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Lattice Polygons and the Number 12 

Bjorn Poonen and Fernando Rodriguez-Villegas 

1. PROLOGUE. In this article, we discuss a theorem about polygons in the plane, 
which involves in an intriguing manner the number 12. The statement of the 
theorem is completely elementary, but its proofs display a surprisingly rich variety 
of methods, and at least some of them suggest connections between branches of 
mathematics that on the surface appear to have little to do with one another. 

We describe four proofs of the main theorem, but we give full details only for 
proof 4, which uses modular forms. Proofs 2 and 3, and implicitly the theorem, 
appear in [4]. 

2. THE THEOREM. A lattice polygon is a polygon 9 in the plane R2 all of whose 
vertices lie in the lattice Z2 of points with integer coordinates. It is convex if for 
any two points P and Q in the polygon, the segment PQ is contained in the 
polygon. Let l(9?) be the total number of lattice points on the boundary of 9. If 
we define the discrete length of a line segment connecting two lattice points to be 
the number of lattice points on the segment (including the endpoints) minus 1, 
then lC?A) equals also the sum of the discrete lengths of the sides of 9. 

We are interested in convex lattice polygons such that (0, 0) is the only lattice 
point in the interior of 9. For such 9, we can define a dual polygon 9 V as 
follows. Let P1, P2 .. , p,n be the vectors representing the lattice points along the 
boundary of 9, in counterclockwise order. For convenience, indices are consid- 
ered modulo n, so that Pn+1 = p1, etc. Define qi to be the vector difference 
pi+, - pi. We will soon see that the kindergarten process of connecting the dots 
with straight lines from q1 to q2 to ... to qn and back to q1 traces out counterclock- 
wise the boundary of a new convex lattice polygon whose only interior lattice point 
is (0, 0); some of the qi may coincide. For now, however, we define 9 v simply as 
the convex hull of {q1, q2, . . ., qnj; the convex hull of a set S is the smallest convex 
set containing S. One can show that 9 VV is the 180? rotation of 9. 

We are now ready to state the theorem. 

Theorem 1. Let 9 be a convex lattice polygon whose only interior lattice point is 
(0,0 ), and let 9 v be its dual. Then 1C9) + 1l9 v) = 12. 

An instance of the theorem is illustrated in Figure 1. 

3. OTHER MANIFESTATIONS OF 12. How can we "explain" the 12? One way 
would be to relate it to other appearances of 12 in mathematics. People in 
different fields brainstorming for an answer to the question "What is 12?" would 
likely produce widely varying results: 

(A) To one who specializes in algebraic geometry, 12 might be the number 
appearing in Noether's formula 12(1 + Pa) = K2 + c2, which relates certain 
integer invariants of an algebraic surface. This formula is a special case of 
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Figure 1. A polygon _ and its dual. Note that 5 + 7 = 12. 

the Hirzebruch-Riemann-Roch theorem [6, pp. 363, 432] and the 12 here 
comes from the coefficient of x2 in the Taylor series 

x x x2 x4 x6 

ex- 11 2 12 720 30240 

whose nth coefficient is B,/n!, where Bn denotes the nth Bernoulli number. 
(B) To one who studies automorphic forms, 12 might be the weight of A(z), 

which is the cusp form of smallest weight for SL2(Z). 
(C) To one who dabbles in astrology, 12 might be the number of signs in the 

zodiac. 

We relate the 12 in our theorem to (A) and (B) only! 

4. THE PROOFS. We sketch four proofs, using the following: 

1, Exhaustion 
2. Stepping in the space of polygons 
3. Toric varieties 
4. Modular forms 

The first two have the advantage of being completely elementary, but the last 
two do a better job of explaining the 12. Only the last proof is new, so it is the only 
one that we give in full. 

We say that a polygon is legal if it is a convex lattice polygon in R2 and 
o = (0, 0) is its only interior lattice point. 

5. PROOF 1: EXHAUSTION. Exhaustion means that we are going to list all legal 
polygons, and verify Theorem 1 for each, one at a time. If we take this literally, we 
will soon be truly exhausted, because there are infinitely many legal polygons. 

To cut down the number of polygons we need to consider, we can define a 
notion of equivalence. Let SL2(Z) (respectively, GL2(Z)) denote the group of 
2-by-2 matrices A = [b such that a, b, c, d E Z and det A = 1 (respectively, 
det A e {1, - 1}). Every matrix A E GL2(Z) determines a linear transformation 
of the plane R2 that maps Z2 bijectively onto itself, so A maps legal polygons to 
legal polygons. 

