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Abstract

In the paper we describe the construction of a smooth complete toric surface from an
exceptional collection of line bundles on a smooth rational surface. In an attempt to
understand the interrelation between these two surfaces we investigate the connection between
an exceptional collection and the underlying variety. We recall the construction of a quiver
and in a toric case give an explicit algorithm assigning to every point of a variety a module
over it.
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Introduction

Derived categories of coherent sheaves on algebraic varieties have been an object of vivid
interest since their discovery in 1960's. An important question is how much geometry of the
underlying variety do they carry. In [BO] Bondal and Orlov prove a theorem which reconstructs
a variety from the derived category provided that its canonical bundle is either ample or anti-
ample. A full exceptional collection is a tool that makes it possible to comprehend such an
overwhelming category. If it exists, it is a sort of basis which reduces the study to simple
combinatorial objects � quivers. The following question arises: how the variety itself can be
seen by means of the quiver?

We address this question for smooth complete toric varieties and exceptional collections of
line bundles on them. This paper describes an explicit algorithm that assigns a module over
the quiver to every point of a variety. The idea behind this construction is to to represent
every point x by the skyscraper Cx. It is a coherent sheaf so it leads to a module over the
quiver which can be described by homogeneous coordinates of x.

The motivation for this work was a paper by Hille and Perling [HP] about toric systems. It
gives an algorithm assigning to every rational smooth surface X, together with an exceptional
collection E of line bundles, a smooth complete toric surface Y (E). Alexey Bondal's conjecture
states that then Y (E) is a degeneration of X. If one could �nd a degeneration encoded in the
exceptional collection on X (which gives an exceptional collection on Y (E)) it would mean
that the derived category of coherent sheaves carries a lot of information the geometry of the
variety itself.

An important step in �nding such a degeneration should be some kind of reconstruction
of a variety from the exceptional collection or a quiver it gives. The results of Craw and Smith
[CS] and also of Bergman and Proudfoot [BP] realise X as a moduli space of modules over the
quiver. However, these constructions rely either on �nding an appropriate stability condition
or on further assumptions about the exceptional collection. The algorithm presented in the
present paper makes it easier to check whether the given stability condition is convenient.

The example we treat is P2 blown up in two di�erent points. There exists an exceptional
collection on it which leads to P2 blown up in two in�nitely close points. These varieties will
accompany us during the exploration of the theory.

This paper is divided into three parts. In Chapter 1 the notion of an exceptional collection
is recalled and some facts about toric surfaces are stated. Then the construction of Hille and
Perling is described. Finally some calculations are presented. Chapter 2 is devoted to quivers.
It starts with the basic de�nitions and then calculations for the main example are done.
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Chapter 3 describes a construction of homogeneous coordinates on toric varieties (see further
[CLS]). These coordinates are �nally used to assign a module over a quiver to every point of
a variety. As an example we present the modules corresponding to points of P2 blown up in
two di�erent points and in two in�nitely close points.

Notation

Throughout this paper X, Y and Z are always smooth complete algebraic varieties de�ned
over C. Coherent sheaves on X form an abelian category Coh(X) whose derived category is
Db(X) = Db(Coh(X)). For E and F coherent sheaves on X the group of homomorphisms
HomOX (E ,F) is sometimes denoted by Ext0OX (E ,F). Moreover, RHom is the functor
between derives categories, i.e. RHom(E ,F) is a complex of abelian groups such that
Hi(RHom(E ,F)) = ExtiOX (E ,F).

For a smooth variety X, KX ∈ Pic(X) is its canonical class. For any divisor D ∈ Pic(X),
χ(D) =

∑
(−1)idimH i(X,O(D)) is the Euler characteristic of D.

For a projective plane P2, H ∈ Pic(P2) denotes the hyperplane class. If there is a sequence
of blow-ups

X = Xt
bt // Xt−1

bt−1 // . . . b1 // X1
b0 // P2,

then Ri ∈ Pic(Xi) denotes the exceptional divisor of the blow-up bi−1. Ri's and H will be
identi�ed with their pullbacks in Pic(X) and thus will be treated as elements of the latter
group.

If X is a toric variety then T = (C∗)dim(X) is the torus acting on it. M = Hom(T,C∗)
is the lattice of characters of T and N = Mˇ= Hom(C∗, T ). N and M are dual lattices so
there is a natural pairing between them which will be denoted by 〈· , · 〉. The variety X is
determined by its fan Σ ⊂ N . Σ consists of cones σ. The one-dimensional cones are rays
and the set of them is denoted by Σ(1). Analogously the set of rays in a cone σ is σ(1). On
the other hand, the set of cones of maximal dimension is denoted by Σmax. On X there are
T -invariant divisors, they form an abelian group DivT (X).

Acknowledgements. I would like to thank Piotr Achinger, Prof. Alexey Bondal, Dr Oskar
K¦dzierski, Prof. Adrian Langer, Mateusz Michaªek and Prof. Jarosªaw Wi±niewski for many
helpful discussions.
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Chapter 1

Exceptional collections and toric

systems

1.1. Exceptional collections

Let X be an algebraic variety. The category Coh(X) of coherent sheaves on it is abelian.
General theory, [GM, chapter III], gives a way to construct from any abelian category A a
triangulated category Db(A) � the bounded derived category. As stated before in the case of
Db(Coh(X)) it will be denoted by Db(X).

Triangulated categories are very big and therefore hard to work with. Fortunately there
exists some kind of basis � exceptional collections. In [B] Bondal introduces the following
de�nitions.

De�nition 1.1.1. An exceptional sheaf is a coherent sheaf E on X such that

HomOX (E , E) = C and ExtiOX (E , E) = 0 for i > 0.

De�nition 1.1.2. An exceptional collection is an ordered collection of exceptional sheaves

(E0, . . . , En) such that ExtkOX (Ei, Ej) = 0 for all k and i > j.

De�nition 1.1.3. An exceptional collection (E0, . . . , En) is full if the smallest triangulated

subcategory of Db(X) containing it is Db(X).

Remark (cf. [RVdB]). The number of elements in a full exceptional collection of sheaves on
X equals the rank of the Grothendieck group K0(X).

Example 1.1.4 (Exceptional collections on Pn). The projective space Pn can be viewed as a
Proj(SymV ), where SymV is a symmetric power of a (n+1)-dimensional vector space V . The
only non-zero cohomology groups of line bundles on Pn are H0(Pn,OPn(k)) = Symk(V ∗)
for k ∈ N and, by Serre duality, Hn(Pn,OPn(−n− 1− k)) = Symk(V ). It follows that
(OPn ,OPn(1), . . . ,OPn(n)) is an exceptional collection on Pn. Note that Sym0(V ) = C.

