Erdős-Pósa for pumpkins and approximation

Dimitris Chatzidimitriou, Jean-Florent Raymond, Ignasi Sau, Dimitrios M. Thilikos

1University of Athens, Greece
2University of Warsaw, Poland
3LIRMM – University of Montpellier, France

König’s theorem

Theorem (König, 1931)

For every bipartite graph, \(|\text{maximum matching}| = |\text{minimum vertex cover}|\).
König’s theorem

Theorem (König, 1931)

For every bipartite graph, $|\text{maximum matching}| = |\text{minimum vertex cover}|$.
König’s theorem

Theorem (König, 1931)

For every bipartite graph, $|\text{maximum matching}| = |\text{minimum vertex cover}|$.

- min-max theorem for packing and covering edges;
- knowing one parameter gives the other one.
Packing and covering

Can we generalize it to

- packing/covering of larger classes; and
- in more general graphs?
Packing and covering

Can we generalize it to
- packing/covering of larger classes; and
- in more general graphs?

What about packing cycles in graphs?
The case of cycles

Packing number **pack** maximum number of vertex-disjoint cycles in G; Covering number **cover** minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).
The case of cycles

Packing number \textbf{pack} maximum number of vertex-disjoint cycles in \(G \);
Covering number \textbf{cover} minimum size \(X \subseteq V \) s.t. \(G \setminus X \) forest (FVS).

pack = ?
The case of cycles

Packing number **pack** maximum number of vertex-disjoint cycles in G;
Covering number **cover** minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).

```
pack \geq 2
```
The case of cycles

Packing number \textit{pack} maximum number of vertex-disjoint cycles in \(G \);
Covering number \textit{cover} minimum size \(X \subseteq V \) s.t. \(G \setminus X \) forest (FVS).

\[\text{pack} \geq 4 \]
The case of cycles

Packing number \textbf{pack} maximum number of vertex-disjoint cycles in G;
Covering number \textbf{cover} minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{grid}
\end{figure}

pack ≥ 4
The case of cycles

Packing number **pack** maximum number of vertex-disjoint cycles in \(G \); Covering number **cover** minimum size \(X \subseteq V \) s.t. \(G \setminus X \) forest (FVS).

\[
\text{pack} = 4
\]
The case of cycles

Packing number pack maximum number of vertex-disjoint cycles in G;
Covering number cover minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).

pack = 4
cover = ?
The case of cycles

Packing number **pack** maximum number of vertex-disjoint cycles in G;
Covering number **cover** minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).

$$\text{pack} = 4 \quad \text{cover} = ?$$
The case of cycles

Packing number **pack** maximum number of vertex-disjoint cycles in G;
Covering number **cover** minimum size $X \subseteq V$ s.t. $G \setminus X$ forest (FVS).

![Diagram showing pack = 4 and cover ≤ 6](image-url)
Are **pack** and **cover** related?

Theorem (Erdős & Pósa, 1962)

Every graph has k vertex-disjoint cycles or a set of $O(k \log k)$ vertices hitting every cycle. In other words: $f(k) = O(k \log k)$.
Are \textbf{pack} and \textbf{cover} related?

\[
\text{pack}(G) \leq \text{cover}(G)
\]
Erdős-Pósa Theorem

Are pack and cover related?

\[
\text{pack}(G) \leq \text{cover}(G) \leq f(\text{pack}(G))
\]
Erdős-Pósa Theorem

Are pack and cover related?

\[\text{pack}(G) \leq \text{cover}(G) \leq f(\text{pack}(G)) \]

Theorem (Erdős & Pósa, 1962)

Every graph has \(k \) vertex-disjoint cycles or a set of \(O(k \log k) \) vertices hitting every cycle.
Erdős-Pósa Theorem

Are pack and cover related?

\[\text{pack}(G) \leq \text{cover}(G) \leq f(\text{pack}(G)) \]

Theorem (Erdős & Pósa, 1962)

Every graph has\(k \) vertex-disjoint cycles or a set of \(O(k \log k) \) vertices hitting every cycle.

In other words: \(f(k) = O(k \log k) \).
Packing and covering models

Given H and G,

Packing How many vertex-disjoint sgr. of G can be contracted to H?