We say that two legal polygons 9 and d' are equivalent if there exists an 
A E GL2(Z) that transforms 9 into S. In that case, 1C5) = l(S), and A trans- 
forms 9 v into d' v or the 180? rotation of ? v, depending on the sign of det A. 
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Hence proving Theorem 1 for 91 is the same as proving it for d. If we knew that 
there were only finitely many equivalence classes of legal polygons, and if we could 
find a list of legal polygons representing these classes, then we could prove 
Theorem 1 by checking the polygons on this list. 

The desired finiteness does hold, and in fact, much more is true. For d ? 2, a 
convex lattice polytope in R d is the convex hull 91 of a finite set of points with 
integer coordinates, such that the points are not all contained in a hyperplane; this 
ensures that 91 is d-dimensional. Hensley [7] bounded the volume and the number 
of boundary lattice points in terms of d and the number k of interior lattice points 
when k ? 1; this result for d = 2 was proved earlier by Scott [14], and Hensley's 
bounds have been improved in [11]. These results easily imply the following: 

Theorem 2. Fix integers d ? 2 and k ? 1. Up to the action of GLd(Z) and transla- 
tion by lattice points, there are only finitely many convex lattice polytopes in R' having 
exactly k interior lattice points. 

Remark. Theorem 2 would be false if we allowed k = 0. 

In the case of interest (d = 2 and k = 1), there are exactly 16 equivalence 
classes. Polygons representing these equivalence classes are listed in Figure 2. We 
leave it to the reader to pair them with their duals (up to equivalence), and to 
verify that Theorem 1 holds. Some polygons are self-dual. 

4?~~~~~~. A Q K.. ........ 
izK .. . ... A?.......z!J ... 
........... .......... L 6I......... 
......... ... ....... I L ....... 
Figue 2 Th 16equialece.lases.o.leal.olyons 

the therare 1, p +.P.. P2.P3 ......p.. 
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Warning. Suppose that 9 is a legal polygon with a counterclockwise labeling 
Pl P2 ... , P, of its boundary lattice points. Then the polygon with boundary 
lattice points p1, Pi + P2' P2' P3, * , p,n need not be legal: it may fail to be convex. 

We can prove Theorem 1 by 

1. verifying it for a single legal polygon 90; 
2. proving that for any 9, there is a sequence of legal polygons starting from 

90 and ending with 9, sudh that each polygon is a neighbor of its successor; 
and 

3. checking that the value of 1C9) + 1(g9 V) is unchanged when 9 is replaced 
by a neighboring legal polygon. 

This method of proof is discussed in a series of exercises in [4, Section 2.5]. 
Most people would agree that such a proof is more satisfying than the one in 

Section 5: it explains why 1(w) + 1(9 v) must be constant. But it does not explain 
why that constant should be 12. 

7. PROOF 3: TORIC VARIETIES. We do not want to go too deeply into the 
geometry of toric varieties here; readers with a basic knowledge of algebraic 
geometry who want more details are encouraged to consult [4], especially Sections 
2.5 and 4.3. Other readers may choose to skip this section; it is not needed in the 
rest of the paper. 

To any legal polygon 9, one can associate a 2-dimensional toric variety Tg, 
which is a kind of algebraic variety. The condition that o be the only interior lattice 
point of 9 is exactly what is required to make the surface Tg, nonsingular. The 
arithmetic genus Pal the self-intersection K2 of the canonical bundle, and the 
second Chern class c2 of the tangent bundle are geometric invariants of the 
surface T. that can be expressed in terms of the combinatorics of 9; in fact it 
turns out that they equal 0, 1(9D), and l(_9 V), respectively. Hence Theorem 1 is 
simply a restatement of Noether's formula 12(1 + Pa) = K2 + c2 for 2-dimensional 
nonsingular toric varieties. If one proves Noether's formula for surfaces in general 
using algebraic-geometric methods, as done in [9, p. 154], one obtains a new proof 
of Theorem 1. The point of view taken in [4] is the reverse; the combinatorial proof 
of Section 6 can be used to give an independent proof of Noether's formula in the 
special case of toric surfaces. 