The way the full exceptional collection generates Db(X) is still complicated; one has to
take all possible translations and cones. Nevertheless full exceptional collections are much
simpler than the whole Db(X) and much work was devoted to understanding them.
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1.2. Toric surfaces

This section presents some facts about toric surfaces. More details and proofs can be found
in [F2].

A smooth complete toric surface Y is determined by its fan, spanned by a collection of
elements v1, . . . , vn ∈ N . We enumerate vi's counterclockwise and consider their indexes, i's,
to be elements of Z/nZ. Then for every i ∈ Z/nZ, vectors vi and vi+1 form an oriented basis
of N . Moreover, for every such pair there exists no other vk lying in the rational polyhedral
cone generated by vi and vi+1 in NQ = N ⊗Q. However, for every i there exists ai ∈ Z such
that vi−1 + aivi + vi+1 = 0. The T -invariant divisors corresponding to vi's are Di's. Every
Di is isomorphic to P1 and the divisors Di and Dj are either disjoint � when |i − j| > 1 or
intersect transversely when |i − j| = 1. In the second case the intersection point is the �xed
point of T -action associated to the cone spanned by vi and vj . Finally, the self intersection
numbers are D2

i = ai, where vi−1 + aivi + vi+1 = 0.

Clearly, the integers ai's allow to reconstruct vi's up to an automorphism of N . However,
not all sequences lead to a well-de�ned toric variety. The admissible ones are determined by
the minimal model program for toric surfaces.

Theorem 1.2.1. Every toric surface can be obtained by a �nite sequence of equivariant blow-

ups of P2 or some Hirzebruch surface Fa.

Equivariant means that the point blown up on Y is a �xed point of torus action. If
a1, . . . , an is the sequence of self-intersection numbers on Y and Ỹ is a blow-up of Y in a
point x = Di ∩Di+1 then the sequence for Ỹ has the form a1, . . . , ai−1, ai − 1, −1, ai+1 − 1,
ai+2, . . . , an, where i's are ordered cyclically. In this case the sequence for Ỹ is called an
augmentation of the sequence for Y . The sequence of self-intersection numbers for P2 is 1, 1, 1
and for Fa it is 0, a, 0,−a and these two sequences determine all admissible ones. In particular,
it implies

Proposition 1.2.2. Let X be a smooth complete toric surface determined by self-intersection

numbers a1, . . . , an. Then Σn
i=1ai = 12− 3n.

1.3. Exceptional sequences and toric systems

In this section we present the algorithm of Hille and Perling described in their paper [HP].

Let X be a smooth, complete, rational surface and let n−2 be the rank of its Picard group.
The Riemann-Roch theorem says that χ(D) = 1 + 1

2D.(D−KX) for any divisor D ∈ Pic(X).
It follows that

χ(D) + χ(−D) = 2 +D2,

χ(D)− χ(−D) = −KX .D.

The following lemma will be useful later.
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Lemma 1.3.1. Let D,E ∈ Pic(X) such that χ(−D) = χ(−E) = 0. Then

(i) χ(D) = −KX .D;

(ii) χ(D) = D2 + 2;

(iii) χ(−D − E) = 0 i� D.E = 1 i� χ(D) + χ(E) = χ(D + E).

Proof. The �rst two assertions follow from the Riemann-Roch theorem. In order to proof the
last one it su�ces to check that χ(−D − E) = +1

2(D + E).(D + E + KX) = 1 + 1
2D.(D +

KX) + 1 + 1
2E.(E +KX)− 1 +D.E = χ(−D) + χ(−E)− 1 +D.E. For the last equivalence

the proof is analogous.

For a smooth and complete X, let E1, . . . , En ∈ Pic(X) be such divisors that
(OX(E1), . . . ,OX(En)) is a full exceptional collection on X. Then, by de�nition,
Hk(X,OX(Ei−Ej)) = ExtkOX (OX(Ej),OX(Ei)) = 0 for k  0 and j > i. Let Ai = Ei+1−Ei
for 1 ¬ i < n and An = −KX −

∑n−1
i=1 Ai = −KX −En+E1. Then, for i's treated as elements

of Z/nZ, the following holds

Lemma 1.3.2 (cf. [HP]). (i) Ai.Ai+1 = 1 for 1 ¬ i ¬ n;

(ii) Ai.Aj = 0 for i 6= j and {i, j} 6= {k, k + 1} for some 1 ¬ k ¬ n;

(iii)
∑n
i=1Ai = −KX .

Proof. The last part of the lemma follows from the de�nition of An.

It is easy to check that χ(−Ai) = 0 for 1 ¬ i ¬ n. For i 6= n it follows immediately from
de�nition of Ai's and for An one needs to use the equality χ(KX + D) = χ(−D). Thus in
order to prove (i) and (ii) the Lemma 1.3.1 can be used.

For n /∈ {i, i + 1} we have χ(−Ai − Ai+1) = χ(Ei − Ei+2) = 0. If i = n − 1 then
χ(−An−1 − An) = χ(En−1 + KX − E1) = χ(E1 − En) = 0 and an analogous equality holds
for i = n. This proves part (i).

In order to prove (ii) for |i − j| = 2 it su�ces to observe that χ(Ei − Ei+2) = χ(Ei+2 −
Ei+3) = χ(Ei−Ei+3) = 0. Then, again by the lemma 1.3.1, 1 = (Ei−Ei+2).(Ei+2−Ei+3) =
(−Ai − Ai+1).(−Ai+2) = Ai.Ai+2 + 1. It follows that for i such that n /∈ {i, i + 1, i + 2}
Ai.Ai+2 = 0. For the intersections An−2.An, An−1.A1 and A2.An analogous tricks works

In order to complete the proof of (ii) one needs to show step by step that Ai.Aj = 0 for
|i− j| = 3, 4, . . . , n2 .

De�nition 1.3.3. Let X be a smooth rational surface such that rkPic(X) = n− 2. Then the

set of n divisors on X is a toric system if it satis�es the conditions of Lemma 1.3.2.

Let us see where such a name comes from. Consider a map A : Pic(X)∗ → Zn given by
A(D) = (A1.D, . . . , An.D). It leads to a short exact sequence
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0 // Pic(X)∗ A // Zn // N // 0.

It turns out that N = Z2 and the images of the standard basis of Zn under the quotient map
de�ne rays of a fan of a complete smooth toric surface Y . More precisely, the following holds

Theorem 1.3.4 (see also [HP], thm. 3.5). Let A1, . . . , An ∈ Pic(X) be a toric system. Let N
be as above and let l1, . . . , ln ∈ N be images of the standard basis of Zn. Then N = Z2 and

l1, . . . , ln generate the fan of a smooth complete toric surface Y with T -invariant irreducible
divisors D1, . . . , Dn such that D2

i = A2
i for every 1 ¬ i ¬ n. In particular, the lattices Pic(X)

and Pic(Y ) with the intersection forms can be identi�ed.