Covering How many vertices to remove in G to get an H-minor-free graph?
Packing and covering models

Given H and G,

Packing How many vertex-disjoint sgr. of G can be contracted to H? (maximization problem)

Covering How many vertices to remove in G to get an H-minor-free graph? (minimization problem)
Packing and covering models

Given H and G,

Packing How many vertex-disjoint sgr. of G can be contracted to H? (maximization problem)
\Rightarrow packing number $\text{pack}_H(G)$

Covering How many vertices to remove in G to get an H-minor-free graph? (minimization problem)
\Rightarrow covering number $\text{cover}_H(G)$
Packing and covering models

Given H and G,

Packing How many vertex-disjoint sgr. of G can be contracted to H? (maximization problem)
→ packing number $\text{pack}_H(G)$

Covering How many vertices to remove in G to get an H-minor-free graph? (minimization problem)
→ covering number $\text{cover}_H(G)$

Previously: $H = \bullet\bullet$ and $H = \bullet\circ\bullet$.

D. Chatzidimitriou, J.-F. Raymond, I. Sau and D. M. Thilikos Erdős-Pósa for pumpkins and approximation 03/03/2015 6 / 27
The Erdős-Pósa property

H has the ÉP-property if:

$$\forall G, \text{ cover}_H(G) \leq f(\text{pack}_H(G)).$$
H has the ŠP-property if:

$$\forall G, \; \text{cover}_H(G) \leq f(\text{pack}_H(G)).$$

f: gap.
H has the ŠP-property if:

$$\forall G, \ \text{cover}_H(G) \leq f(\text{pack}_H(G)).$$

f: gap.

Two questions: What classes and with which gap?
The Erdős-Pósa property

H has the ĖP-property if:

$$\forall G, \text{cover}_H(G) \leq f(\text{pack}_H(G)).$$

f: gap.

Two questions: What classes and with which gap?

Previously:

- $\bullet\bullet\bullet$ has the ĖP-property with gap k;
- $\bullet\circ\bullet$ has the ĖP-property with gap $O(k \log k)$.
The Erdős-Pósa property of planar models

Theorem (Robertson & Seymour, 1986)

\[H \text{ has the } \tilde{\mathcal{E}} \mathcal{P}\text{-property } \iff H \text{ planar.} \]
The Erdős-Pósa property of planar models

Theorem (Robertson & Seymour, 1986)

H has the \tilde{E}P-property $\iff H$ planar.

Theorem (Chekury & Chuzhoy, 2013)

$\forall H$ planar, $f_H(k) = O(k \text{ polylog } k)$.
Hitting and harvesting pumpkins

\(r \)-pumpkin \(\theta_r \): graph with 2 vertices and \(r \) edges.

Theorem (Fiorini, Joret and Sau)

\[f_{\theta_r} = O(k \log k). \]

Theorem (Joret, Paul, Sau, Saurabh and Thomassé, 2011)

There is a \(O(\log(n)) \)-approximation for \(\text{pack}_{\theta_r} \) and \(\text{cover}_{\theta_r} \).
Main result

Theorem (Chatzdimitriou, R., Sau, Thilikos)

There is an $O(\log(\text{OPT}))$-approximation for pack_{θ_r} and cover_{θ_r}.
Main result

Theorem (Chatzdimitriou, R., Sau, Thilikos)

There is an $O(\log(OPT))$-approximation for pack_{θ_r} and cover_{θ_r}.

Ingredients:
- a protrusion-based reduction;
- a algorithm to extract a big packing or a protrusion to reduce.
The approximation

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists packing $\geq k$</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Yes</td>
<td>No</td>
<td>...</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\exists cover $\leq k \log k$</td>
<td>No</td>
<td>...</td>
<td>No</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
The approximation

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists packing $\geq k$</td>
<td>Yes</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\exists cover $\leq k \log k$</td>
<td>No</td>
<td>…</td>
<td>No</td>
<td>…</td>
<td>Yes</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
The approximation

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th></th>
<th>...</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists packing $\geq k$</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Yes</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>\exists cover $\leq k \log k$</td>
<td>No</td>
<td>...</td>
<td>No</td>
<td>Yes</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Yes</td>
</tr>
<tr>
<td>Possible $A(G, k)$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P/C</td>
<td>P/C</td>
<td>P/C</td>
<td>P/C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Assume $A(G, k)$ outputs either a **packing** $\geq k$ or a **cover** $\leq k \log k$.
Assume $A(G, k)$ outputs either a packing $\geq k$ or a cover $\leq k \log k$.