This proof is just one instance of a great exchange that has been taking place 
between two disciplines. Results in the combinatorics of lattices are being used to 
prove results about toric varieties, and vice versa, to the benefit of both sides. 

Remark. The proof here and the proof of the previous section are related, as 
discussed in [4, Section 2.5]. If 9 and 6I are neighboring legal polygons and d' is 
the one with more boundary lattice points, then T can be constructed geometri- 
cally from T, by "blowing up a point" [6, p. 28]. The relation Pa = 0 for toric 
varieties is implied by the classical fact that the arithmetic genus Pa of a 
nonsingular surface is a birational invariant. 

8. PROOF 4: MODULAR FORMS. We now give the final proof, using transfor- 
mation properties of the logarithm of the modular form A(z). No prior knowledge 
of modular forms is required (we state a few facts without proof), but we use some 
undergraduate topology and complex analysis. 
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8.1. Interpretation via matrices. Let Pi, P2, ... ., Pn be as in Section 2. 

Lemma 3. The vectors P1 and P2 form a basis for the lattice Z2 that has the same 
orientation as the standard basis (1, O), (0, 1). 

Proof: Since the pi were chosen in counterclockwise order, it suffices to show that 
p1 and P2 span Z2. If v is a lattice point not of the form m Pi + n P2' then 
translating v by such a combination yields a new lattice point w in the closed 
parallelogram P that has the vectors Pi and P2 as sides, such that w is not a vertex 
of P. Replacing w by Pi + P2 - w if necessary, we can assume that w is in or on 
the triangle with vertices o, Pi, P2 but is not equal to any of these vertices. Since 9 
has no interior lattice point other than o, the point w cannot be in the interior of 
the triangle. For the same reason it cannot be in the interior of either side with 
endpoint o. Hence w is in the interior of the segment joining Pi to P2. This also is 
a contradiction, since then w should have been listed as a boundary lattice point 
between p1 and P2. U 

Remark. Lemma 3 could also be derived by applying Pick's formula [4, p. 113] to 
the triangle with vertices o, P1, P2. Pick's formula states that the area of a lattice 
polygon equals I + B/2 - 1, where I is the number of interior lattice points, and 
B is the number of boundary lattice points. See [3] and [5] for further discussion of 
this formula. 

Lemma 3 implies that the 2 x 2 matrix [p1 whose rows are Pi and P2 written 
rP2] 

as row vectors belongs to SL2(Z). Similarly, [2 E SL2(Z). The matrix M such 
that P3 

[Pi] [P2] 
P2] P3] 

has the form M = [? Since M EL2(Z) also, c = -1. In general, for each i, 

we have a matrix Mi [ J] such that i [- 1 di] 

M[Pi-1] 
P 

With respect to the basis {Pi-1, pi} we then have 

Pi-, = (1,0), pi = (0,1), pi+1 = di), 

qi-l = ( - 1, 1), qi = ( - 1, di - 1), (1) 

and qi - qi-l = nipi where ni = di - 2. Since 9 is convex, the point Pi, of 9 
must lie in the half plane x + y < 1 below the line through pi and pi-1; this forces 
ni < 0. If pi is a vertex (as opposed to being in the interior of one of the sides), 
then ni < 0. At this point, we can explain why the dual of a legal polygon is legal. 

Proposition 4. If 9 is a legal polygon, then drawing segments from q1 to q2 to ... to 
qn and back to q1 results in a new legal polygon. In particular, 39 v is legal. 

Proof: As we traverse the boundary of 9 once in a counterclockwise direction, the 
direction we face also rotates 360? counterclockwise. Since the vectors qi are 
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translates of the vectors forming the sides of the polygon (the vectors that show the 
direction of our motion), the segments between them trace out some lattice 
polygon 3,' that contains o. 

Using (1), we see that if qi- 1 0 q1, then the only lattice points inside or on the 
solid triangle with vertices o, qi-1, qi are o and those on the side joining qi-1, qi. 
This holds for all i, so o is the only interior lattice point of 9"'. 

It remains to show that 9' is convex. If pi is a vertex of 9 (or equivalently, 
ni 0 0), then we may characterize q i-1, qi as the primitive vectors along sides of 9 
coming in and out of pi, respectively, when 9 is given the counterclockwise 
orientation. A vector (a, b) is primitive if gcd(a, b) = 1. 