Proof. (after [HP]) As the rank of Pic(X) is n − 2, for n < 3 there is nothing to prove. For
n = 3 Pic(X) = 〈H〉, where H is a positive generator, so Ai = aiH. The condition (i) of
Lemma 1.3.2 implies that all ai's have to be either 1 or −1. Then the map A is given by
A(1) = (1, 1, 1) so clearly N = Z2, l1 = e1, l2 = e2 and l3 = −e1 − e2. It follows that Y = P2.

For n  4 we will show that N = Z2, vectors li and li+1 form an oriented basis of N for
every i and there is no other lk in the rational polyhedral cone generated by li and li+1.

First thing to prove is that the set {Aj |j 6= i, i + 1} forms a basis of Pic(X) for every
i ∈ Z/nZ. Then N = Z2 and {li, li+1} is a base of N . Up to a cyclic renumbering it su�ces
to show that A1, . . . , An−2 is a basis of Pic(X). In fact for i ¬ n − 2 the divisors A1, . . . , Ai
generate a saturated subgroup of Pic(X) of rank i. For i = 2, the subgroup generated by
A1 and A2 is of rank two because A1.A2 = 1, A1.An = 1 and A2.An = 0. If there existed
C ∈ Pic(X) and a1, a2 ∈ Z such that Ai = aiC then the �rst condition would state that both
ai's are non-zero and the non-trivial intersection with An would force An.C 6= 0. But then a
product of three non-zero integers a1a2C.H would be zero. This contradiction shows that in
fact 〈A1, A2〉 ⊂ Pic(X) is of rank two. The fact that it is saturated follows from integrality of
intersection product in Pic(X).

Now the induction works. Let i < n− 2. Then A1, . . . , Ai generate a saturated subgroup
of Pic(X) of rank i. If B =

∑i
j=1 αjAj then B.Ai+2 = 0. But Ai+1.Ai+2 = 1 which proves

that A1, . . . , Ai+1 are linearly independent. The fact that the subgroup generated by them is
saturated follows again from the integrality of intersection product.

Assuming for a while that li's form a fan of a smooth complete toric surface Y let us �nd
self intersection numbers of T -invariant divisors on Y . As mentioned earlier if Di is a divisor
corresponding to li then D

2
i = ai, where li−1 + aili + li+1 = 0. In order to �nd ai, consider

the quotient Pic(X)/A⊥i = Z. Then Ai−1 and Ai+1 are identi�ed with 1 and the image of Ai
is ai = Ai.Ai. We have the diagram, where vertical arrows are projections

0 // Pic(X) A //

��

Zn //

��

N //

=

��

0

0 // Pic(X)/A⊥i
Ã // Z3 // N // 0,

which shows that li−1 + aili + li+1 = 0.

We already know that every pair li, li+1 forms a basis of N = Z2. It su�ces to check, that
there is no lk lying in a cone spanned by li and li+1 and that all these pairs form an oriented
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basis of N . Let us choose an orientation of N given by the basis l1, l2. If there was a vector lk in
a cone spanned by li and li+1 or if any pair li, li+1 would give a reverse orientation of N , then
moving from l1 to ln in a direction compatible with the chosen orientation would lead to more
than one rotations around the origin; let's say r of them. Every rotation gives a set of rays in N
which can be �lled up to a fan of a smooth complete toric surface. Assume that this procedure
requires adding n′ rays. Let a′i be the new intersection numbers. Then the Proposition 1.2.2
tells us that

∑
a′i = 12r−3(n+n′). On the other hand 10−n = K2

x = (
∑
Ai)2 =

∑
ai+2(n−1)

which implies that
∑
ai = 12 − 3n. But passing from the �rst set of rays to the second one

required adding n′ rays, so
∑
a′i =

∑
ai−3n′. All these equalities say that 12−3n = 12r−3n

so r=1.

It is natural to ask what are the exceptional collections of line bundles on a rational surface
X. Hille and Perling in [HP] give an algorithm for �nding some of them provided the sequence
of blow-ups is �xed

X = Xt
bt // Xt−1

bt−1 // . . . b0 // X0.

Here X0 equals either P2 or some Hirzebruch surface Fa.

This sequence leads to a basis of Pic(X). If X0 = P2 then, as described in the Introduction,
H,R1, . . . , Rt+1 form an orthogonal basis:

H2 = 1, R2
i = −1, H.Ri = 0 for all i and Ri.Rj = 0 for i 6= j.

In the case when X0 = Fa for some a  0 let {P,Q} be the basis of Pic(Fa) such that P 2 = 0,
Q2 = −a and P.Q = 1. Then an analogous procedure to the one for P2 leads to a basis
P,Q,R1, . . . , Rt of Pic(X) such that R2

i = −1, Ri.P = 0 = Ri.Q for all i's and Ri.Rj = 0 for
i 6= j.

A full exceptional collection on X0 gives a toric system. By imitating the augmentation
procedure described in the Section 1.2 a toric system on X can be obtained. Moreover, under
some assumptions it comes from a full exceptional collection on X. More precisely, let A =
A1, . . . , Ak be a toric system on Xi−1 (k = i+2 for X0 = P2 and k = i+3 for X0 = Fa). Then
it can be checked that for any l the sequence A1, . . . , Al−2, Al−1−Ri, Ri, Al−Ri, Al+1, . . . , Ak
is a toric system on Xi. It is called an augmentation of A. Here, as before the divisors on
Xi−1 are identi�ed with their pullbacks via bi.

A full exceptional collection on P2 is (O,O(1),O(2)) which gives a toric system H,H,H.
On a Hirzebruch surface Fa for any s ∈ Z the toric system P, sP +Q,P,−(a+ s)P +Q comes
from a full exceptional collection, [HP, prop. 5.2].

De�nition 1.3.5. Standard toric systems are the toric systems on P2 and Fa described above.

A standard augmentation is a toric system on a smooth complete rational surface X that is

an augmentation of a standard toric system.

In order to determine which standard augmentations come from exceptional collections
one has to de�ne a partial order on the set {R1, . . . , Rt}. Geometrically, its a partial order
such that Rj � Ri if the point xj blown up by bj lies on Ri � the exceptional divisor of bi−1.
However, this relation wouldn't be transitive, hence the
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De�nition 1.3.6 (cf. [HP]). Assume i, j > 0 and denote by xi and xj the points on Xi−1 and

Xj−1 respectively, which are blown up by the maps bi and bj. Then � is a partial order on the

set {R1, . . . , Rt} such that Ri � Ri for every i and Rj � Ri i� j > i and bi◦. . .◦bj−1(xj) = xi.

