(Inspired the exact O(10n)-time algorithm by Feige and Kilian.)

Assume the bandwidth is b (we don’t know it but we can run the
algorithm log n times to find the smallest b for which it returns a solution).

1 Divide {1, . . . , n} into dn/be intervals of length b:
Ij = {jb + 1, jb + 2, . . . , (j + 1)b} ∩ {1, . . . , n}.

2 Find an assignment of vertices to intervals such that

each interval Ij is assigned |Ij | vertices,
adjacent vertices are assigned to the same interval or to neighboring
intervals.
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Warm-up: 2-approximation in O∗(3n) time

1: procedure GenerateAssignments(A)
2: if for all j , |A−1(j)| = |Ij | then
3: return A
4: if for some j , |A−1(j)| > |Ij | then
5: return
6: else
7: v ← a vertex with a neighbor w already assigned.
8: if A(w) > 0 then
9: GenerateAssignments(A ∪ {(v ,A(w)− 1)}

10: GenerateAssignments(A ∪ {(v ,A(w))})
11: if A(w) < dn/be − 1 then
12: GenerateAssignments(A ∪ {(v ,A(w) + 1)}

13: procedure Main
14: for j ← 0 to dn/be − 1 do
15: GenerateAssignments ({(r , j)})
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Warm-up: 2-approximation in O∗(3n) time

1 Divide {1, . . . , n} into dn/be intervals of length b:
Ij = {jb + 1, jb + 2, . . . , (j + 1)b} ∩ {1, . . . , n}.

2 Find an assignment of vertices to intervals such that

Each interval Ij is assigned |Ij | vertices,
Adjacent vertices are assigned to the same interval or to neighboring
intervals.

3 Order the vertices in each interval arbitrarily.
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3-approximation in O∗(2n) time

Definition

Let A be an assignment of vertices to intervals. If one can order the
vertices in each interval to get an ordering π, we say π is consistent with A.

Algorithm

1 Divide {1, . . . , n} into dn/be intervals of length 2b:
Ij = {jb + 1, jb + 2, . . . , (j + 2)b} ∩ {1, . . . , n}.
(Note that intervals overlap.)

2 Generate a set of O(n · 2n) assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

3 ... (to be continued) ...
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3-approximation in O∗(2n) time

1: procedure GenerateAssignments(A)
2: if all vertices are assigned then
3: “Test(A)”
4: else
5: v ← a vertex with a neighbor w already assigned.
6: if A(w) > 0 then
7: GenerateAssignments(A ∪ {(v ,A(w)− 1)}
8: if A(w) < dn/be − 1 then
9: GenerateAssignments(A ∪ {(v ,A(w) + 1)}

10: procedure Main
11: for j ← 0 to dn/be − 1 do
12: GenerateAssignments ({(r , j)})
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3-approximation in O∗(2n) time

Lemma (,,Testing A”)

Let A : V → 2{1,...,n} be an assignment of vertices to the intervals of size
2b. Then there is a polynomial time algorithm such that if there is an
ordering π∗ of bandwidth b consistent with A, the algorithm finds an
ordering π of bandwidth 3b consistent with A.

Proof.
1 For every edge uv , if max A(u) = min A(v)− 1, then:

if |A(u)| = 2b, replace A(u) by its right half,
if |A(v)| = 2b, replace A(v) by its left half.
(Note that π∗ is still consistent with A.)

2 (now, for every edge uv , |max A(u)−min A(v)| ≤ 3b)

3 Perform the standard greedy scheduling algorithm to find any
ordering π consistent with A.
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3-approximation in O∗(2n) time

Algorithm

1 Divide {1, . . . , n} into dn/be intervals of length 2b:
Ij = {jb + 1, jb + 2, . . . , (j + 2)b} ∩ {1, . . . , n}.
(Note that intervals overlap.)

2 Generate a set of O(n · 2n) assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

3 Apply the lemma to each of the assignments.
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Approximation scheme

Theorem

For any r ∈ N, there is a (4r − 1)-approximation algorithm in O∗(2n/r )
time.

(Details skipped here)
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Some reading...

Cygan, Pilipczuk, Exact and Approximate Bandwidth, ICALP 2009.

Furer, Gaspers, Kasiviswantathan An Exponential-Time
2-Approximation Algorithm for Bandwidth, IWPEC 2009.
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The end

Thank you for your attention!
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