
Deterministic 7/8-approximation for the Metric
Maximum TSP∗

 Lukasz Kowalik and Marcin Mucha
Institute of Informatics, University of Warsaw, Poland.

{kowalik,mucha}@mimuw.edu.pl

Abstract

We present the first 7/8-approximation algorithm for the maximum traveling
salesman problem with triangle inequality. Our algorithm is deterministic. This
improves over both the randomized algorithm of Hassin and Rubinstein [2] with ex-
pected approximation ratio of 7/8−O(n−1/2) and the deterministic (7/8−O(n−1/3))-
approximation algorithm of Chen and Nagoya [1].

In the new algorithm, we extend the approach of processing local configurations
using so-called loose-ends, which we introduced in [4].

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively researched
problems in computer science and arise in a variety of applications. In its classical version,
given a set of vertices V and a symmetric weight function w : V 2 → R≥0 satisfying the
triangle inequality one has to find a Hamiltonian cycle of minimum weight.

There are several variants of TSP, e.g. one can look for a Hamiltonian cycle of minimum
or maximum weight (MAX-TSP), the weight function can be symmetric or asymmetric, it
can satisfy the triangle inequality or not, etc.

In this paper, we are concerned with the MAX-TSP variant, where the weight function
is symmetric and satisfies the triangle inequality. This variant is often called the metric
MAX-TSP.

MAX-TSP (not necessarily metric) was first considered by Serdyukov in [5], where he
gives a 3

4
-approximation. Next, a 5

6
-approximation algorithm for the metric case was given

by Kostochka and Serdyukov [3]. Hassin and Rubinstein [2] used these two algorithms

∗This research is partially supported by a grant from the Polish Ministry of Science and Higher Ed-
ucation, project N206 005 32/0807. A preliminary version of this paper appeared in Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX and RANDOM
2008), LNCS 5171, pp. 132-145, 2008.

1

together with new ideas to achieve a randomized approximation algorithm with expected
approximation ratio of (7

8
− O(n−1/2)). This algorithm has later been derandomized by

Chen and Nagoya [1], at a cost of a slightly worse approximation factor of (7
8
−O(n−1/3)).

In this paper, we give a deterministic 7
8
-approximation algorithm for metric MAX-TSP.

Our algorithm builds on the ideas of Serdyukov and Kostochka, but is completely different
from that of Hassin and Rubinstein. We apply techniques similar to those used earlier
in [4] for the directed version of MAX-TSP with triangle inequality.

1.1 Closer look at previous results

Classic undirected MAX-TSP algorithm of Serdyukov [5] starts by constructing two sets
of edges of the input graph G: a maximum weight cycle cover C and a maximum weight
matching M , and then removing a single edge from each cycle of C and adding it to M .
It can be shown that we can avoid creating cycles in M , so in the end we get two sets of
paths: C′ and M ′. These sets can be extended to Hamiltonian cycles arbitrarily. Since
we started with a maximum weight cycle cover and a maximum weight matching, we have
w(C′) + w(M ′) ≥ w(C) + w(M) ≥ 3

2
OPT. It follows that the better of the two cycles

has weight at least 3
4
OPT. Here, we used two standard inequalities: w(C) ≥ OPT and

w(M) ≥ 1
2
OPT. The latter only holds for graphs with even number of vertices. The case

of odd number of vertices needs separate treatment.
Serdyukov’s algorithm works for any undirected graph, with weight function not neces-

sarily satisfying the triangle inequality. However, if this inequality is satisfied, we can get
a much better algorithm. Kostochka and Serdykov observed the following useful fact (see
e.g. [2] for a proof).

Lemma 1.1 (Kostochka, Serdyukov [3]). Let G = (V,E) be a weighted complete graph
with a weight function w : E → R≥0 satisfying the triangle inequality. Let C be a cycle
cover in G and let Q = {e1, . . . , e|C|} be a set of edges with exactly one edge from each
cycle of C. Then the collection of paths C \ Q can be extended in polynomial time to a
Hamiltonian cycle H with

w(H) ≥ w(C)−
|C|∑
i=1

w(ei)/2.

Kostochka and Serdyukov [3] propose an algorithm which starts by finding a maxi-
mum weight cycle cover C and then applies the above lemma with Q consisting of the
lightest edges of cycles in C. Since all cycles have length at least 3, the weight of the
removed edges amounts to at most 1

3
w(C), so we regain at least 1

6
w(C), which leads to

5
6
-approximation. (Note that if it happens that all the cycles in C have length at least 4

we get 7
8
-approximation).

2

2 Our approach

Similarly to Serdykov’s algorithm (as well as that of Hassin and Rubinstein), our algorithm
starts by constructing a maximum weight cycle cover C and maximum weight matching M .
In our reasoning we need the inequality w(M) ≥ 1

2
OPT, which holds only for graphs with

even number of vertices. In what follows we only consider such graphs and in Section 5 we
show that the odd case reduces to the even case in polynomial time.

In all previous algorithms edges are moved from the cycle cover C to the matching M .
We do not follow this approach. Instead, we remove some edges from C and add some
edges to M . The edges added to M are not necessarily the edges removed from C. In fact,
they might not even be cycle edges in C. All we need to guarantee is that their total weight
is sufficiently large compared to the weight loss in C.

Here is how it works. Let min(Ci) be the lightest edge of a cycle Ci ∈ C. Since removing
a single edge from each Ci and then joining the resulting paths using Lemma 1.1 results
in the weight loss equal to half the weight of the removed edges, it should be clear that we
should remove min(Ci) from each Ci. The weight loss is then

∑
iw(min(Ci))/2.

We are going to describe an iterative process of adding edges to a collection of paths
P , initially equal to M . Edges will be added in phases, each phase corresponds to a single
cycle Ci ∈ C. After finishing the phase corresponding to Ci we will call Ci processed. The
edges added in the phase corresponding to Ci will usually, but not necessarily belong to Ci

or at least connect vertices of Ci. Their total weight will also be directly related to w(Ci)
and w(min(Ci)). Let (α, β) ? Ci = αw(Ci) + βw(min(Ci)). The following Lemma shows
why this is a useful definition:

Lemma 2.1. If during processing the cycles in C, we can add edges of total weight at least∑
Ci∈C(α, 1/2) ? Ci to M , then we get a (3/4 + α/2)-approximation algorithm.