De�nition 1.3.7. A standard augmentation is admissible if it contains no element of the

form Ri −
∑
j∈S Rj such that Rj � Ri for some j ∈ S.

Hille and Perling prove in [HP] the following

Proposition 1.3.8. Every standard augmentation comes from an exceptional collection on

X i� it is admissible.

Remark. If (E1, . . . , En) is an exceptional collection of line bundles, then for any line bundle
L also (E1⊗L, . . . , En⊗L) is exceptional. One can thus assume that any exceptional collection
begins with O.

Example 1.3.9 (Toric systems on P2 blown up in 2 di�erent points). Let X be P2 blown

up in two points and let X
b1−→ bl (P2) b0−→ P2 be a sequence of blowing ups. Then there are

essentially two possible toric systems on X

E1 = H −R1, R1, H −R1 −R2, R2, H −R2,

E2 = H −R1, R1 −R2, R2, H −R1 −R2, H.

The partial order on {R1, R2} is trivial so both are admissible. It means that (OX , OX(H −
R1), OX(H), OX(2H − R1 − R2), OX(2H − R1)) and (OX , OX(H − R1), OX(H − R2),
OX(H), OX(2H −R1 −R2)) are full exceptional collections on X, what can be also checked
by direct calculations. The toric surfaces they give are the following.

In the case of E1 the map from Pic(X) to Z5 is given by 1 0 1 0 1
1 −1 1 0 0
0 0 1 −1 1


If the basis of N is chosen to consist of v1 and v5 (li's are images of the standard basis of Z5

under the quotient map) then v2 = −v5, v3 = −v1 − v5 and v4 = −v1. It gives the fan

Figure 1.1: The fan of P2 blown up in two di�erent points

so the toric variety Y1 = Y (E1) is again X.

For the toric system E2 the corresponding matrix is 1 0 0 1 1
1 −1 0 1 0
0 1 −1 1 0
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If again one choose v1, v5 to be a basis of N then v2 = −v5, v3 = −v1−2v2 and v4 = −v1−v2.
Then the fan is

Figure 1.2: The fan of P2 blown up in two in�nitely close points

so the toric variety Y2 = Y (E2) is P2 blown up in two in�nitely close points.

Recall, that if A = A1, . . . , As is a toric system on X, then the collection it comes from
is (OX , OX(A1), OX(A1 +A2), . . . ,OX(A1 + . . .+As−1)). On the other hand the procedure
of assigning a toric surface to a toric system identi�es Pic(X) and Pic(Y (A)). Therefore in a
natural way it leads to a collection of line bundles on Y = Y (A), namely (OY , OY (D1), . . . ,
OY (D1 + . . .+Ds−1)).

Let's calculate what sequences of sheaves are obtained on Yi's de�ned in the Example
1.3.9.

In Pic(Y1) the following equalities hold D1 = D3 + D4 and D5 = D2 + D3. Moreover,
D2 = R1 is the �rst exceptional divisor and D4 = R2 the second one. The class of hyperplane
H = D2 +D3 +D4. Then

O(D1) = O(D3 +D4) = O(H −R1),

O(D1 +D2) = O(D2 +D3 +D4) = O(H),

O(D1 +D2 +D3) = O(D2 + 2D3 +D4) = O(2H −R1 −R2),

O(D1 +D2 +D3 +D4) = O(D2 + 2D3 + 2D4) = O(2H −R1).

Thus the collection on Y1 is the collection that led to the construction of this variety.

In the case of Y2 one collection is distinguished � (OY2 , OY2(D′1), . . . , OY2(D′1 + . . .+D′4)).
In Pic(Y2) there is D′1 = D′3 +D′4 and D′5 = D′2 + 2D′3 +D′4 so this collection becomes (OY2 ,
OY2(D′3 +D′4), OY2(D′2 +D′3 +D′4), OY2(D′2 + 2D′3 +D′4), OY2(D′2 + 2D′3 + 2D′4)).
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Chapter 2

Quivers and endomorphisms algebras

A full exceptional collection of coherent sheaves on an algebraic variety X allows us to assign
to X a combinatorial object, which under some assumptions encodes information about X
itself and the category Db(X).

2.1. Quivers

In this section we de�ne quivers and modules over them. For further information see [B].

A quiver ∆ is a set consisting of vertices, denoted by pi, and arrows between them. A
�nite quiver is such a quiver that the set of arrows and vertices is �nite. Every arrow can be
understood as a simple path from one vertex to another and every vertex can be viewed as a
constant path, denoted also by pi. In general a path is a sequence of arrows in which the tail
of each following arrow coincides with the head of the previous one. A concatenation de�nes
the composition of paths. Thus, the set C∆ of formal linear combinations of elements of ∆
is an algebra with respect to composition of paths. If the tail of β doesn't coincide with the
head of α then β ◦ α = 0.

If S ⊂ C∆ is any subset then a quiver with relations is the quotient algebra of the path
algebra by the ideal generated by S. This notion allows to consider two paths from one vertex
to another, consisting of di�erent arrows, equal.

Let A be the path algebra of a quiver ∆ with relations S; A = C∆/(S). The vertices
p1, . . . , pn of ∆ are orthogonal projections in A i.e. p2

k = pk, pk ◦ pm = 0 for k 6= m and
id= p1 + . . .+ pn.

A vector space V over C is a left A-module if there exists a left action A×V → V of A on
V . Since id= p1 + . . . + pn we have V =

⊕n
i=1 piV . This equality allows us to consider V as

a set of vector spaces Vi := piV assigned to every vertex of ∆. Then for every i 6= j, Aij i.e.
a space of all paths between pi and pj gives a map Aij ⊗ Vi → Vj . Moreover, all the natural
diagrams are commutative. Left A-modules will also be called representations of A.

The notion of considering an A-module as a set of n vector spaces leads to a de�nition
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of a dimension vector, which for a module V equals (dimV1, . . . , dimVn) ∈ Zn. A set of all
representations of ∆ is clearly a disjoint sum of representations with di�erent dimension
vectors.

Example 2.1.1 (Quivers Sn). The quiver Sn has n vertices {q1, . . . , qn} and between two
adjacent vertices there are n arrows φki : qi → qi+1 (i = 1, . . . , n − 1; k = 1, . . . , n). The
relations are φki+1 ◦ φli = φli+1 ◦ φki . Quiver S3 is shown on the �gure:

Right modules over A, the path algebra over the quiver ∆, correspond to representations
of ∆opp i.e. a quiver obtained from ∆ by reversing directions of all arrows.

An ordered quiver is a quiver with linear ordering of its vertices and such that the tail of
every arrow has smaller index than its head.

