The Kleene-Schützenberger theorem

- Rational power series (or languages, streams): power series characterizable by rational expressions (over arbitrary semirings S).
- Recognizable power series (or languages, streams): power series that can be recognized by a weighted automaton.
- Proven by Kleene for \mathbb{B} (Kleene’s theorem), by Schützenberger for \mathbb{Z} and by Eilenberg for arbitrary semirings S.
- Coalgebraic proof by Rutten for \mathbb{B} in both directions, and for arbitrary semirings in the rational \rightarrow recognizable direction.
Formal power series

Given a semiring S and a finite alphabet A, let $S\langle\langle A\rangle\rangle$ denote the function space:

$$\{\sigma \mid \sigma \in A^* \to S\}$$

We assign a semiring structure to $S\langle\langle A\rangle\rangle$ (we use 1 to denote the empty word):

- $0(w) = 0$
- $1(w) = \text{if } w = 1 \text{ then } 1 \text{ else } 0$
- $(\sigma + \tau)(w) = \sigma(w) + \tau(w)$
- $(\sigma \tau)(w) = \sum_{uv=w} \sigma(u)\tau(v)$

Also: alphabet injections $A \to S\langle\langle A\rangle\rangle$:

$$a(w) = \text{if } w = a \text{ then } 1 \text{ else } 0$$
Formal power series (2)

We can also assign *output* and *derivative* operators O and Δ on $S\langle\langle A\rangle\rangle$

\[
O(\sigma) = \sigma(1) \\
\Delta(\sigma)(a)(w) = \sigma(aw)
\]

and will simply write σ_a for $\Delta(\sigma)(a)$.

The semiring structure on $S\langle\langle A\rangle\rangle$ now can be characterized using the following *behavioural differential equations*:

\[
\begin{align*}
O(0) &= 0 & 0_a &= 0 \\
O(1) &= 1 & 1_a &= 0 \\
O(b) &= 0 & b_a &= \text{if } b = a \text{ then } 1 \text{ else } 0 \\
O(\sigma + \tau) &= O(\sigma) + O(\tau) & (\sigma + \tau)_a &= \sigma_a + \tau_a \\
O(\sigma \tau) &= O(\sigma)O(\tau) & (\sigma \tau)_a &= \sigma_a \tau + O(\sigma)\tau_a
\end{align*}
\]
We call a power series $\sigma \in S\langle A \rangle$ a *polynomial* iff for only finitely many $w \in A^*$, $\sigma(w) \neq 0$.

The set of polynomials in $S\langle A \rangle$ is denoted by $S\langle A \rangle$.

We call a power series $\sigma \in S\langle A \rangle$ *proper* iff $O(\sigma) = 0$.

Polynomials and proper series
Recognizable series

Some equivalent characterizations:

- A power series is S-recognizable iff it occurs as the solution to a linear system of behavioural differential equations.

- A power series σ_0 is S-recognizable iff there is a finite set $\Sigma = \{\sigma_0, \ldots, \sigma_k\}$ s.t. for each $\sigma \in \Sigma$ and each $a \in A$, σ_a is a linear combinations of elements from Σ.

- A power series σ is S-recognizable iff there is a $k \in \mathbb{N}$, and there are $c_{ij}, b_i \in S$, such that σ occurs as a component of the unique solution in $S\llangle A \rrangle$ to the system of equations

\[
x_i = b_i + \sum_{a \in A} a \sum_{j \leq n} c_{ij} x_j
\]

- A power series σ is S-recognizable iff it is contained in a stable finitely generated submodule of $S\llangle A \rrangle$.
Recognizable series (2)

▷ A power series σ is S-recognizable iff it occurs in the final coalgebra mapping of the determinization of a $S \times (S_X^X)^A$-coalgebra, as follows:

\[
\begin{array}{c}
X \subset \eta \quad S_\omega^X \quad [\ldots]\quad S\langle\langle A\rangle\rangle \\
(S \times (S_\omega^X)^A) \quad \ldots \quad S \times S\langle\langle A\rangle\rangle^A
\end{array}
\]

▷ A power series σ is S-recognizable iff σ is accepted by a finite S-weighted automaton.
The star operator

The star operator can be defined in several ways:

- If we assume a topological structure on S (i.e. S is a topological semiring), we can define σ^* as the limit

 $$\sigma^* = \lim_{n \to \infty} \sum_{i=0}^{n} \sigma^i$$

 (wherever this limit exists).