1. run A on (G, k) for every $k \in \{0, \ldots, n\}$;
The approximation

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists) packing (\geq k)</td>
<td>Yes</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>Yes</td>
</tr>
<tr>
<td>(\exists) cover (\leq k \log k)</td>
<td>No</td>
<td>(\ldots)</td>
<td>No</td>
<td>Yes</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>Possible (A(G, k))</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P/C</td>
<td>P/C</td>
<td>P/C</td>
</tr>
</tbody>
</table>

Assume \(A(G, k) \) outputs either a packing \(\geq k \) or a cover \(\leq k \log k \).

1. run \(A \) on \((G, k) \) for every \(k \in \{0, \ldots, n\} \);
2. returns the largest \(k \) s.t. \(A(G, k) \) is a packing.
The reduction

Boundary

Protrusion

Reduction

“Gadget”

Picture by Felix Reidl
How can a cycle invade a given protrusion?

cycle-free protrusion

rest of the graph
How can a cycle invade a given protrusion?

D. Chatzdimitriou, J.-F. Raymond, I. Sau and D. M. Thilikos
How can a cycle invade a given protrusion?

- defines an equivalence relation;
- safe move: reduce to an equivalent protrusion;
- how to compute the equivalence class?
Decomposing protrusions

protrusion
Decomposing protrusions

protrusion → decomposed protrusion
Decomposing protrusions

- partition of the vertex set;
- edges between adjacent nodes only;
- boundary of small size;
- node \rightarrow protrusion \rightarrow eq class.
Decomposing protrusions

- partition of the vertex set;
- edges between adjacent nodes only;
- boundary of small size;
- node \rightarrow protrusion \rightarrow eq class.
A long path in the decomposition tree
A long path in the decomposition tree

Long path \rightarrow repetition.
A long path in the decomposition tree

Long path \rightarrow repetition.
Large degree in the decomposition tree

Discard a redundant child.
Large degree in the decomposition tree

Large degree \rightarrow repetitions.
Large degree in the decomposition tree

Large degree \rightarrow repetitions.
Discard a redundant child.
When the reduction ends...

- diameter $< f(r)$;
- degree $< h(r)$;
When the reduction ends...

- diameter $< f(r)$;
- degree $< h(r)$;

→ reduced protrusions have constant size.
When the reduction ends...

diameter $< f(r)$;
degree $< h(r)$;

\rightarrow reduced protrusions have constant size.
each reduction step takes $O(n)$ time (reduce from leaves to root).
The reduction: recap

Given G and an a large protrusion of small boundary,
The reduction: recap

Given G and an a large protrusion of small boundary,
- we can reduce it to a smaller graph G';
Given G and an a large protrusion of small boundary,
- we can reduce it to a smaller graph G';
- $G' \sim G$ for the problems of covering and packing;
Given G and an a large protrusion of small boundary,

- we can reduce it to a smaller graph G';
- $G' \sim G$ for the problems of covering and packing;
- the reduction takes $O(n)$ time.
Finding protrusions

How to find these protrusions?

Theorem (Chatzdimitriou, R., Sau, Thilikos)

Given G *large enough, we can compute*
- a θ_r-model of G of *small size*, or;
- a *large protrusion* of *small boundary*, or;
- an subgraph contractible to some H with *large* δ, *in* $O(m)$ *steps.*
we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
Sketch of the proof (for cycles)

- we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
- find a maximal $2d$-scattered set (centers);
we assume that girth \(> 4d + 2 \) (otherwise we can find a small cycle);
find a maximal \(2d \)-scattered set (centers);
grow trees from centers;
Sketch of the proof (for cycles)

- we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
- find a maximal $2d$-scattered set (centers);
- grow trees from centers;
- $\not\exists$ long path (otherwise: large protrusion of small boundary);
Sketch of the proof (for cycles)

- we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
- find a maximal $2d$-scattered set (centers);
- grow trees from centers;
- $\not\exists$ long path (otherwise: large protrusion of small boundary);
- \rightarrow expansion;
Sketch of the proof (for cycles)