2.2. Equivalence of derived categories

An exceptional collection (E1, . . . , En) of sheaves on an algebraic variety X leads to a quiver
with vertices corresponding to Ei's and arrows between them given by HomOX (Ei, Ej),i.e.
there are dimHom(Ei, Ej) arrows from the vertex i to the vertex j. It is of course a quiver with
relations because one map can be presented as a composition in many ways. On the other
hand the condition of being exceptional assures that this quiver is ordered. However, in the
category Coh(X) of coherent sheaves onX there exist also Exti functors providing information
about RHom's between Ei and Ej in the derived category Db(X). These information are not
seen by the structure of a quiver. Hence, a

De�nition 2.2.1. A strong exceptional collection is an exceptional collection (E1, . . . , En) on
X such that Extk(Ei, Ej) = 0 for k > 0 and all i, j.

It follows that if a collection is a strong exceptional collection then the ordered quiver
described at the beginning of this section encodes all information about morphisms between
Ei's.

Let E =
⊕n

i=1 Ei be the direct sum of sheaves in the strong exceptional collection and let
∆ be a quiver associated to this collection. Then the algebra EndOX (E) of endomorphisms of
the sheaf E is the path algebra of the quiver; EndOX (E) = A = C∆/(S) (Proposition 3.3 in
[CS]).

Even more is true. In [B] Bondal has shown
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Theorem 2.2.2. Let (E1, . . . , En) be a full, strong, exceptional collection of coherent sheaves

on a smooth variety X. Then Db(X) the derived category of coherent sheaves on X is equivalent

to the bounded derived category Db(mod-A) of �nite-dimensional right modules over A =
EndOX (

⊕
Ei).

Let Φ : Db(X)→ Db(mod-A) denote the functor inducing equivalence. Then for a coherent
sheaf F on X treated as an element of Db(X)

Φ(F) = RHom(E ,F).

Example 2.2.3 (Quivers associated to Pn). The Example 1.1.4 says that the collection
(O, . . . ,O(n)) on Pn is strong and exceptional. The quiver ∆ associated to it has thus n
vertices and there are n arrows between every two adjacent vertices. Relations say that the
arrows are commutative i.e. φki+1φ

l
i = φli+1φ

k
i . It follows that the obtained quiver is Sn.

2.3. Exceptional collections on P2 blown up in two points

The Example 1.3.9 gives exceptional collections of P2 blown up in two di�erent points and on
P2 blown up in two in�nitely close points. The aim of this section is to understand how their
quivers look like.

2.3.1. Cohomology of line bundles on toric surfaces

In order to check whether these collections are strong and draw the quivers one needs to be
able to calculate ExtiOX (O(D1),O(D2)) for i ∈ {0, 1, 2} and divisors D1, D2. However, the
sheaf O(D1) is locally free, so (cf. [Har, prop. 6.7])

ExtiOX (O(D1),O(D2)) = Hi(X,O(D2 −D1)).

Thus, the question reduces to calculating cohomology groups of line bundles on toric surfaces.

The book [F2, sections 3.4 and 3.5] gives an easy algorithm for �nding the dimension of
H0(Z,Oz(D)) for a toric surface Z and a divisor D on it. Namely, for T -invariant divisors
D1, . . . , Ds on Z, let {vi}i=1,...,s ⊂ N be the generators of rays. To a divisor D =

∑s
i=1 aiDi

there is associated a polyhedron PD = {u ∈MR|〈u, vi〉  −ai for all i} in M . The dimension
of H0(Z,OZ(D)) is then equal to the number of lattice points in PD; dim H0(Z,OZ(D)) =
|(M ∩ PD)|.

Example 2.3.1 (Cohomology of line bundles). Let again X be P2 blown up in two points.
Its fan is on the picture. The rays' generators are: v1 = (1, 0), v2 = (0,−1), v3 = (−1,−1),
v4 = (−1, 0) and v5 = (0, 1).
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Take for example D = D2 + 2D3 + 2D4. Then the polyhedron PD ⊂ Z2 is

There are �ve lattice point in it so dim H0(X,O(D)) = 5.

An easy way to compute the dimensions of the �rst and second cohomology of a line bundle
on Z is given by the Serre duality and the Riemann-Roch theorem. Serre duality states that
H2(Z,OZ(D)) = H0(Z,OZ(KZ −D)) for KZ = −

∑s
i=1Di the canonical divisor on Z. Then

the Riemann-Roch theorem allows us to determine the dimension of H1(Z,OZ(D)).

2.3.2. Calculating quivers

Algorithm described above makes it possible not only to draw the quivers but also to �nd
relations in them. Consider an example.

Example 2.3.2 (Finding relations between paths). Let X be equal to P2 blown up in two
points and let (O,O(H − R1),O(H − R2),O(H)) be the collection of line bundles on X.
This collection isn't full but is strong and exceptional and the quiver associated to it has
one relation. The aim of this example is to �nd this relation and to illustrate how in general
relations in quivers can be determined.

There are four elements in the collection so the quiver ∆ will have four vertices � p1,
p2, p3 and p4. In order to �nd the arrows between them we have to calculate dimensions of
Hom-spaces. Recall, that for line bundles HomOX (O(E1),O(E2)) = H0(X,O(E1 − E2)).

H0(X,O(H − R1)) = C2 and the lattice points in the polytope PH−R1 are (0, 0)
and (0, 1). Thus, the quiver ∆ has two arrows between vertices p1 and p2 � say α1 and
α2.Also dim(H0(X,O(H − R2))) = 2 this time with lattice points inside the polytope
being (0, 0) and (1, 0). Then β1 and β0 are the two arrows between p1 and p3. Moreover,
dim(H0(X,O(R1 −R2))) = 0, dim(H0(X,O(R1))) = 1 and dim(H0(X,O(R2))) = 1 with
only (0, 0) in the non-empty polytopes. The quiver ∆ is then
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Figure 2.1: Relations in a quiver

Dim(X0(Z,O(H))) = 3 but in ∆ there are four paths from p1 to p4, namely : γα1, γα2, δβ1

and δβ2. Therefore two of them has to be identi�ed. The lattice points in PH are (0, 0), (0, 1)
and (1, 0). The concatenation of arrows corresponds to adding the lattice points. Therefore,
the lattice coordinates of γα1 are (0, 0)+(0, 0) = (0, 0). The remaining paths have coordinates
respectively (0, 1), (0, 0) and (1, 0). It follows that γα1 = δβ1 as ways from p1 to p4. The quiver
∆ is then the quiver on the �gure 2.3.2 with one relation

γα1 = δβ1.

Coming back to the Example 1.3.9 and P2 blown up in two points. Direct calculations
show that the collection (O, O(H − R1), O(H), O(2H − R1 − R2), O(2H − R1)) on X is
strong and its quiver is:

As on the �gure 2.3.2 the �rst vertex of the quiver is the one on the left, the second one -
the one on the top and then the remaining ones in order from left to right.