Now let pi, pj, with i < j, be two consecutive vertices of 9 that determine a 
side of 9 of length m. Note that qi = q_1. By (1), qi - qi-l = nipi and 
qj - qj1 = njpj. Then, since pi and pj must be linearly independent, qi is a 
vertex of 9'. Since pi and pj are vertices, we have ni < 0 and nj < 0, so - pi and 
- pj are the primitive vectors along sides of 9' coming in and out of qi, 
respectively. Finally, pj - Pi = mqi, so o = qi + (1/m)pi + (1/m)(-p1) is in the 
cone {qi + api + /3(-pj): a, /3 E R>0} determined by the sides of 9' at q . It 
follows that 9' is convex. U 

Since 

P o [ Pn Po 
1 P1] Pn+1 j [P 1 j 

we have 

[-1 dn][ 1 dn-1] [- J1]=' (2) 

the identity matrix. 
Using (1), we find that the discrete length of the segment from q-1 to qi is 

(di - 1) - it = 2 - di, since di - 2 < 0. Hence 1(39pV) = J1(2 - di). On the 
other hand, 1(f9) = n, so Theorem 1 is equivalent to En 1( - di) = 12. But this 
equality cannot be a consequence of (2) alone: if we took the sequence of matrices 
Mi corresponding to 39 and repeated it twice, the resulting sequence would still 
multiply to give the identity, but now the sum of the (3 - d)'s would be 24. We 
need somehow to incorporate the information that our polygon 9 winds exactly 
once around the origin. To do this we lift (2) to an equation in an extension of the 
group SL2(Z) by Z, in which the Z keeps track of the winding number. 

8.2. The universal cover SL2(R) of SL2(R). Let SL2(R) denote the group of 
2-by-2 matrices A = [ b such that a, b, c, d E R and det A = 1. As a topologi- 
cal space, SL2(R) is the set of oriented bases of R2 of determinant one. Geometric 
intuition suggests that the only homotopy invariant of a loop in this space is "the 
number of times the basis gets rotated around the origin", so that the fundamental 
group r-1(SL2(R)) should be Z; we recommend [12] as an introduction to funda- 
mental groups and universal covers. 

This is not hard to prove rigorously; for example, one could use the Iwasawa 
decomposition, which for SL2(R) says that each M E SL2(R) can be factored 
uniquely as 

M= [1 u][a 0 cosO -sin 0 
[0 1110 a-[ sin 0 cos 0 
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with u E R, a E R+, and 0 < 0 < 27-. Thus there is a homeomorphism 

SL2(R) = R x R+x R/2TrZ 

(not a homomorphism). Since R and R+ are simply connected, and since the last 
factor R/2TZ has simply connected cover R with covering group 2n-iZ _ Z, we 
find that r-1(SL2(R)) = Z. 

We let SL2(R) denote the universal cover of SL2(R), which is a connected 
topological group fitting into an exact sequence 

0 -> Z -> SL2(R) -> SL2(R) -> 0. 

Although SL2(R) cannot be described as a subgroup of matrices satisfying alge- 
braic conditions [18, Exercise 15(b), p. 137], we can give a fairly concrete descrip- 
tion of it. Consider pairs (M, [ y]), where 

M=[a b ]eSL 2(R) [ c d ] 

and [y] is the path-homotopy class [12, p. 319] of a path y in R2 \ o from [ 0 1]I 
to [ 0 1 ]M; i.e., from (0, 1) to (c, d). Every M E SL2(R) acts on the right on R2 
(whose elements we identify with row vectors), and hence also acts on paths in 
R2 \ o. We obtain a group structure on the set of pairs (M, [ y]) by letting 

(Ml , [ 1]) (M2, [2]) = (1 M42, [ Y2 + ? 

where yf 2 denotes the action described in the previous sentence, and + denotes 
the join of two paths sharing an endpoint. The matrix M2 transforms yi into a 
path that begins where Y2 ends. This group is connected, and it covers SL2(R) with 
covering group Z, so it is isomorphic to SL2(R). 

8.3. The extension SL2(Z) of SL2(Z). Our desired extension of SL2(Z) by Z is the 
preimage of SL2(Z) under the covering map SL2(R) -> SL2(R). We call this group 
SL2(Z), even though SL2(Z) is, of course, not the universal cover of SL2(Z), since 
SL2(Z) is a discrete group. 