- Simple coinductive definition: σ^* is defined iff σ is proper, and in this case σ^* is defined as:

 $$O(\sigma^*) = 1 \quad (\sigma^*)_a = \sigma_a(\sigma^*)$$

For any semiring, we can obtain a topological semiring by assuming the discrete topology on S. The coinductive definition of the star is always compatible with this definition.
Given a set $X \subseteq S\langle\langle X\rangle\rangle$, the class of S-rational power series in X $\text{Rat}_S[X]$ can be defined as the smallest subset of $S\langle\langle A\rangle\rangle$ such that

1. $X \subseteq \text{Rat}_S[X]$
2. $S\langle X\rangle \subseteq \text{Rat}_S[X]$
3. $\text{Rat}_S[X]$ is closed under the operators $+$ and \cdot.
4. If $\sigma \in \text{Rat}_S[X]$ and σ is proper, then σ^* in $\text{Rat}_S[X]$

We call a power series simply S-rational if it is S-rational in the empty set.

Any element of $\text{Rat}_S[X]$ can be described using a rational (regular) expression with variables in X.

Rational power series
Rational to recognizable

Induction on size of regular expressions. Base cases trivial. If \(\sigma_0 \) and \(\tau_0 \) are recognizable, there are \(\Sigma \) and \(T \) with \(\sigma_0 \in \Sigma \), \(\tau_0 \in T \), s.t. for each \(\sigma \in \Sigma \) and \(\tau \in T \) and \(a \in A \), \(\sigma_a \) and \(\tau_a \) can be written as a linear combination of elements of \(\Sigma \) and \(T \), respectively.

▸ \((\sigma + \tau)_a = \sigma_a + \tau_a \) so \(\Sigma \cup T \cup \{\sigma + \tau\} \) again has the required property (i.e. ‘is a stable finitely generated \(S \)-submodule of \(S\langle\langle A\rangle\rangle \)).

▸ For \((\sigma \tau)_a = \sigma_a \tau + o(\sigma)\tau_a \) so \(\{\sigma \tau \mid \sigma \in \Sigma, \tau \in T\} \cup T \) has the required property.

▸ If \(\sigma \) is proper, \((\sigma^*)_a = \sigma_a \sigma^* \), and \((v\sigma^*)_a = v_a \sigma^* + o(v)\sigma_a \sigma^* \), so \(\{v\sigma^* \mid v \in \Sigma\} \cup \{\sigma^*\} \) has the required property.
Lemma

Given any $\sigma, \tau \in S\langle A \rangle$ with τ proper, the unique solution to the equation

$$x = \sigma + \tau x$$

is given by:

$$x = \tau^* \sigma$$
Lemma

Given a \(k \in \mathbb{N} \) and a family of \(r_{ij} \ (i,j \leq k) \) that are proper and \(S \)-rational in \(X \) for all \(i,j \), as well as a family of \(p_i \ (i \leq k) \) that are \(S \)-rational in \(X \) for all \(i \), the system of equations with components

\[
x_i = p_i + \sum_{j=0}^{k} r_{ij}x_j
\]

for all \(i \leq k \) has a unique solution, and each \(x_i \) is \(S \)-rational in \(X \).

Proof: Natural induction on \(k \).