The relations are
γα1 = δβ,

βµ = ηγα2,

µεα1 = ηδεα2.

Also the second collection on X, that is (O, O(H − R1), O(H − R2), O(H),
O(2H −R1 −R2)) is strong. Its quiver is
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with relations
γα1 = δβ1,

λα2 = µβ2,

λα1 = ηδβ2,

µβ1 = ηγα2.

The Example gave also collections of sheaves on toric varieties obtained from toric systems.
In the case of the �rst collection, the toric variety Y1 was equal X and the collection remained
unchanged. The second collection gave Y2 equal to P2 blown up in two in�nitely close points.
In the basis of T -invariant divisors associated to rays of its fan the obtained collection is (O,
O(D′1),O(D′1+D′2),O(D′1+D′2+D′3),O(D′1+D′2+D′3+D′4)). It is a full, exceptional collection
on Y2 but it isn't strong. There is one one-dimensional Ext-space; Ext1(O(D1),O(D1 +D2))=
C. Nevertheless it still makes sense to draw a quiver obtained from this collection which turns
out to be

with one relation
µεα1 = ηδεα2.

20



Chapter 3

Points of X and modules over a quiver

For a smooth algebraic variety X and a strong full exceptional collection of coherent sheaves
(E1, . . . , En) there is a quiver ∆, which encodes the structure of A =End(E) for E =

⊕
Ei. The

Theorem 2.2.2 allows one to assign to every sheaf F on X a complex of modules over ∆, i.e.
an element of Db(mod-A).

Let x be any point of X, Then Cx � the skyscraper sheaf of x is coherent. In this section
we will calculate what complex of modules is associated to it.

The Proposition 6.7 of [Har] states that for any locally free F sheaf of �nite rank on X
and any sheaf G

Exti(F ,G) = Hi(X,Fˇ⊗ G),

where Fˇ= Hom(F ,OX) is the dual sheaf.

Thus, for a line bundle L on X, Exti(L,Cx) = Hi(X,Lˇ⊗ Cx) = Hi(X,Cx) is non-zero
only when i = 0 and then is equal to C.

A complex C of objects of an abelian category with only one non-zero homology group is
quasi-isomorphic to the complex H∗(C). It follows that the complex RHom(L,Cx) is quasi-
isomorphic to a complex consisting only of C in its zeroth grading.

To sum up, let (O(E1), . . . ,O(En)) be an exceptional collection on X consisting of line
bundles and let ∆ be the quiver obtained from it. Let p1, . . . , pn be the vertices of ∆ and let
A = C∆/(S) be its path algebra for some relations S ⊂ C∆. The functor Φ of the Theorem
2.2.2 associates to every point x in X, by means of Φ(Cx), a module with dimension vector
(1, . . . , 1), i.e. a representation of a quiver having over every vertex p ∈ ∆ a one-dimensional
vector space Vp. It remains to determine how Ai,j 's, paths from pi to pj , act on these spaces.
An arrow α ∈ Aij determines a linear map Vpi → Vpj . Thus, after choosing bases in Vpi for
all 1 ¬ i ¬ n, every arrow α should be labelled with a complex number λα representing the
matrix of linear map from C to C.

However, if one changes the bases of Vpi 's then also λα's change. Thus, two labellings of
arrows of ∆ represent the same module if the di�er by the action of H = GL(1,C)n. It is easy
to see that for the described action an element (h1, . . . , hn) of H acts on λα for α ∈ Aij by
λα → hih

−1
j λα.
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Remark. The Theorem 2.2.2 is about right modules over a quiver. As mentioned in the
Section 2.1 they correspond to left modules over an opposite quiver i.e. a quiver with all
arrow reversed. Thus, the modules corresponding to points will be drawn as representations
of the opposite quivers.

Example 3.0.3 (Modules corresponding to points of P2). The exceptional collection on
P2 = P(V ) is (O, O(1), O(2)). Since H0(P2,O(1)) = V ∗, choosing the basis of H0(P2,O(1))
is the same as choosing coordinates on V . If x ∈ P2 can be written in this coordinates as
[λ0 : λ1 : λ2], then a representation of Sopp3 assigned to x has dimension vector (1,1,1) and
the following arrows:

Now, the goal is to generalise this example to the cases of any toric surface X with an
exceptional collection of line bundles on it. This is done in two steps. T -invariant divisors
label arrows of a quiver and give homogeneous coordinates on X.

3.1. T -invariant divisors and arrows in a quiver

Let O(Ei) and O(Ej) be two elements of an exceptional collection. The paths between
their vertices in the quiver correspond to H0(X,OX(Ej − Ei)). On the other hand
dim(H0(X,OX(D)) is the number of e�ective divisors linearly equivalent to D. If X is a
toric variety such that the rays' generators span N there is a short exact sequence

0 // M // DivT (X) // Pic(X) // 0

Thus dim(H0(X,OX(D))) is the number of e�ective T -invariant divisors linearly equivalent
with D.

Hence, for an exceptional collection of line bundle on a toric variety X every arrow can
be labelled with an e�ective T -invariant divisor.

Example 3.1.1 (Labelling quivers with divisors). In section 2.3.2 three quivers were
calculated. Let's see what are the divisors corresponding to arrows in them.

In the �rst case X was equal to P2 blown up in two points with T -invariant divisors
D1, . . . , D5 and a collection (O, O(D1), O(D1+D2), O(D1+D2+D3), O(D1+D2+D3+D4)).
Moreover, in Pic(X) there were two relations D1 = D3 + D4 and D5 = D2 + D3 (compare
the �gure 1.3.9) The labelling of a quiver is then
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The second collection considered was again onX but this time of the form (O, O(D3+D4),
O(D2 +D3), O(D2 +D3 +D4), O(D2 + 2D3 +D4)). Its quiver is

The third collection was on Y2 equal P2 blown up in two in�nitely close points. The T -
invariant divisors were again called D1, . . . , D5 but the relations in Pic(Y1) were slightly
di�erent: D1 = D3 + D4 and D5 = D2 + 2D3 + D4 (see the �gure 1.3.9). The quiver of a
collection (O, O(D1), O(D1 +D2), O(D1 +D2 +D3), O(D1 +D2 +D3 +D4)) is then

Notice that labelling arrows with T -invariant divisors gives another way to �nd relations
in the path algebra.

3.2. Homogeneous coordinates on toric varieties

Let X be a toric variety with a strong, full, exceptional collection of line bundles
(O(E1) . . . ,O(En)) and let ∆ be the quiver associated to this collection. Then every arrow
in ∆ is an e�ective T -invariant divisor. There is a way to de�ne coordinates on X depending
on its invariant divisors. Hence, every point x ∈ X gives a module over ∆ and the complex
numbers labelling arrows correspond to these coordinates.
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The following de�nitions and propositions are generally known and here are cited after
[CLS] where also all proofs can be found.