Proof. Let H1 be the Hamiltonian cycle obtained from C by using Lemma 1.1, and let
H2 be the cycle obtained from M by processing all cycles of C and patching the resulting
collection of paths into a Hamiltonian cycle. Then

w(H1) + w(H2) ≥

[
w(C)−

∑
i

w(min(Ci))/2

]
+

+

[
w(M) + αw(C) +

∑
i

w(min(Ci))/2

]
≥ (3/2 + α)OPT,

so the heavier of the two cycles is a (3/4 + α/2)-approximation.

In the remainder of the paper, we show that this can be done for α = 1/4, yielding a
7/8-approximation.

2.1 Skeleton of the algorithm

A graph P is sub-Hamiltonian if it is a family of disjoint paths or a Hamiltonian cycle (i.e.
it can be extended to a Hamiltonian cycle). Let P be a family of disjoint paths. We say

3

that set of edges S is allowed w.r.t. P , if S is disjoint from P and the edge sum of P and
S is sub-Hamiltonian. We call an edge e allowed w.r.t P if {e} is allowed w.r.t. P . If an
edge is not allowed, we call it forbidden.

In the algorithm presented below, we maintain a sub-Hamiltonian graph P satisfying
the following invariant.

Invariant 1. For any vertex v, if degP (v) = 2 then the cycle v belongs to has been already
processed.

Consider a phase of our algorithm and let C be the cycle that is still unprocessed. In
this situation a set S of edges will be called a support of C if S is allowed w.r.t. P , and
after adding S to P (and thus making C processed) Invariant 1 is satisfied.

The following is the skeleton of the algorithm, that we will develop in the remainder of
the paper.

Algorithm 2.1 Main Algorithm

1: Let M be a heaviest matching and C a heaviest cycle cover in G.
2: Let H1 be the Hamiltonian cycle obtained from C by using Lemma 1.1.
3: P := M
4: Mark all cycles in C as unprocessed.
5: for each unprocessed cycle C in C do
6: Find S, a support of C of large weight.
7: P := P ∪ S
8: Mark C as processed.

9: Arbitrarily patch P to a Hamiltonian cycle H2.
10: Return the heavier of H1 and H2.

2.2 Loose-ends

When considering a cycle Ci, we are going to extend P by adding some edges connecting
the vertices of Ci. Ideally we would like to add ni/2 new edges, where ni is the length of
Ci. However, this is not always possible, because some of the cycles have odd length and
ni/2 is not an integer. Instead we are going to use the idea of loose-ends introduced in [4].

A loose-end is a vertex v, for which degP (v) = 1 even though the cycle it belongs to is
already processed. A vertex v of cycle C ∈ C becomes a loose-end if no edge adjacent to v
is added to P when C is processed. This vertex can be connected with some other vertex
at a later stage and cease being a loose-end.

Consider two odd-length cycles C1 and C2, say both of length 5. When we process C1,
we can only add 2 edges to M , and some vertex v ∈ C1 is not an endpoint of any of these
edges, so it becomes a loose-end. Later, when we process C2, we can add 3 edges to M , by
connecting one of C2’s vertices with v. Using the triangle inequality, we can guarantee that
this edge has large weight. So in this case we get a little less weight from C1 and a little
more weight from C2. It is important to process cycles in order that guarantees that the

4

weight lost when processing the earlier cycles (the ones that give loose-ends) is dominated
by the weight gained when processing the later cycles (the ones that use loose-ends). We
will show that the algorithm can determine this order.

Let S be a support of C in some phase of the algorithm. We will say that S is a
k-support if after adding it to P (and thus processing cycle C) the number of loose-ends
increases by at least k (k could be negative here).

In the following section we describe in detail how the cycles are processed in our algo-
rithm. For even-length cycles we construct heavy 0-supports, and for odd-length cycles we
construct both (−1)-supports and (+1)-supports.

When constructing (−1)-supports, we need to assume that at least one loose-end is
available. Unfortunately, just one loose-end may be insufficient to guarantee the existence
of a (−1)-support. This could happen if the loose-end u is connected to C, the cycle being
processed, by a path in P . In that case, adding an edge between u and a vertex of C to P
may create a cycle in P . This is acceptable only if that cycle is Hamiltonian (in particular,
C would have to be the last cycle processed). Luckily, it turns out that two loose-ends are
always sufficient to avoid creating such short cycles. Thus, when describing a (−1)-support
for each odd cycle we will consider two situations: when there are two loose-ends, and when
there is exactly one loose-end but the algorithm is in the last (i.e. |C|-th) phase.

3 Processing cycles

In this section we consider an arbitrary phase of the algorithm and we describe supports
of unprocessed cycles. The construction of a support of such a cycle C may depend on the
number of loose-ends and the way the collection P of paths constructed so far interacts
with C, in particular on which edges of C are forbidden etc.

The following observations will be used in many of our proofs.

Observation 1. Let C be an unprocessed cycle and let M ⊂ E(C) be a matching. Let C̃
be any cycle in P ∪M . Then if C̃ contains an allowed edge of M , it contains at least two
allowed edges. Also, if C̃ contains a forbidden edge of M , it contains exactly one edge of
M .

Observation 2. In any phase of the algorithm and for any unprocessed cycle C, forbidden
edges with both endpoints in C form a matching.

Consider an unprocessed cycle C. A set of edges S will be called a semi-support of
C when P ∪ S contains vertices of degree at most 2, and after adding S to P (and thus
making C processed) Invariant 1 is satisfied. If after adding S to P the number of loose-
ends increases by k we will also call S a k-semi-support (k may be negative).

Note that the only difference between a semi-support and a support is that after adding
a semi-support to P we may get a non-Hamiltonian cycle in P . The following lemma,
similar to the Kostochka-Serdyukov technique, will be used to convert a semi-support M
to a support S without losing much weight. The weight loss in this process depends on

5

x0 x1

y1

y2

x2

y3

x3

Figure 1: Breaking the cycles in the proof of Lemma 3.1. Dashed edges are lighter than
the corresponding solid edges. Crossed-out edges are the edges removed from the cycles.

how the weight of M is distributed between allowed and forbidden edges, on the weight of
allowed edges of M that belong to cycles in P ∪M , etc.

Lemma 3.1. Consider any phase of the algorithm and let C be an unprocessed cycle. Let
M be a k-semi-support of C. Assume there is a vertex x0 6∈ V (M), such that x0 is a
loose-end or x0 ∈ V (C). Moreover, assume P ∪M contains cycles (possibly of length 2)
C1, . . . , Cq. For each i, 1 ≤ i ≤ q, let ei be any edge in M ∩ Ci. Let Q = {e1, . . . , eq} and
let D =

⋃
iCi. Finally, let us partition edges in M into two sets: F containing forbidden

edges, and A containing allowed edges.
Then one can find S, a k-support of C, such that

(i) w(S) ≥ w(M \Q) + 1
2
w(Q),

(ii) w(S) ≥ w(A \D) + 3
4
w(A ∩D) + 1

2
w(F).