Base case, if \(k = 0 \), there is a single equation

\[
x_0 = p_0 + r_{00}x_0
\]

and Arden’s rule now gives a unique solution

\[
x_0 = (r_{00})^* p_0
\]

which is \(K \)-rational in \(X \) again.
Inductive case: if $k = n + 1$, write the last equation in the system as

$$x_k = p_k + \sum_{j=0}^{n} r_{kj}x_j + r_{kk}x_k,$$

apply Arden’s rule:

$$x_k = (r_{kk})^* \left(p_k + \sum_{j=0}^{n} r_{xj}x_j \right)$$
General unique solution lemma (left version) (3)

Substituting this equation for x_k into the equations x_i for $i \leq n$ gives

$$x_i = p_i + r_{ik}(r_{kk})^*p_k + \sum_{j=0}^{n}(r_{ij} + r_{ik}(r_{kk})^*r_{kj})x_j$$

Now set

$$q_i := p_i + r_{ik}(r_{kk})^*p_k \quad \text{and} \quad s_{ij} := r_{ij} + r_{ik}(r_{kk})^*r_{kj}$$

and we get a system in n variables:

$$x_i = q_i + \sum_{j=0}^{n} s_{ij}x_j$$

By IH, this system has a unique solution (with each component rational in X), and it follows that the original system has a unique solution, too (again, with each component rational in X).
If σ is S-recognizable, it occurs as a solution to a system of $n + 1$ equations

$$x_i = b_i + \sum_{a \in A} a \sum_{j \leq n} c_{ij} x_j$$

or equivalently

$$x_i = b_i + \sum_{j \leq n} \left(\sum_{a \in A} a c_{ij} \right) x_j$$

Because each b_i is rational, and all $\sum_{a \in A} a c_{ij}$ are rational and proper, it follows from the preceding lemma that the system has a unique solution and all x_i are rational.
Two equivalent characterizations:

- A power series τ is S-algebraic iff there is a finite set Σ with $\tau \in \Sigma$, s.t. for each $\sigma \in \Sigma$ and each $a \in A$, σa can be written as a polynomial over Σ.

- A power series τ is S-algebraic iff there is a finite set Σ with $\tau \in \Sigma$, s.t. for each $\sigma \in \Sigma$ and each $a \in A$, σa is S-rational in Σ.

Algebraic power series generalize context-free languages, in the sense that a language is context-free iff it is \mathbb{B}-algebraic.
Proper systems and their solutions

The traditional way of obtaining (constructively) algebraic series is as solutions to proper systems of equations, generalizing CF grammars. The systems of equations consist of a finite X and a mapping:

$$ p : X \rightarrow S\langle X + A \rangle $$

A system is called proper iff for all $x \in X$, $p(x)(1) = 0$, and for all $x, y \in X$, $p(x)(y) = 0$.

A solution is a mapping $[-] : X \rightarrow S\langle A \rangle$ such that for all x

$$ [x] = [p(x)]^{#} $$

where $[-]^{#}$ is the inductive extension of $[-]$.

A solution $[-]$ is strong iff for all $x \in X$, $O[x] = 0$.
Proper systems can be represented as

\[x_i = \sum_{j=0}^{k} x_j q_{ij} + \sum_{a \in A} a r_{ia} \]

with \(q_{ij} \) rational in \(X \) and proper, and \(r_{ia} \) rational in \(X \). Assuming that we have a strong solution, we take the derivative to obtain:

\[(x_i)_a = r_{ia} + \sum_{j=0}^{k} (x_j)_a q_{ij} \]

Now apply the (right version of the) unique solution lemma to conclude that all \((x_i)_a \) are rational in \(X \).
Conclusions and future work

- A uniform way of presenting two different results via a sufficiently generally formulated lemma: the Kleene-Schützenberger theorem and the construction of the Greibach Normal form from proper systems.
- The construction of the GNF does, unlike traditional presentations, not require a detour via the Chomsky Normal form.
- The construction of the GNF transforms a proper system in n nonterminals into a GNF-system in $2n + |A|$ nonterminals, less than the $n^2 + n$ nonterminals yielded by Rosenkrantz’ procedure.
- Future work: investigate the connections with other limit notions/topologies, unique solutions vs. least solutions, ϵ-transitions and construction of proper systems from arbitrary systems.