3.2.1. Preliminaries about geometric quotients

Consider an algebraic group G acting on a variety X. G acts on X algebraically if the action
(g, x)→ gx induces a morphism

G×X → X.

In order to get the best properties of a quotient map a good categorical quotient is de�ned.

De�nition 3.2.1 (see also De�nition 5.0.5 in [CLS]). Let G act on X and let π : X → Y be

a morphism constant on G-orbits. π is a good categorical quotient if:

(i) for every open U ⊂ Y the natural map OY (U)→ OX(π−1(U)) induces an isomorphism

OY (U) ' OX(π−1(U))G;

(ii) for every closed and G-invariant W ⊂ X, π(W ) ⊂ Y is closed;

(iii) for every closed, disjoint and G-invariant W1,W2 ⊂ X, π(W1) and π(W2) are disjoint

in Y .

A good categorical quotient is often denoted by π : X → X//G. The map π has some
properties analogous to quotients in topology.

Theorem 3.2.2 (cf. Theorem 5.0.6 in [CLS]). Let π : X → X//G be a good categorical

quotient. Then

1. Given any diagram

X
φ //

π ""FFFFFFFF Z

X//G

φ̃
<<

where φ is a morphism such that φ(gx) = φ(x) for g ∈ G and x ∈ X, there exists a

unique morphism φ̃ making the diagram commutative;

2. π is surjective;

3. a subset U ⊂ X//G is open i� π−1(U) ⊂ X is;

4. if U ⊂ X//G is open and non-empty then π|π−1(U) : π−1(U) → U is a good categorical

quotient;

5. for x, y ∈ X
π(x) = π(y)⇐⇒ Gx ∩Gy 6= ∅.

The best quotients are those where points are orbits. For good categorical quotients this
condition is equivalent to the fact that orbits are closed.
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Proposition 3.2.3 (see also Proposition 5.0.8 in [CLS]). Let π : X → X//G be a good

categorical quotient. Then the following are equivalent:

1. all G-orbits are closed in X;

2. for x, y ∈ X
π(x) = π(y)⇐⇒ x and y lie in the same G-orbit;

3. π induces a bijection between G-orbits in X and X//G.

De�nition 3.2.4. A good categorical quotient is called a geometric quotient if it satis�es the
conditions of the Proposition 3.2.3.

A good geometric quotient is denoted by X/G.

3.2.2. Toric varieties as geometric quotients

Let X be a toric variety with the fan Σ ⊂ N . Assume moreover, that Σ(1) spans N and that
Σ is simplicial i.e. for every cone σ ∈ Σ its minimal generators are linearly independent. Then
the short exact sequence

0 // M // ZΣ(1) // Pic(X) // 0

after applying HomZ(· ,C∗) gives

0 // G // (C∗)Σ(1) // N // 0.

The group G = Hom(Pic(X),C∗) can be written as a subgroup of (C∗)Σ(1) by

G = {(tρ) ∈ (C∗)Σ(1)|
∏
ρ t
〈ei,vρ〉
ρ = 1 for 1 ¬ i ¬ n}. Here e1, . . . , en is a basis of M and

vρ ∈ N are the rays' generators.

G acts on CΣ(1). After removing an exceptional set V from CΣ(1) we will get
(CΣ(1) \ V )/G = X.

The set V is de�ned as a zero set of an ideal B(Σ). Let S = C[xρ|ρ ∈ Σ(1)] be the
coordinate ring of CΣ(1). For every cone σ ∈ Σ let xσ̌ =

∏
ρ/∈σ(1) xρ ∈ S. Then the irrelevant

ideal B(Σ) is de�ned as B(Σ) = 〈xσ̌|σ ∈ Σmax〉 ⊂ S.

It remains to construct a map from CΣ(1) \ V (B(Σ)) to X that would be constant on
G-orbits and therefore would de�ne a geometric quotient. The �rst step is to de�ne a toric
structure on CΣ(1)\V (B(Σ)). Let {eρ|ρ ∈ Σ(1)} be the standard basis of ZΣ(1). For each σ ∈ Σ
de�ne the cone σ̃ = Cone(eρ|ρ ∈ σ(1)) ⊂ RΣ(1). These cones form a fan Σ̃ ⊂ ZΣ(1)⊗ZR = RΣ(1)

which is the fan of CΣ(1) \ V (B(Σ)). Moreover, the map eρ → vρ de�nes a map of lattices
ZΣ(1) → N compatible with both fan structures. Thus, it gives a map π : CΣ(1)\V (B(Σ))→ X
which is a geometric quotient (see also Theorem 5.1.10 of [CLS]).

Example 3.2.5 (Homogeneous coordinates on P2 blown up in two points). Recall that if X
is P2 blown up in two points, then its fan is the following.
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X should be then a geometric quotient of C5 \ V by a group G. By de�nition

G = {(tρ) ∈ (C∗)Σ(1)|
∏
ρ

t〈ei,vρ〉ρ = 1 for 1 ¬ i ¬ n} =

= {(t1, . . . , t5) | t1t−1
3 t−1

4 = 1, t5t−1
2 t−1

3 = 1} = {(µγ, λ, µ, γ, λµ)}λ, µ, γ∈C∗ .

The set V is the zero set of an ideal

B(Σ) = 〈x2x3x4, x3x4x5, x1x4x5, x1x2x5, x1x2x3〉.

Hence,

V = {x1 = 0, x3 = 0}∪{x1 = 0, x4 = 0}∪{x2 = 0, x4 = 0}∪{x2 = 0, x5 = 0}∪{x3 = 0, x5 = 0}.

In other words, to every point x ∈ X one can assign �ve complex numbers (x1, . . . , x5)
such that

xi = 0⇒ xi+2 xi+3 6= 0,

where i is treated as an element of Z/5Z.

Moreover, points (x1, . . . , x5) and (x′1, . . . , x
′
5) are identi�ed if there exist λ, µ, γ ∈ C∗ such

that

x1 = µγx′1,

x2 = λx′2,

x3 = µx′3,

x4 = γx′4,

x5 = λµx′5.

Example 3.2.6 (Homogeneous coordinates on P2 blown up in two in�nitely close points). If
Y is P2 blown up in two in�nitely close points, then its fan is
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The associated group G is

G = {(t1, . . . , t5) ∈ (C∗)5 | t1t−1
3 t−1

4 = 1, t5t−1
2 t−2

3 t−1
4 = 1} =

= {(µγ, λ, µ, γ, λµ2γ)}λ, µ, γ∈C∗ .