- we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
- find a maximal $2d$-scattered set (centers);
- grow trees from centers;
- \exists long path (otherwise: large protrusion of small boundary);
 \rightarrow expansion;
 \rightarrow every tree has exponentially many leaves;
we assume that girth $> 4d + 2$ (otherwise we can find a small cycle);
find a maximal $2d$-scattered set (centers);
grow trees from centers;
$\not\exists$ long path (otherwise: large protrusion of small boundary);
\rightarrow expansion;
\rightarrow every tree has exponentially many leaves;
\rightarrow many edges between trees;
an subgraph contractible to some H with large δ.
Finding a packing or a covering

Input: \((G, k)\).
Output: a packing \(\geq k\) or a cover \(\leq k \log k\).
Finding a packing or a covering

Input: (G, k).
Output: a packing $\geq k$ or a cover $\leq k \log k$.

The previous algorithm gives:
- a θ_r-model of G of small size: add to a partial packing \mathcal{P};
Finding a packing or a covering

Input: \((G, k)\).
Output: a packing \(\geq k\) or a cover \(\leq k \log k\).

The previous algorithm gives:
- a \(\theta_r\)-model of \(G\) of small size: add to a partial packing \(P\);
- a large protrusion of small boundary: reduce;
- an subgraph contractible to some \(H\) with large \(\delta\): \(\exists\) a large packing.

Then:
- if \(P \geq k\) then we output \(P\);
- if \(G\) is \(\theta_r\)-free, then \(P\) is a small cover.
Finding a packing or a covering

Input: \((G, k)\).
Output: a packing \(\geq k\) or a cover \(\leq k \log k\).

The previous algorithm gives:
- a \(\theta_r\)-model of \(G\) of **small size**: add to a partial packing \(\mathcal{P}\);
- a **large protrusion** of **small boundary**: reduce;
- an subgraph contractible to some \(H\) with **large** \(\delta\): \(\exists\) a large packing.
Finding a packing or a covering

Input: \((G, k)\).
Output: a packing \(\geq k\) or a cover \(\leq k \log k\).

The previous algorithm gives:
- a \(\theta_r\)-model of \(G\) of small size: add to a partial packing \(\mathcal{P}\);
- a large protrusion of small boundary: reduce;
- an subgraph contractible to some \(H\) with large \(\delta\): \(\exists\) a large packing.

Then:
- if \(\mathcal{P} \geq k\) then we output \(\mathcal{P}\);
- if \(G\) is \(\theta_r\)-free, then \(\mathcal{P}\) is a small cover.

A constructive algorithm?
Constructing the packing

Easy: \(\delta(G) \geq r \Rightarrow G \geq \theta_r \) (can be found in linear time).
Constructing the packing

Easy: $\delta(G) \geq r \Rightarrow G \supseteq \theta_r$ (can be found in linear time).
The same for packings?

Theorem (Stiebitz, 1996)

In every G s.t. $\delta(G) \geq k(r + 1) - 1$, there is a partition (V_1, \ldots, V_k) s.t.

$$\forall i, \delta(G[V_i]) \geq r.$$
Easy: $\delta(G) \geq r \Rightarrow G \geq \theta_r$ (can be found in linear time).

The same for packings?

Theorem (Stiebitz, 1996)

In every G s.t. $\delta(G) \geq k(r + 1) - 1$, there is a partition (V_1, \ldots, V_k) s.t.

$$\forall i, \delta(G[V_i]) \geq r.$$

It can be found in polynomial time [Bazgan, Tuza and Vanderpooten, 2007].
Constructing the packing

Easy: $\delta(G) \geq r \Rightarrow G \geq \theta_r$ (can be found in linear time).
The same for packings?

Theorem (Stiebitz, 1996)

In every G s.t. $\delta(G) \geq k(r+1) - 1$, there is a partition (V_1, \ldots, V_k) s.t.

$$\forall i, \delta(G[V_i]) \geq r.$$

It can be found in polynomial time [Bazgan, Tuza and Vanderpooten, 2007].

Can we find it in linear time?
Approximation algorithm: recap

Given \((G, k)\) and using both

- the reduction algorithm;
- the algorithm to find protrusions,
Approximation algorithm: recap

Given \((G, k)\) and using both

- the reduction algorithm;
- the algorithm to find protrusions,

we are able to

- answer \(\text{pack}_{\theta_r} \geq k\) or \(\text{cover}_{\theta_r} \leq k \log k\) in \(O(n^2)\)-time;
- extract the corresponding object in polynomial time.
The edge variant

Given G and H

- **Packing** How many edge-disjoint sgr. of G can be contracted to H?