Proof. Denote the ends of e1 by x1 and y1 in such a way that x0y1 is heavier than x0x1.
Note that w(x0y1) = max{w(x0x1), w(x0y1)} ≥ 1

2
(w(x0x1) +w(x0y1)) ≥ 1

2
w(e1), where the

last step follows from the triangle inequality. Moreover, by replacing e1 by x0y1 we break
the cycle C1 and x1 becomes a loose-end. We can proceed in this way for all cycles, i.e.,
for every i = 1, . . . , q the ends of ei are labelled xi and yi so that

w(xi−1yi) ≥ 1
2
w(ei). (1)

Let S = M \ {ei | i = 1, . . . , q} ∪ {xi−1yi | i = 1, . . . , q}. Clearly, P ∪ S does not contain
cycles hence it is sub-Hamiltonian. Also, observe that there are only 2 vertices, namely
x0 and xq whose degrees differ in graphs P ∪ M and P ∪ S. Since degP∪S x0 = 2 and
degP∪S xq = 1, after adding S to P (and thus processing C) Invariant 1 is still satisfied,
and so S is a support. Also note that x0 is a loose-end in P ∪M and it is not a loose-end
in P ∪ S, while xq is not a loose-end in P ∪M and it is a loose-end in P ∪ S. It follows
that S is a k-support.

Now let us bound the weight of S. By (1), w(S) ≥ w(M \Q) + 1
2
w(Q), which is claim

(i). To prove (ii), in each cycle Ci we choose the lightest edge ei in M ∩Ci and we assume

6

Q consists of these edges. Notice that F ⊆ Q (by Observation 1) and also A \D ⊆M \Q,
so by (i) we have,

w(S) ≥ w(M \Q) +
1

2
w(Q) ≥ w(A \D) + w((A ∩D) \Q) + 1

2
w(A ∩Q) + 1

2
w(F). (2)

By Observation 1, and since Q consists of the lightest edges in cycles, w((A ∩D) \ Q) ≥
1
2
w(A ∩D). Then w((A ∩D) \Q) + 1

2
w(A ∩Q) = w((A ∩D) \Q) + 1

2
w((A ∩D) ∩Q) =

1
2
w((A ∩D) \Q) + 1

2
w(A ∩D) ≥ 3

4
w(A ∩D). By plugging it into (2) we get (ii).

3.1 Even cycles

Lemma 3.2. Let C be an unprocessed 4-cycle and assume that there is at least one loose-
end. Then there is a 0-support of C of weight ≥ (1

4
, 1

2
) ? C.

Proof. We consider two cases:

Case 1 E(C) has at most one forbidden edge. We partition E(C) into two matchings,
M1 and M2. W.l.o.g. assume M1 does not contain forbidden edges. Let S1 and S2 be the
supports corresponding to M1 and M2 by Lemma 3.1 and let S be the heavier of them.
Following the notation from Lemma 3.1, define A1, A2 (F1, F2) as the sets of allowed (resp.
forbidden) edges of M1, M2. Let D1, D2 be the sets of edges of E(C) that belong to cycles
in P ∪M1 or P ∪M2 respectively. Also let A = A1 ∪ A2, F = F1 ∪ F2 and D = D1 ∪D2.

Notice that by inequality (ii) of Lemma 3.1 applied to Mi, i = 1, 2 we get w(Si) ≥
w(Ai \Di) + 3

4
w(Ai ∩Di) + 1

2
w(Fi). Summing up the two inequalities yields

w(S) ≥ 1
2
(w(S1) + w(S2)) ≥ 1

2
w(A \D) + 3

8
w(A ∩D) + 1

4
w(F). (3)

Let us first assume that P ∪M1 contains a cycle C̃. By Observation 1 both allowed
edges of M1 are in C̃. So either both chords of C are forbidden or both edges of M2 are.
Since we assumed that E(C) has at most one forbidden edge, it is the chords of C that
are forbidden. It now follows from Observation 2 that both edges of M2 are allowed, so
A = C. From (3) we get w(S) ≥ 3

8
w(A) = 3

8
w(C) ≥ (1

4
, 1

2
) ? C.

Hence, we may assume that P ∪ M1 contains no cycle. It follows that D1 = ∅, so
|A \D| ≥ 2. From (3) we get w(S) ≥ 1

2
w(A \D) + 3

8
w(A ∩D) + 1

4
w(F) ≥ 1

4
(w(A \D) +

w(A∩D)+w(F))+ 1
4
w(A\D) ≥ 1

4
w(C)+ 1

4
w(A\D) ≥ (1

4
, 1

2
)?C, where the last inequality

follows from |A \D| ≥ 2.

Case 2 E(C) has two forbidden edges. Denote the vertices of C by v1, . . . , v4 in the
order they appear on C and assume w.l.o.g. that v1v2 and v3v4 are forbidden. Let u be
a loose-end. Consider four edge sets S1 = {uv1, v2v3}, S2 = {uv2, v1v4}, S3 = {uv4, v2v3},
and S4 = {uv3, v1v4}. Note that these sets are allowed since for any i, edges of Si belong
to a single path in P ∪ Si (ending in v4, v3, v1 and v2 respectively). It follows that all
Si are supports and we choose S, the heaviest of them. Then w(S) ≥ 1

4

∑4
i=1w(Si) ≥

1
4
[2w(v2v3)+2w(v1v4)+(w(uv1)+w(uv2))+(w(uv3)+w(uv4))] ≥ 1

4
[2w(v2v3)+2w(v1v4)+

w(v1v2) + w(v3v4)], where the last step follows from triangle inequality. Hence w(S) ≥
1
4
w(C) + 1

4
[w(v2v3) + w(v1v4)] ≥ (1

4
, 1

2
) ? C.

7

v1

v2 v3

v4

u

S1

v1

v2 v3

v4

u

S2

v1

v2 v3

v4

u

S3

v1

v2 v3

v4

u

S4

Figure 2: Supports in Case 2 of the proof of Lemma 3.2

Lemma 3.3. Let C be an unprocessed even-length cycle, |C| ≥ 6, and assume that there
is at least one loose-end. Then there is a 0-support of C of weight at least (1

4
, 1

2
) ? C.