Now let Mi and di be as in Section 8.1 and furthermore assume without loss of 
generality that p0 = (1, 0) and p1 = (0, 1). Let yi be the straight-line path from 
(0, 1) to (-1, di). Then by induction on j, we have 

M1M>i1 ... = [l 1 
[Pj?i J 

and MjMj ... M1 transforms yj+1 into the straight-line path from P+1 to Pj+2 
Hence 

(Mi, [)/j]) (Mij_ ,[)j- 1]) 
.. (Ml,I , 1])= (Mimi-l * 

. 
Ml1,[Fj]) 

where Fj is the polygonal path from p1 to P2 to ... to Pj+1 Taking j = n, we 
obtain 

(M-f, [ Y, ) * (M-l [?-i ]) *-. (Ml, [)/]) = (I, loop), (3) 
where loop denotes the path-homotopy class of a counterclockwise loop around o. 

Remark. The group we are calling SL2(Z) can be presented in terms of generators 
and relations either as Ka, b: aba = bab) or as Kx, y: x2 = y3), where a, b, x, y 
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equal (respectively) 

[ ? 1 ]'[-1 1 ] 
I 

[ 1 ? 
0 

1 1] 

equipped with the straight-line paths. It is isomorphic also to groups occurring 
naturally in several other contexts: 

* the fundamental group of R3 \ T, where T is a trefoil knot, 
* the braid group B3 (an isomorphism being given, for example, by sending a, b 

to standard generators of B3 [2, p. 18]), and 
* the local fundamental group of the ordinary cusp singularity, which also 

equals the fundamental group of C2 \ {(X, y) E C2 y 2 = x31, where C de- 
notes the field of complex numbers. 

See [16, p. 11] 

8.4. The modular form i\(z) and its logarithm. Let A= {z E C: Im (z) > 0) 
denote the upper half plane. Matrices 

M=[a b ]ESL 2(R) 

act on points z E X according to the rule: Mz = (az + b)/(cz + d). 
An excellent introduction to the theory of modular forms is given in [15]. In fact, 

the only external fact we need is that there exists a holomorphic function L\(z) on 
X such that 

(a) L\(z) # 0 for all z E ; and 
(b) A(Mz) = (cz + d)12A(z) for all M = [a b d SL2(Z) and z E X 

Property (b) is part of what it means for a function to be a modular form. To be 
precise, if k is an integer, a modular form of weight k for the group SL2(Z) is a 
holomorphic function f on X such that 

(i) f(Mz) = (cz + d)k f(z) for all M= [a d] E SL2(Z) and z e-; and 
(ii) f is "holomorphic at infinity;" i.e., it has a Fourier expansion of the form 

f(z) =nE= O anZe 

Note that condition (i) applied with M = [1 fl yields f(z + 1) = f(z), which 
implies that f has a Fourier expansion of the form f(z) = En= an e2lTinz; the 
point of condition (ii) is to require that an = 0 for n < 0. If in addition the Fourier 
coefficient a is zero, then f is said to "vanish at the cusp oo", and f is called a 
cusp form. 

The function we need is given by the following striking result, which is proved, 
in [15]. 

Theorem 5. The set of cusp forms of weight 12 for SL2(Z) is a 1-dimensional vector 
space over C, spanned by 

A(Z) = (2,)12q H (1 - qfn)24 where q = e27iz. 
n=1 

The fact that A(z) =A 0 for z (=- follows from the convergence of the product 
for Iq I < 1. Also, X is simply connected, so we may fix once and for all a branch of 

March 2000] LATTICE POLYGONS AND THE NUMBER 12 245 



log lA(z) on X Then 
log ZA(Mz) - log lA(z) = 12log(cz + d) + 2,wim (4) 

for some integer m depending on the choice of branch of log (cz + d). If when 
c # 0 one chooses the branch of log (cz + d) so that its range is the same as that of 
log (z) in X, then the integer m is related to Dedekind sums [13, p. 47]. The 
complications arising from Dedekind sums and their transformation formulas can 
be avoided, however, if we equip M with a path as in Section 8.2. 