- **Covering** How many edges to remove in G to get an H-minor-free graph?
The edge variant

Given G and H

- **Packing**: How many edge-disjoint sgr. of G can be contracted to H? → packing number
- **Covering**: How many edges to remove in G to get an H-minor-free graph? → covering number
The Erdős-Pósa theorem holds for the edge variant.
The Erdős-Pósa theorem holds for the edge variant.

Theorem (R., Sau, Thilikos)

\[\theta_r \text{ has the edge-EP-property with a gap } \text{poly}(r, k). \]
A few results on the edge variant

The Erdős-Pósa theorem holds for the edge variant.

Theorem (R., Sau, Thilikos)

\(\theta_r \) has the edge-ÉP-property with a gap \(\text{poly}(r, k) \).

Not known whether all planar graphs have the edge-ÉP-property.
The Erdős-Pósa theorem holds for the edge variant.

Theorem (R., Sau, Thilikos)

\[\theta_r \text{ has the edge-\text{\textAAEP}-property with a gap } \text{poly}(r, k). \]

Not known whether all planar graphs have the edge-\text{\textAAEP}-property.

Our algorithm can deal with this variant.
Remember, we have an algorithm which gives:

- a θ_r-model of G of small size;
- a large protrusion of small boundary;
- an subgraph contractible to some H with large δ.
Constructive version for the edge variant

Remember, we have an algorithm which gives:

- a θ_r-model of G of small size;
- a large protrusion of small boundary;
- an subgraph contractible to some H with large δ.

In the last case we can extract an edge-disjoint packing in constant time.
Constructive version for the edge variant

Remember, we have an algorithm which gives:

- a θ_r-model of G of small size;
- a large protrusion of small boundary;
- an subgraph contractible to some H with large δ.

In the last case we can extract an edge-disjoint packing in constant time.
→ same complexity for both existential and constructive version.
Future work and open problems

extension to other graphs?
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
- better running time for the constructive version?
 i.e. prove that in G s.t. $\delta(G) = O(kr)$ we can find $k \cdot \theta_r$ in $O(n)$-time?
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
- better running time for the constructive version?
 i.e. prove that in G s.t. $\delta(G) = O(kr)$ we can find $k \cdot \theta_r$ in $O(n)$-time?
- H has the edge-EP-property \iff H planar.
 known: direction \Rightarrow.
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
- better running time for the constructive version?
 i.e. prove that in G s.t. $\delta(G) = O(kr)$ we can find $k \cdot \theta_r$ in $O(n)$-time?
- H has the edge-\(\tilde{E}\P\)-property \iff H planar.
 known: direction \Rightarrow.
- does every H have the \(\tilde{E}\P\)-property with gap $O(k \log k)$?
 known: $O(k \text{ polylog } k)$
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
- better running time for the constructive version? i.e. prove that in G s.t. $\delta(G) = O(kr)$ we can find $k \cdot \theta_r$ in $O(n)$-time?
- H has the edge-EP-property $\iff H$ planar. known: direction \Rightarrow.
- does every H have the EP-property with gap $O(k \log k)$? known: $O(k \text{ polylog } k)$
- does every H have the edge-EP-property with gap $O(k \log k)$? known: $\text{poly}(k, r)$ for θ_r and $O(k \log k)$ for cycles.
Future work and open problems

- extension to other graphs?
- extension to topological minor models?
- better running time for the constructive version?
 i.e. prove that in G s.t. $\delta(G) = O(kr)$ we can find $k \cdot \theta_r$ in $O(n)$-time?
- H has the edge-\mathcal{EP}-property $\iff H$ planar.
 known: direction \Rightarrow.
- does every H have the \mathcal{EP}-property with gap $O(k \log k)$?
 known: $O(k \text{ polylog } k)$
- does every H have the edge-\mathcal{EP}-property with gap $O(k \log k)$?
 known: $\text{poly}(k, r)$ for θ_r and $O(k \log k)$ for cycles.

Thank you!

D. Chatzdimitriou, J.-F. Raymond, I. Sau and D. M. Thilikos