1 Praca domowa I

Termin oddawania: 22.03.2016.
Zadanie 1. Find an explicit formula for $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ solving the problem

$$
\begin{aligned}
\partial_{t} u+x u_{x}+4 u_{y} & =u \quad \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(0, x, y) & =e^{-\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Zadanie 2. Modifying the proof of the mean value property, prove that if $d \geq 3$ and u is a solution of the problem

$$
\begin{aligned}
-\Delta u=f & \text { in } \operatorname{int} B(0, r), \\
u=g \quad & \text { on } \partial B(0, r),
\end{aligned}
$$

then

$$
u(0)=\frac{1}{|\partial B(0, r)|} \int_{\partial B(0, r)} g d \sigma+\frac{1}{d(d-2) \omega(d)} \int_{B(0, r)}\left(\frac{1}{|x|^{d-2}}-\frac{1}{r^{d-2}}\right) f d x
$$

By $\operatorname{int} A$ we denote the interior of A and by $\omega(d)$ we denote the measure of a unit ball in \mathbb{R}^{d}.

Zadanie 3. Let U be an open and bounded subset of \mathbb{R}^{d} and let V be its connected subset such that $V \subset \subset U$ (i.e. the closure of V is a compact subset of U). Prove that there exists a constant C depending only on V such that

$$
\sup _{V} u \leq C \inf _{V} u
$$

for all nonnegative and harmonic in U functions u.
Zadanie 4. Let g be a continuous and bounded function. Provide an explicit formula for the solution to the problem

$$
\begin{array}{rr}
\Delta u & =0 \\
u & =g
\end{array} \quad \text { in int } B(0,1), ~ \text { on } \partial B(0,1) . ~ \$
$$

Hint: Proceed similarly to the case of the half-space. Consider the mapping $x \mapsto \frac{x}{|x|^{2}}$ to 'remove' the singularity.