If M = [b b] E SL2(R), then having a path y from (0,1) to (c, d) in R12 \ o lets 
us make a canonical choice of branch of log (cz + d): for fixed z et , we set 
log (O z + 1) = 0 and then make log (c'z + d') a continuous function of the path 
parameter, as (c', d') moves from (0, 1) to (c, d). Moreover this choice of branch 
depends only on the path-homotopy class of y; we call it L(M, [y]; z). For 
(M, [y ]) E SL2(Z), 

log A (Mz) - log i(z) = 12L(M, [,y] ;z) +2Ti-4D(M, [,y]) (5) 

now defines a function JD: SL2(Z) Z. 
If (Ml1, [Yl]) 

- (M2, I]) = (M3, Y3]) in SL2(R), and if [C3 d3] is the bottom 
row of M3, then a computation shows that 

L(M1, [-y1]; M2z) + L(M2, [Y2]; z) and L(M3, [y3]; z) 
are both branches of log(c3z + d3) on X, so they differ by 2w-iN((Ml,[Yi]), 
(M2, EY2])) for some integer-valued function N: SL2(R) x SL2(R) -> Z. But N is 
continuous, SL2(R) is connected, and Z is discrete, so the image of N is constant. 
Evaluating N when both arguments are the identity in SL2(R) shows that N is 
identically zero. Now adding (5) for (M2, [y2]) to the corresponding equation for 
(M1, [y1]) with z replaced by M2z, and comparing with (5) for (M1, [y1])(M2, [Iy2]), 
we find that ': SL2(Z) -> Z is a homomorphism. 

Remark. The modular form i\ was used only to construct (D. There are other, 
more elementary means to construct (I, but these are also more ad hoc. For 
instance, we could have used one of the explicit presentations of SL2(Z) men- 
tioned in Section 8.3. 

8.5. Values of the homomorphism (D. Fix z E X As (c, d) winds around o once in 
the counterclockwise direction, cz + d winds around 0 E C once in the clockwise 
direction. Hence by definition L(I, loop; z) = - 2 wi and 1'(I, loop) = 12. 

Let 

S I [? O T = 0 1] 
Let S and T be the elements of SL2(Z) obtained by equipping S with the 
straight-line path from (0, 1) to (1, 0), and T with the trivial path. It is known that 
S and T generate SL2(Z) (and in fact S and T generate SL2(Z)), but we will not 
need to use this. A short calculation shows that 

?-1 .1 = (0 1] ByI) 
( -1 d- 

I 

where y is the straight-line path from (0, 1) to (-1, d). Applying (3) to the 
diamond (the 4th polygon in Figure 2) shows that 

(S-i)4 = (I, loop) 
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and applying F to both sides shows that 4J(5-1) = 12, so 4>(S) = -3. Similarly, 
applying (3) to the hexagon (the 10th polygon in Figure 2) shows that 

(gS - T ) = (I, loop) 

so 'F(S* T-) = 2, and 4>(T) = 1. (Alternatively, one could calculate 4>(S) = -3 
and '(T) = 1 directly from (5), using the fixed point z = i of S for the former.) 
Hence 

() [ 1d]' [, ] q) = 
l. 

1*T-d ) = 3 - d 

Applying 'F to (3) shows that E' 1(3 - di) = 12, which, as we saw in Section 8.1, is 
equivalent to Theorem 1. 

9. GENERALIZATIONS. Theorem 1 can be generalized in various ways. We do 
not know, however, how to generalize it to polygons with more than one interior 
lattice point. 

9.1. Legal loops. These are generalizations of legal polygons. A legal loop Y is a 
closed path in the plane formed by consecutive legal moves. A legal move is an 
oriented segment joining two lattice points such that its initial and end point 
together with the origin form a non-degenerate triangle with no other lattice point 
(in the interior or on its boundary) except those three; equivalently, by Pick's 
formula, we could require the triangle to have area 1/2. Clearly, a legal polygon is 
a legal loop. Notice that we do not require a legal loop to have acute angles at its 
corners, and hence its winding number w with respect to o (in the sense of 
algebraic topology) can be an arbitrary integer. Boundary lattice points now have 
to be counted with a sign; precisely, if s is an oriented segment joining two lattice 
points p and p', and if there are k lattice points on s, then define 

I(s) = (k - 1) * det[P]. 

The determinant is + 1. We then define 1(Y) as the sum of l(s) over the oriented 
segments s forming the loop. 