The set V depends only on rays lying in common maximal cones, therefore it is the same as
in the previous example.

Hence, to every point y ∈ Y one can assign �ve complex numbers (y1, . . . , y5) such that

yi = 0⇒ yi+2 yi+3 6= 0,

where again i is treated as an element of Z/5Z

Moreover, points (y1, . . . , y5) and (y′1, . . . , y
′
5) are identi�ed if there exist λ, µ, γ ∈ C∗ such

that

y1 = µγy′1,

y2 = λy′2,

y3 = µy′3,

y4 = γy′4,

y5 = λµ2γy′5.

3.3. Modules corresponding to points

Let again X be a toric surface with a fan Σ. Let D1, . . . , Dn be T -invariant divisors
corresponding to the rays of Σ. The number n of these divisors is equal to the rank of the
Picard group Pic(X) increased by 2. On the other hand this is the rank of the Grothendieck
group K0(X) (see [F1, Prop. 18.3.2] and [Hil, Thm. 2.2]). Thus, by the remark in the Section
1.1, n is the number of sheaves in any full exceptional collection on X.

Let now (O(L1), . . . ,O(Ln)) be such a collection consisting of line bundles and let ∆
be its quiver. The previous sections allow us assign to every point x ∈ X its coordinates
(x1, . . . , xn) ∈ Cn \ V , for some exceptional set V , up to an action of a (n − 2)-dimensional
torusG ⊂ (C∗)n. These coordinates come fromD1, . . . , Dn. On the other hand, the T -invariant
divisors label the arrows of ∆. A module M over ∆ with a dimension vector (1, . . . , 1) is
determined by a labelling arrows of ∆ with complex numbers. Two such labellings de�ne the
same module if they di�er by an action of a n-dimensional torus H = (C∗)n.

A point x̄ = (x1, . . . , xn) ∈ Cn \ V associated to x ∈ X determines a labelling of the
arrows of ∆, i.e. a labelling by an e�ective divisor

∑n
i=1 biDi is understood as a labelling by∏n

i=1 x
bi
i ∈ C. This induces an action of G on the labellings of ∆. If this action is compatible

with the action of H, i. e. if from the fact that two labellings di�er by the action of G it follows
that they di�er by the action of H, then there is a well-de�ned map from X to modules over
∆ with the dimension vector (1, . . . , 1).

27



Theorem 3.3.1. Let X be a toric surface with the simplicial fan Σ ⊂ N such that Σ(1) spans
N . Let also (O(E1), . . . ,O(En)) be a full exceptional collection on X with a quiver ∆. Then

labelling arrows of ∆ with homogeneous coordinates of X extends to a well-de�ned map which

assigns to every point x of X an isomorphism class of a module Mx over ∆ with dimension

vector (1, . . . , 1).

Remark. Craw and Smith in [CS] study the moduli spaceM of modules over a quiver.
M contains only modules which don't have some �forbidden� submodules; so called semistable
ones. However, the construction presented in the above theorem may assign to a point x of
X a module which isn't semistable. Thus, the map from X to M may not be everywhere
de�ned. This problem is addressed in Proposition 4.1 of [CS] which gives conditions under
which the map form a projective toric variety X to the moduli space M of modules over a
quiver is regular. Moreover, Theorem 5.4 of the same paper says when it is an isomorphism.

Proof. As mentioned before it su�ces to check whether the actions of G and H on labellings
of ∆ are compatible.

H changes the bases in vector spaces, so it acts in the same way on any paths between
two di�erent vertices. Let us �rst check that it is also true for G.

The linear equivalence between T -invariant divisors is given by the pairing between M
and N - the characters' lattice and its dual. This can be seen from the short exact sequence

0 // M // DivT (X) // Pic(X) // 0.

The T -invariant divisors correspond to the rays of the fan Σ of X. If vρ1 , . . . , vρn ∈ N
are the generators of the rays, then the above map from M to DivT (X) is given by m →
〈m, vρ1〉D1 + . . .+ 〈m, vρn〉Dn. Hence, the linear equivalences between T -invariant divisors are
given by

〈ei, vρ1〉D1 + . . . 〈ei, vρn〉Dn ≈ 0 ∀i,

where ei's form a basis of M .

Now, recall that G = {(tρ) ∈ (C∗)Σ(1)|
∏
ρ t
〈ei,vρ〉
ρ = 1 for 1 ¬ i ¬ n}. Together with the

previous paragraph it tells us that the action of G on DivT (X) preserves linear equivalences,
i.e. G acts in the same way on linearly equivalent divisors. On the other hand, the paths
between two vertices pi and pj in ∆ correspond to T -invariant e�ective divisors linearly
equivalent with Ej − Ei. It follows that G acts in the same way on all paths between two
given vertices.

Let p1, . . . , pn be vertices of ∆. For any g ∈ G we will �nd h = (h1, . . . , hn) ∈ H which
acts on labellings of arrows the same as g. We may assume that ∆ is connected, otherwise the
algorithm described below should be repeated for all its connected components. Put h1 = 1
and choose any path p1 → pj1 → . . .→ pjk in ∆. Then the values of hi are determined by the
action of g for every i such that pi is a vertex of this path. In order to see that notice, that
since h1 is �xed, hj1 can take only one possible value and the same is true for all the following
vertices in this path. On the other hand every vertex pi of ∆ can be reached by a path that
starts in a vertex pj such that hj is already determined (one possible way to see that is to
recall that the Depth-�rst search algorithm visits every vertex of an oriented graph). Thus,
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the value of hj is also determined. The element h = (h1, . . . , hn) does not depend on the paths
chosen because G and H act in the same way on any paths between given vertices. Thus, for
any g ∈ G we have found h ∈ H which acts on labellings in the same way as g does.

Let us look at examples. The easiest case of P2 was already described. Before proceeding
to other examples recall, that all quivers are drawn with reverse orientation due to the fact
that Mx is a right module over ∆.

Example 3.3.2 (Modules corresponding to points of P2 blown up in two points). All the
calculations were made before, now it su�ces to change the labelling by divisors to the labelling
by homogeneous coordinates (x1, . . . , x5). In the case of the quiver of (O, O(H −R1), O(H),
O(2H −R1 −R2), O(2H −R1)) the module corresponding to x = (x1, . . . , x5) is

and in the case of (O, O(H −R1), O(H −R2), O(H), O(2H −R1 −R2)) it is

Example 3.3.3 (Modules corresponding to point of P2 blown up in two in�nitely closed
points). The collection on P2 blown up in two in�nitely close points considered before is (O,
O(D′1), O(D′1 +D′2), O(D′1 +D′2 +D′3), O(D′1 +D′2 +D′3 +D′4)). Then a module corresponding
to y = (y1, . . . , y5) is the following.
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