Proof. We partition E(C) into two matchings, M1 and M2, let S1 and S2 be the supports
corresponding to M1 and M2 by Lemma 3.1, and let S be the heavier of these supports.
We follow all the definitions from the beginning of the proof of the previous lemma to
obtain inequality (3).

From that inequality we get w(S) ≥ 3
8
w(A) + 1

4
w(F) = 1

4
w(C) + 1

8
w(A). It follows that

w(S) ≥ (1
4
, 1

2
) ? C if |A| ≥ 4.

Since by Observation 2 we have |A| ≥ |C|/2, the only case we need to consider is that of
|C| = 6 and |A| = 3. W.l.o.g. M1 = A and M2 = F . Let Q bet the set of the lightest edges
from each cycle in P ∪M1 or P ∪M2, one edge from each cycle. There is precisely one such
cycle in P ∪M1, since by Observation 1 each such cycle has to contain at least two edges. It
follows that |A\Q| ≥ 2. By inequality (i) in Lemma 3.1 we get w(S) ≥ 1

2
(w(S1)+w(S2)) ≥

1
2
w(E(C) \Q) + 1

4
w(Q) = 1

4
w(E(C) \Q) + 1

4
w(C) = 1

4
w(A \Q) + 1

4
w(C) ≥ (1

4
, 1

2
) ? C, as

required.

3.2 Triangles

For any cycle C, by max(C) we denote the heaviest edge in C.

Lemma 3.4. For any unprocessed triangle C, there is a (+1)-support of C of weight at
least (1

4
, 1

2
) ? C − 1

4
w(max(C)).

Proof. Let x, y, z be the vertices of C and assume w.l.o.g. that both xz and yz are allowed.
Let S consist of the heavier of the edges xz, yz. Clearly, S is a support and w(S) ≥
1
2
(w(xz) +w(yz)) ≥ 1

4
w(C) + 1

4
(w(xz) +w(yz))− 1

4
w(xy) ≥ (1

4
, 1

2
) ? C − 1

4
w(xy) ≥ (1

4
, 1

2
) ?

C − 1
4
w(max(C)).

Lemma 3.5. Let C be an unprocessed triangle and assume that there are two loose-ends.
Then there is a (−1)-support of C of weight at least (1

4
, 1

2
) ? C + 1

4
w(max(C)).

Proof. Let x, y, z bet the vertices of C and let u and v be the loose-ends. We consider 2
cases:

Case 1 Both loose-ends are connected to C by paths in P , say u is connected to x and v to
y. Note that in this case all edges of C are allowed. Let S1 = {xy, zv} and S2 = {zy, xv}.

8

Note that after adding any of these sets to P , both added edges lie on a single path
that ends in u (see Figure 3), so P remains sub-Hamiltonian. Hence both S1 and S2 are
supports of C. The heavier of them has weight max{w(xy) + w(zv), w(zy) + w(xv)} ≥
1
2
(w(xy) +w(zy) +w(zv) +w(xv)) ≥ 1

2
(w(xy) +w(zy) +w(xz)) ≥ 1

4
w(C) + 1

2
w(min(C)) +

1
4
w(max(C)) = (1

4
, 1

2
) ? C + 1

4
w(max(C)).

x

y

zu

v

S1

x

y

zu

v

S2

Figure 3: Supports in Case 1 of the proof of Lemma 3.5. Gray lines denote the paths
connecting loose-ends with C.

Case 2 At least one loose-end, say u, is not connected to C by a path in P . W.l.o.g.
assume that both xz are yz allowed. Let S1 = {xz, yu} and S2 = {yz, xu}. Note that
adding S1 to P does not create a cycle. Indeed, yu does not belong to a cycle because
yu belongs to a path that ends in a vertex different from x, y or z. Also xz does not
belong to a cycle because it was allowed before adding it to P . Similar reasoning shows
that adding S2 to P does not create a cycle. Hence both S1 and S2 are supports. Similarly
to the previous case we get max{w(S1), w(S2)} ≥ 1

2
(w(xz) + w(yu) + w(yz) + w(xu)) ≥

(1
4
, 1

2
) ? C + 1

4
w(max(C)).

Observation 3. Let C be an unprocessed odd cycle in the last phase of the algorithm
and assume that there is exactly one loose-end u. Then u is connected by a path in P to
a vertex z ∈ C and V (C) induces exactly b|E(C)|/2c forbidden edges. These edges can be
either edges or chords of C, and none of them is adjacent to z.

Lemma 3.6. Let C be an unprocessed triangle in the last phase of the algorithm and
assume that there is exactly one loose-end u. Then there is a (−1)-support of C of weight
at least (1

4
, 1

2
) ? C + 1

4
w(max(C)).

Proof. Let x, y, z denote the vertices of C. By Observation 3 cycle C contains a forbidden
edge — assume w.l.o.g. it is xy — and u is connected in P by a path to z. Let S1 = {xz, yu}
and S2 = {yz, xu}. Clearly, xz and yu are in the same cycle in P∪S1 and it is a Hamiltonian
cycle. Hence, S1 is a support of C, and similarly S2. We pick the heavier of these cycles
(its weight can be estimated similarly as in the proof of Lemma 3.5).

3.3 5-cycles

Lemma 3.7. Let C be an unprocessed 5-cycle with at most one forbidden edge. Then there
is a (+1)-support of weight at least (1/4, 1/2) ? C.

9

Proof. Let v1, . . . , v5 be the vertices of C in the order they appear on C and assume w.l.o.g.
that v1v5 is the lightest edge in E(C).

Let M1 = {v1v2, v3v4} and M2 = {v2v3, v4v5}. Let S1 and S2 be the supports corre-
sponding to M1 and M2 by Lemma 3.1 and let S be the heavier of them. Also, assume all
definitions leading to inequality (3) in the proof of Lemma 3.2.

We consider three cases:

Case 1 v1v5 is forbidden. Then v1v2 belongs to a path in P ∪M1 (ending in v5), hence
v1v2 6∈ D. By Observation 1, then also v3v4 6∈ D, so M1 ∩ D = ∅. By symmetry, also
M2 ∩ D = ∅. Hence A \ D = A. By inequality (ii) in Lemma 3.1 we get w(S) ≥
1
2
(w(S1) + w(S2)) ≥ 1

2
w(A) ≥ 1

2
· 4

5
w(C) = 2

5
w(C) ≥ 1

4
w(C) + 3

4
min(C) ≥ (1

4
, 1

2
) ? C.