Let 

i (det [P p] ( - P), 

and define the dual Y v to be the loop obtained by "connecting the dots" from q1 
to q2 to ... to q, and back to q1, listing also the lattice points along the segments 
drawn. It is not hard to see that Y v is again a legal loop with the same winding 
number w. See Figure 3 for an example. The statement of Theorem 1 becomes 

1(y) + ?l(v) = 12 w. 

Of all the proofs of Theorem 1 that we have discussed, proof 4 seems to be the 
best suited for this generalization. Proof 3 is difficult to generalize, because the 
natural object associated to a legal loop by the construction of Section 7 need not 
be an algebraic variety; it could also be a "non-separated scheme", which is the 
algebraic analogue of a non-Hausdorff topological space. Hence Noether's formula 
as stated does not apply. 
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* P2 P3 ql qq 

'P4 Pi q2 

* P5* q3 q 

Figure 3. A legal loop _2 of winding number 1 and its dual. Because the dotted line counts as having 
length -1, l(y) = 3. Note that 3 + 9 = 12 1. 

9.2. Higher dimensions. Theorem 1 has generalizations to higher dimensions, but 
the statements are not as simple, and in fact we do not give any explicitly here. The 
appropriate notion of legal polytope would have to be that of a reflexive polytope; 
i.e., a convex lattice polytope that can be described as the solution set of a system 
of linear inequalities of the form a1xl + ?+adxd 1 with a1,..., ad integers 
with gcd 1. The dual polytope (usually called the polar polytope) is defined as the 
convex hull of the points (a1,..., ad). Our original definition of dual polygon 
differs from this one when d = 2 by a 90? rotation. A reflexive polytope has o as its 
only interior lattice point, but in any dimension d > 2 there exist non-reflexive 
convex lattice polytopes having o as the only interior lattice point [8]. Applying the 
Hirzebruch-Riemann-Roch theorem to the toric variety associated to a reflexive 
polytope gives information about the combinatorics of the polytope. 

Physicists are interested in reflexive polytopes because of their relation to 
mirror symmetry [1]; in fact, they now have a complete classification in dimension 3 
[10]: there are 4,319 of them! The complete list and other interesting information 
may be obtained from the website http: // tphl 6. tuwien. ac. at / -kreuzer 
/ CY.html. 

10. GAUSS-BONNET?. There is a potential connection of Theorem 1 to the 
Gauss-Bonnet theorem. For a geodesic polygon 9 on a surface of constant 
curvature c, the classical Gauss-Bonnet theorem [17, pp. 247-250] states that 

c Area(_9) + T(exterior angles) = 2,-. (6) 

For example, on a sphere of a radius 1, if a "triangle" bounded by arcs of great 
circles has interior angles a, p, y measured in radians, then its area is a + 3 ? y 
- 7T. 

Now suppose instead that 9 is one of our legal lattice polygons. If pi and pi+1 
are two adjacent boundary lattice points, as in Section 8.1, then the area of the 
triangle with vertices ,pi, pi+ equals 

1 Pi 1 
2det pi+1 2 

Summing over i shows that Area (9) = n/2, where n = 1(9); alternatively, this 
follows from Pick's formula. 

Recall that the nonnegative integer 2 - di had an interpretation as the discrete 
length of a segment in the dual polygon. We now explain why it can also be 
interpreted as a combinatorial analogue of an exterior angle. With respect to the 
basis {pi-1, pi} of Z2, we have pi-1 = (1, 0) and pi = (0, 1), and pi+, = (-1, di). If 
di = 2, then at pi there is a "straight angle"; as di decreases, the exterior angle 
(with respect to our basis) at pi increases; see Figure 4. Therefore we define the 
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2 -d = 0 

* \ * Pi 

2-di=i 

* ~~~~~~~~Pi-1 

2 -di =2 

. . . . . . . . . . . . . 
2-d =3 

2 -di = 4 

Figure 4. The dependence of the exterior angle at pi on 2 - di. 

discrete exterior angle of O at pi to be 1 - dJ/2: there is no intrinsic reason not to 
multiply by 1/2, and doing so makes the analogy to Gauss-Bonnet clearer. 

Theorem 1, reinterpreted as in Section 8.1, says that n + E7?1(2 - di) = 12. 
Dividing by 2, we obtain 

Area ( ) + E (discrete exterior angles) = 2[ 7T, (7) 

where LT] = 3 is the discrete analogue of ,T! 

We leave it to the reader to mull over whether there exists an explanation for 
the similarities between (6) and (7). We do not know one. 
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