Coinductive Stream Calculus in Haskell

Joost Winter

Centrum Wiskunde & Informatica

June 4, 2013
A short motivation

- Haskell has nice built-in support or infinitary, or coinductive data types, such as streams.
- I will present (another) implementation of this.
- A bridge between the theory of behavioural differential equations and ‘reality’
- ...with a ‘quasi-empirical’ flavour thanks to OEIS integration
Representations of (simple) streams

\[x \downarrow 1 \quad y \downarrow 2 \quad z \downarrow 3 \]

\[
o(x) = 1 \quad x' = y \\
o(y) = 2 \quad y' = z \\
o(z) = 3 \quad z' = x
\]

\[x = 1:2:3:x \]
Weighted automata...

\[
o(x) = 1 \quad x' = 2(x + y) \\
o(y) = 1 \quad y' = 2y
\]

\[x \rightarrow 2x + 2y \rightarrow 4x + 8y \rightarrow 8x + 24y \rightarrow 16x + 64y \rightarrow 32x + 160y \ldots\]
\[o(x) = 1 \quad x' = 2(x + y) \]
\[o(y) = 1 \quad y' = 2y \]

gives:

\[x = 1 : 2 \, \ast! \, x + 2 \, \ast! \, y \]
\[y = 1 : 2 \, \ast! \, y \]
We start from a simple (and familiar) recurrence

\[a(0) = a(1) = 1 \quad a(n + 2) = a(n) + a(n + 1) \]

...and note the last equation certainly holds if the following stream differential equation holds:

\[\sigma'' = \sigma + \sigma' \]

This now directly gives us:

\[\text{fibs} = 1 : 1 : \text{fibs} + d \text{ fibs} \]
The corresponding weighted automaton:
Recurrence (with \(a(0), \ldots a(k - 1)\) given):

\[
a(n + k) = \sum_{0 \leq i < k} b_i a(n + i)
\]

Stream differential equation:

\[
\sigma^{(k)} = \sum_{0 \leq i < k} b_i \sigma^{(i)}
\]

Haskell code:

```haskell
s = a 0:..:a (k-1):sum [b i *! dd s i | i <- 0..(k-1)]
```
Streams as a Num type

(a trick due to Douglas McIlroy)

```
instance Num a => Num [a] where
  fromInteger = i . fromInteger
  negate = map negate
  (+) = zipWith (+)
  s * t = o s * o t : d s * t + o s *! d t
```

Note: with the exception of the (convolution) product, all operators are straight liftings from the underlying type. The last line corresponds to the (Brzozowski) product rule:

\[
o(st) = o(s)o(t) \quad (st)' = s't + o(s)t'
\]
Correspond to derivation counts in unambiguous CFGs in GNF in the case of coefficients $\in \mathbb{N}$.

Given a CFG in GNF, we can directly construct an algebraic system for its counting function.
The following CFG generates matching pairs of parentheses over an alphabet \{a, b\}:

\[x \rightarrow \epsilon \mid axbx \]

Corresponding system of bdes:

\[o(x) = 1 \quad x_a = xbx \quad x_b = 0 \]

Transform this into a system over a single alphabet symbol \(X\):

\[o(x) = 1 \quad x' = Xx^2 \]
\[o(x) = 1 \quad x' = xx^2 \]

In Haskell:

\[x = 1 \ : \ 0 \ : \ x^2 \]

Gives:

\[(1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, \ldots)\]
The zip of two streams alternately takes an element of either stream. Zip can be defined as follows:

\[\text{myzip } s \ t = o \ s : \text{myzip } t \ (d \ s) \]

In the opposite direction, we have operators even and odd, satisfying

\[\text{zip} \ (\text{even}(x), \text{odd}(x)) = x \]
Consider a recurrence of the type

\[a(2n) = ba(n) \quad a(2n + 1) = ca(n) + d \]

This gives stream equations

\[
\text{even}(\sigma) = b\sigma \quad \text{odd}(\sigma) = c\sigma + d \cdot \text{ones}
\]

or

\[\sigma = \text{zip}(b\sigma, c\sigma) \]

which always can be transformed into (guarded) systems of stream differential equations.
The Danish composer Per Nørgård used a sequence of this type in several of his compositions. It is given by $a(0) = 1$ and

$$a(2n) = -a(n) \quad a(2n + 1) = a(n) + 1$$

It starts out as:

$$(0, 1, -1, 2, 1, 0, -2, 3, -1, 2, 0, 1, 2, -1, -3, 4, 1, 0, -2, 3, 0, 1, -1)$$

A stream differential equation for (the tail of) this sequence:

$$x = 1 : \text{zip}(-x, x + \text{ones})$$
Haskell provides a very nice setting for stream calculus in action.

With QStream, we can inspect streams and look them up on OEIS.

Stream differential equations (and the corresponding Haskell specifications) are often particularly concise and elegant.
Related work

- Earlier stream calculus implementations in Haskell by Douglas McIlroy and Ralf Hinze.
- Other stream tools (mostly for proving stream equality) include e.g. CIRC (Dorel Lucanu) and Streambox (Hans Zantema and Jörg Endrullis)
- Theoretical work on behavioural differential equations