Case 2 One of the matchings, say M1, contains a forbidden edge. We have two subcases
depending on which edge of M1 is forbidden.

Case 2a If v1v2 is forbidden, then the other edge of M1, i.e. v3v4, is allowed and by
Observation 1 it does not belong to D. Also, v2v3 does not belong to D, because it lies on
a path that ends in v1. Again, by Observation 1, v4v5 does not belong to D. Altogether,
this gives |A \D| ≥ 3.

Using inequality (3) we get w(S) ≥ 1
2
w(A\D)+ 3

8
w(A∩D)+ 1

4
w(F) ≥ 1

4
w(C \{v1v5})+

1
4
w(A \D) + 1

8
w(A ∩D) ≥ 1

4
w(C \ {v1v5}) + 1

2
w(v1v5) = (1

4
, 1

2
) ? C.

Case 2b If v3v4 is forbidden, then each of the following four sets of edges is a (+1)-
support: S1 = {v1v2, v4v5}, S2 = {v1v3, v4v5}, S3 = {v1v4, v2v3}, S4 = {v1v5, v2v3}. Their
total weight is(

w(v1v2) + w(v2v3) + w(v3v1) + w(v1v4) + w(v4v5) + w(v5v1)
)

+
(
w(v2v3) + w(v4v5)

)
Using the triangle inequality to bound the first part of this expression, and the fact that
v1v5 is the lightest edge of C to bound the second, we get

4∑
i=1

w(Si) ≥ w(C) + 2w(v1v5),

so the heaviest of Si has weight at least (1
4
, 1

2
) ? C.

Case 3 There are no forbidden edges in E(C). Suppose P ∪M1 contains a cycle. Then
the chords v1v3 and v2v4 are forbidden. It follows that the edges of M2 belong to a path in
P∪M2 (one ending in v1), so they cannot lie on a cycle in P∪M2. We conclude that at least
one of P ∪M1 and P ∪M2 does not contain cycles, and so |A\D| ≥ 2. Using inequality (3)
we get w(S) ≥ 1

2
w(A \D) + 3

8
w(A ∩D) = 3

8
w(A) + 1

8
w(A \D) ≥ 3

8
· 4

5
w(C) + 1

4
min(C) =

1
4
w(C) + 1

20
w(C) + 1

4
min(C) ≥ (1

4
, 1

2
) ? C.

Lemma 3.8. Let C be an unprocessed 5-cycle with two forbidden edges. Let e be any
of the two forbidden edges of C. Then there is a (+1)-support of C of weight at least
(1

4
, 1

2
) ? C − 1

4
w(e).

10

Proof. Let v1, . . . , v5 be the vertices of C in the order they appear on C and assume
w.l.o.g. that v1v5 and v2v3 the forbidden edges of C and e = v1v5. Let M1 = {v1v2, v3v4}
and M2 = {v2v3, v4v5} and assume the notation from the proof of the previous lemma.

Note that the edges of M1 belong to a path in P ∪M1 ending in v5, hence M1 ∩D = ∅.
It follows that |A \D| ≥ 2. Using inequality (3) we get w(S) ≥ 1

2
w(A \D) + 3

8
w(A∩D) +

1
4
w(F) ≥ 1

4
(w(A \ D) + w(A ∩ D) + w(F)) + 1

4
w(A \ D) = 1

4
w(C \ {e}) + 1

4
w(A \ D) ≥

1
4
w(C \ {e}) + 1

2
min(C) = (1

4
, 1

2
) ? C − 1

4
w(e).

Lemma 3.9. Let C be an unprocessed 5-cycle with two forbidden edges and assume that
there are two loose-ends. Let e denote any of the two forbidden edges of C. Then there is
a (−1)-support of C of weight at least (1

4
, 1

2
) ? C + 1

4
w(e).

Proof. Label the vertices of C as in the proof of the previous lemma. Observe that since
there are at least two loose-ends, at least one of them, call it u, is not connected by a path
to C in P .

Let M1 = {v1v2, v3v4, v5u} and M2 = {uv1, v2v3, v4v5}, let S1 and S2 be the supports
corresponding to M1 and M2 by Lemma 3.1, and let S be the heavier of them.

Note that the edges of M1 belong to a path in P ∪M1 (the one ending in u), hence
P ∪M1 does not contain cycles and we have S1 = M1. Also, neither uv1 nor v4v5 belong
to a cycle in P ∪M2. Of course v2v3 belongs to a cycle in P ∪M2.

By inequality (i) in Lemma 3.1 we get w(S) ≥ 1
2
(w(S1) + w(S2)) ≥ 1

2
[w(v1v2) +

w(v3v4) + w(v5u) + w(uv1) + w(v4v5)] + 1
4
w(v2v3). Using the triangle inequality gives

w(S) ≥ 1
2
[w(v1v2) + w(v3v4) + w(v1v5) + w(v4v5)] + 1

4
w(v2v3) ≥ 1

4
w(C) + 3

4
min(C) +

1
4
w(v1v5) ≥ (1

4
, 1

2
) ? C + 1

4
w(e).

Lemma 3.10. Let C be an unprocessed 5-cycle with two forbidden edges in the last phase
of the algorithm and assume that there is exactly one loose-end u. Let e be any of the two
forbidden edges of E(C). Then there is a (−1)-support of C of weight at least (1

4
, 1

2
) ? C +

1
4
w(e).

Proof. Label the vertices of C as in Lemma 3.8. By Observation 3, u is connected in P to
v4 by a path.

Let S1 = {v1v2, v3v4, v5u}, S2 = {uv1, v2v4, v3v5} and S3 = {uv1, v2v5, v3v4}. One may
check that for any i = 1, 2, 3, Si is a support and in particular P ∪ Si is a Hamiltonian
cycle. Let S be the heaviest of these supports.

Denote w(v2v4) +w(v3v5) +w(v2v5) +w(v3v4) by X. Then w(S) ≥ 1
2
w(S1) + 1

4
w(S2) +

1
4
w(S3) = 1

2
(w(v1v2) + w(v3v4) + w(v5u) + w(uv1)) + 1

4
X.

By triangle inequality (used twice), X ≥ 2w(v2v3). By symmetry, X ≥ 2w(v4v5).
Hence, X ≥ w(v2v3) + w(v4v5). Let us apply triangle inequality one more time: w(v5u) +
w(uv1) ≥ w(v1v5).

Putting it all together we get w(S) ≥ 1
2
(w(v1v2) + w(v3v4) + w(v1v5)) + 1

4
(w(v2v3) +

w(v4v5)) ≥ (1
4
, 1

2
) ? C + 1

4
w(e).

11

3.4 Odd cycles of length at least 7

Lemma 3.11. Let C be an unprocessed odd cycle of length at least 7. Then there is a
(+1)-support of weight at least (1

4
, 1

2
) ? C.

Proof. Let |C| = 2k+1, k ≥ 3. We enumerate vertices in V (C) so that C = v0v1v2 . . . v2k−1v2kv0,
both v0v1 and v0v2k are allowed and w(v0v1) ≥ w(v0v2k). Consider two subsets of E(C):
M1 = {v2iv2i+1 | 0 ≤ i ≤ k − 1} and M2 = {v2i+1v2i+2 | 0 ≤ i ≤ k − 1}. In other words we
partition E(C) \ {v0v2k} into two matchings.

Let C1, . . . , Cp be all cycles in P ∪M1 and Let Cp+1, . . . , Cq be all cycles in P ∪M2.
Similarly as in Lemma 3.1, let D =

⋃q
i=1Ci and we partition edges in M1 ∪M2 into two

sets: F containing forbidden edges, and A containing allowed edges. Further, let us choose
for each cycle Ci, i = 1, . . . , q, some edge ei in Ci ∩ E(C) and let Q = {e1, . . . , eq}. Since
by Observation 1 each cycle Ci that contains v0v1 contains also another edge from A, we
assume w.l.o.g. that v0v1 6∈ Q.

Using Lemma 3.1 we obtain supports S1, S2. Let S be the heavier of these supports.
Then w(S) ≥ 1

2
(w(S1) + w(S2)).

By inequality (i) in Lemma 3.1, w(S) ≥ 1
2
w((M1 ∪M2) \ Q) + 1

4
w(Q) = 1

4
w(E(C) \

{v0v2k})+ 1
4
w((M1∪M2)\Q). Since v0v1 6∈ Q and w(v0v1) ≥ w(v0v2k), w(S) ≥ 1

4
w(E(C))+

1
4
w((M1 ∪M2) \ (Q ∪ {v0v1})). As F ⊆ Q, (M1 ∪M2) \ (Q ∪ {v0v1}) = (A \ {v0v1}) \ Q

and hence

w(S) ≥ 1
4
w(E(C)) + 1

4
w((A \ {v0v1}) \Q). (4)

It follows that |(A \ {v0v1}) \Q| ≥ 2 implies w(S) ≥ (1/4, 1/2) ? C.
First assume there are k forbidden edges in E(C). Then one of the matchings, say M1,

contains only allowed edges (and the other matching contains all the forbidden edges of
C). Note that in P ∪M1 all edges of M1 belong to a path with one end in v2k. It follows
that M1 = S1 and S1 ∩ Q = ∅. It follows that A ∩ Q = ∅ and hence (A \ {v0v1}) \ Q
contains at least k − 1 ≥ 2 edges, as required.

Now assume there are at most k − 1 forbidden edges in E(C). Then |A| ≥ k + 1. By

Observation 1, |A \Q| ≥ d |A|
2
e. It follows that |(A \ {v0v1}) \Q| ≥ d |A|2 e − 1. For |A| ≥ 5,

we get d |A|
2
e − 1 ≥ 2.

Hence we are left with the case |A| ≤ 4. Since |A| ≥ k + 1, k ≤ 3. So k = 3, |A| = 4
and |F | = 2. We consider two subcases.

Case 1. v5v6 is forbidden. Then v4v5 is allowed and after adding the matching con-
taining v4v5 to P , v4v5 is on a path ending in v6, hence v4v5 does not belong to any Ci.
Hence the three remainig edges in A belong at most one cycle Ci, so |A ∩ Q| ≤ 1 and
further |(A \ {v0v1}) \Q| ≥ 2, as required.

Case 2. v5v6 is allowed. If F = {v2v3, v4v5}, one of the matchings, namely M2, contains
only allowed edges. Moreover, these edges belong to a path in P ∪M2 (ending in v6), so
M2 = S2 and S2 ∩ Q = ∅. There is just one allowed edge in M1 and hence it cannot
belong to a cycle Ci. It follows that Q = F and hence |(A \ {v0v1}) \ Q| ≥ 3. The case
F = {v1v2, v3v4} is symmetric. Finally, assume F = {v1v2, v4v5}. By Observation 1, in

12

P ∪M1 and P ∪M2 there are at most 2 cycles with edges from A. If P ∪M1 contains
such cycle, then v0v3 is forbidden. However, then P ∪M2 contains no such cycle. Hence
|A ∩Q| ≤ 1 and |(A \ {v0v1}) \Q| ≥ 2, as required.

4 Ordering the cycles

4.1 Basic setup

Based on the results from the previous section, we can see that every cycle C belongs to
one of three categories:

even cycles: C has a 0-support of weight (1
4
, 1

2
) ?C, if there exists at least one loose-end,

good odd cycles: C has a (+1)-support of weight at least (1
4
, 1

2
) ? C — that is the case

if C is an odd cycle of length ≥ 7 or a 5-cycle with at most one forbidden edge,

bad odd cycles: C has a (+1)-support of weight smaller than (1
4
, 1

2
) ? C, and it also has

a (−1)-support of weight greater than (1
4
, 1

2
) ? C, but only if there exist at least two

loose-ends or it is the last cycle processed — that is the case for all 3-cycles and for
5-cycles with two forbidden edges.

Remark 4.1. Notice that a good odd cycle might become bad when other cycles are
processed, if it is initially a 5-cycle with zero (or one) forbidden edges and two (one, resp.)
of its allowed edges becomes forbidden. However, a bad odd cycle can never become a
good one.

We say that a cycle C is k-processed, if it is processed using a k-support. The general
order of processing the cycles consists of 4 stages:

(1) as long as there exists a good odd cycle, (+1)-process it,

(2) (+1)-process bad odd cycles until the number of loose-ends is greater or equal to the
number of remaining bad odd cycles,

(3) 0-process even cycles,

(4) (−1)-process the remaining odd cycles.

When we use the above processing order all the assumptions of previous section’s lem-
mas are satisfied. In particular in stage 3, there exists at least one loose-end, so we can
process the even cycles. This is because we can assume that C contains at least one triange,
otherwise already the Kostochka-Serdyukov algorithm gives 7/8-approximation.

It is clear that we are getting enough weight from cycles processed in stages 1 and 3.
We also loose some extra weight in stage 2 and gain weight in stage 4. We want to select
the cycles to be processed in stage 2 in such a way that the overall weight of edges added
during stages 2 and 4 is at least

∑
i(

1
4
, 1

2
) ? Ci, where the sum is over all cycles processed

in these stages.

13

4.2 Ordering bad odd cycles

Let us first define certain useful notions. For any bad odd cycle C, let B−1(C) (B+1(C)) be
the lower bound on the weight of the (−1)-support ((+1)-support), as guaranteed by the
appropriate lemma in the previous section. Suppose that Ci is the set of bad odd cycles
processed in stage i, i = 2, 4. If we use previous section’s lemmas to lowerbound the weight
of all edges added in stages 2 and 4, we are going to get∑

C∈C2

B+1(C) +
∑
C∈C4

B−1(C),

and we need to show that C2 and C4 can be chosen so that the value of this expression is
at least ∑

C∈C2∪C4

(1
4
, 1

2
) ? C.

For every bad odd cycle C there exists a non-negative number, which we call the loose-
end value for C and denote LEV(C) such that

B+1(C) ≥ (1
4
, 1

2
) ? C − LEV(C) and B−1(C) ≥ (1

4
, 1

2
) ? C + LEV(C).

Note, that this number is equal to 1
4
w(e), where e is the heaviest edge of C if C is a triangle,

or the heavier of the two forbidden edges of C if C is a bad 5-cycle.
The reason why we call this number the loose-end value for C is that it is essentially the

price at which C should be willing to buy/sell a loose-end. In this economic analogy, the
cycles that are (+1)-processed are selling loose-ends to the cycles that are (−1)-processed.
If we can make every cycle trade a loose-end at a preferred price (LEV or better), the weight
of a support of any cycle C together with its profit/loss coming from trading a loose-end
adds up to at least (1

4
, 1

2
) ? C. But it is obvious how to make every cycle trade a loose-end

at a preferred price! It is enough to make the cycles with smallest LEV sell loose-ends
(process them in stage 2), and make the remaining cycles buy loose-ends (process them in
stage 4).

Note here, that some bad odd cycles will get loose-ends for free from good odd cycles
processed in stage 1. Since we assume that the total number of vertices in the graph is
even, the number of the remaining bad odd cycles is also even, and so they can be divided
evenly into sellers and buyers.

Using Lemma 2.1 we get

Theorem 4.2. Metric MAX-TSP problem can be 7/8-approximated for graphs with even
number of vertices.

This can be extended to graphs with odd number of vertices, at a cost of increasing the
running time by a factor of O(n4), see the next section.

14

5 Processing graphs with odd number of vertices

When the input graph has an odd number of vertices the algorithm described before
does not work because there is no perfect matching. It is easy to see that when we use
a maximum weight near-perfect matching instead (i.e. such that exactly one vertex is
not matched) our algorithm gives (7/8− 1

4n
)-approximation, which is already better than

the best known previous results. Luckily, even for the odd case we can still retain 7/8-
approximation by applying our algorithm in a more sophisticated way.

The modified algorithm for the odd case also begins with a cycle cover C and a maximum
weight matching M . Since the edge weights are nonnegative, we can assume that there is
precisely one unmatched vertex v. Our new algorithm processes cycles of C as before, but
the cycle C∗ that contains v is processed in a special way. We show that this algorithm
returns a Hamiltonian cycle of weight at least 7

8
OPT, provided that the initial cycle cover

C and the matching M satisfy certain special conditions. We show that such a pair of
a matching and a cover is contained in a set of O(n4) pairs which can be constructed in
polynomial time. For each of these pairs we apply the modified algorithm and we return
the heaviest of the Hamiltonian cycles found.

5.1 Finding a special pair of cycle cover and matching

Now we are going to describe the aforementioned set of O(n4) matching-cover pairs. In
what follows we assume that the graph contains at least 4 vertices (otherwise the problem
can be solved exactly in O(1) time). A simple path vxyz will be called a candidate path
when w(xy) ≥ w(vx) and w(xy) ≥ w(yz). For each candidate path p we find Cp, the
maximum weight cycle cover containing path p. (Such a cover can be found by finding
a maximum weight cycle cover in a modified graph, i.e. with weights of edges on path p
very large). Similarly, for each candidate path p = vxyz we find Mp

x , the maximum weight
matching in G − {x} that contains edge yz (again, we make the weight of edge yz very
large and we find the maximum weight matching). Next, for each candidate path p = vxyz
we find Mp

y , the maximum weight matching in G− {y} that contains edge vx. Note that

Proposition 5.1. For any candidate path p = vxyz,

(a1) Cp contains a cycle of length at least 4 containing edge xy,

(a2) matching Mp
x contains yz and matching Mp

y contains vx, and

(a3) w(xy) ≥ w(vx) and w(xy) ≥ w(yz).

Proposition 5.2. For some candidate path p = vxyz we have

(b1) w(Cp) ≥ OPT, and

(b2) w(Mp
a) + 1

2
w(xy) ≥ 1

2
OPT where a ∈ {x, y}

15

Proof. Let H be a maximum weight Hamiltonian cycle. Let xy be the heaviest edge on
H and let vx and yz be the two edges incident with xy in H. Condition (b1) is obvious
then. Let Mx and My be the the near perfect matching that leaves x (resp. y) unmatched
and consists of edges of H only. Note that w(Mp

x) ≥ w(Mx) and w(Mp
y) ≥ w(My). Clearly

w(Mx) + w(My) + w(xy) = OPT. It follows that w(Mp
x) + w(Mp

y) + w(xy) ≥ OPT and
hence max{w(Mp

x) + 1
2
w(xy), w(Mp

y) + 1
2
w(xy)} ≥ 1

2
[w(Mp

x) + w(Mp
y) + w(xy)] ≥ 1

2
OPT,

which is equivalent to (b2).

In what follows let C and M denote a cover and a matching satisfying conditions (a1)–
(a3) and (b1)–(b2) and let p = vxyz be the corresponding candidate path. Let C∗ be the
cycle of length at least 4 in C that contains xy and assume w.l.o.g. that x is unmatched
in M and yz ∈M .

Now we can prove an analog of Lemma 2.1.

Lemma 5.3. If during processing the cycles in C, we can add edges of total weight at least
[
∑

Ci∈C\{C∗}(
1
4
, 1

2
) ? Ci] + [(1

4
, 1

2
) ? C∗ + 1

2
w(xy)] to M , then a Hamiltonian cycle of weight

at least 7
8
OPT is returned.

Proof. The sum of the weights of the two Hamiltonian cycles found by the algorithm is
at least w(C) −

∑
C∈Cw(min(C)/2 + w(M) + 1

4
w(C) +

∑
C∈Cw(min(C))/2 + 1

2
w(xy) =

5
4
w(C) +w(M) + 1

2
w(xy). By (b1) and (b2) this is at least 7

4
OPT, so the better of the two

solutions is a 7
8
-approximation.

5.2 Processing the cycle C∗ containing an unmatched vertex

Let us denote the vertices of C∗ by x1, . . . , x|C∗|, in the order they appear around C∗ and
so that v = x1, x = x2, y = x3 and z = x4.

Lemma 5.4. Assume C∗ is even-length and consider any phase of the algorithm with C∗

unprocessed. Then there is a (+1)-support of C∗ of weight at least (1
4
, 1

2
) ? C∗ + 1

2
w(xy).

Proof. We partition E(C∗) into two matchings and then we replace edge yz in one of
them by xy, i.e. finally we have M1 = {x2t−1x2t | t = 1, . . . , |C∗|/2} \ {x3x4} ∪ {x2x3}
and M2 = {x2tx2t+1 | t = 1, . . . , |C∗|/2} (indices modulo |C∗|). Note that M1 and M2 are
(+1)-semi-supports (after adding M1 to P vertex x4 becomes a loose-end, and after adding
M2 to P vertex x2 becomes a loose-end). Similarly as in Lemma 3.1, choose one edge from
M1 in each cycle in P ∪M1 and one edge from M2 in each cycle in P ∪M2, and let Q be
the set of these edges.

Let S1 and S2 be the (+1)-supports obtained from M1 and M2 using Lemma 3.1. Let
S denote the heavier of them.

Note that edges x1x2 = vx and x2x3 = xy belong to a path in P ∪M1 (ending in x4),
because x3x4 = yz is in M . Also x2x3 = xy and x4x5 belong to a path in P ∪M2 (ending
in x2 = x). It follows that vx, xy, x4x5 6∈ Q.

By inequality (i) in Lemma 3.1, w(S) ≥ 1
2
(w(S1) + w(S2)) ≥ w(xy) + 1

2
w(vx) +

1
2
w(x4x5) + 1

4

∑|C∗|
i=5 w(xixi+1) = 1

4
w(C∗ \ {yz}) + 3

4
w(xy) + 1

4
w(vx) + 1

4
w(x4x5). Since

16

w(xy) ≥ w(yz), w(vx) ≥ min(C∗) and w(x4x5) ≥ min(C∗) we get finally w(S) ≥
(1

4
, 1

2
) ? C∗ + 1

2
w(xy).

Lemma 5.5. Assume C∗ is odd-length. Consider any phase of the algorithm with C∗

unprocessed and with at least one loose-end. Then there is a 0-support of C∗ of weight at
least (1

4
, 1

2
) ? C∗ + 1

2
w(xy).

Proof. Note that |C∗| ≥ 5. Let |C∗| = 2k + 1 and let u be a loose-end. Let M1 =
{x2t−1x2t | t = 1, . . . , k} \ {x3x4} ∪ {x2x3, x2k+1u} and M2 = {x2tx2t+1 | t = 1, . . . , k} ∪
{u, x1}. Note that M1 and M2 are 0-semi-supports (after adding M1 to P vertex x4 becomes
a loose-end, after adding M2 to P vertex x2 becomes a loose-end, and in both cases u ceases
to be a loose-end). Similarly as in Lemma 3.1, choose one edge from M1 in each cycle in
P ∪M1 and one edge from M2 in each cycle in P ∪M2, and let Q be the set of these edges.

Let S1 and S2 be the 0-supports obtained from M1 and M2 using Lemma 3.1. Let S
denote the heavier of them.

By the same argument as in the proof of Lemma 5.4, vx, xy, x4x5 6∈ Q. Hence by
inequality (i) in Lemma 3.1, w(S) ≥ 1

2
(w(S1) + w(S2)) ≥ w(xy) + 1

2
w(vx) + 1

2
w(x4x5) +

1
4
[w(x2k+1u) + w(ux1) +

∑2k
i=5 xixi+1)] = 1

4
w(C∗ \ {yz, x2k+1x1}) + 3

4
w(xy) + 1

4
[w(vx) +

w(x4x5) + w(x2k+1u) + w(ux1)]. Since w(x2k+1u) + w(ux1) ≥ w(x2k+1x1), w(xy) ≥ w(yz),
w(vx) ≥ min(C∗) and w(x4x5) ≥ min(C∗) we get finally w(S) ≥ (1

4
, 1

2
) ? C∗ + 1

2
w(xy).

5.3 Final remarks

Note that if C∗ is even-length then it “behaves” like a good odd cycle in the even case
algorithm, i.e. it always has a (+1)-support of large enough weight. On the other hand, if
C∗ is odd-length, it “behaves” like an even cycle in the even case algorithm, i.e. if there is
a loose-end, C∗ has a 0-support of large enough weight. Hence, if C∗ is even, we process
it in stage 1 (thus making a loose-end which may be needed by some bad odd cycle) and
otherwise we process it in stage 3.

Since the assumpions of Lemma 5.3 are satisfied we get

Theorem 5.6. Metric MAX-TSP problem can be 7/8-approximated in polynomial time
for any input graph.

It is an interesing question whether one can avoid the overhead of O(n4) in the time
complexity of the odd case.

Acknowledgments

We are indebted to an anonymous Theoretical Computer Science reviewer for reading the
paper carefully and for numerous helpful remarks.

17

References

[1] Z.-Z. Chen and T. Nagoya. Improved approximation algorithms for metric max TSP.
In Proc. ESA’05, pages 179–190, 2005.

[2] R. Hassin and S. Rubinstein. A 7/8-approximation algorithm for metric Max TSP. Inf.
Process. Lett., 81(5):247–251, 2002.

[3] A. V. Kostochka and A. I. Serdyukov. Polynomial algorithms with the estimates 3/4
and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye
Sistemy, 26:55–59, 1985.

[4] L. Kowalik and M. Mucha. 35/44-approximation for asymmetric maximum TSP
with triangle inequality. In Proc. 10th Workshop on Algorithms and Data Structures
(WADS’07), pages 590–601, 2007.

[5] A. I. Serdyukov. The traveling salesman problem of the maximum (in Russian). Up-
ravlyaemye Sistemy, 25:80–86, 1984.

18

