
Algebraic Geometry, Fall 2016

Hand-outs, set 1
Review on Čech cohomology.
Readings: see e.g. Ravi Vakil notes, chapter 18.
Suppose that X is a topological space. In what follows, we assume that X is
quasi-compact or paracompact. Actually, you may assume X to be a variety
over an algebraically closed field k (always algebraically closed!).
We choose U = (Ui)

r
1=1 a finite open covering of X. For any set of indexes

I ⊂ {1, . . . , r} of cardinality 1 ≤ |I| ≤ r we set UI =
⋂
i∈I Ui.

For U as above and F , a sheaf of abelian groups over X we define the Čech
complex

0 −→
∏
|I|=1

F(UI) −→
∏
|I|=2

F(UI) −→
∏
|I|=3

F(UI) −→ · · ·

with differentiation map δp :
∏
|I|=pF(UI) −→

∏
|I|=p+1F(UI) which to σ =

(σi1<···<ip) ∈
∏
|I|=pF(UI) associates σ′ = (σ′i0<···<ip) ∈

∏
|I|=p+1F(UI) such

that

σ′i0<···<ip =

p∑
j=0

(−1)jσi0<···îj ···<ip

where îj means omission of the index and the right-hand summands are
restricted to Ui0 ∩ · · · ∩ Uip . We define the p-th Čech cohomology as the
cohomology of the above complex, that is

Hp(U ,F) = ker δp+1/ im δp

For an inscribed covering U ′ � U we have the restriction map Hp(U ,F) →
Hp(U ′,F) and the Čech cohomology is defined as the direct (injective) limit.
We denote it Ȟp(X,F) or just Hp(X,F)
Notation, convention: the elements of

∏
|I|=p+1F(UI) are called cochains,

the elements in ker δ cocycles and in im δ coboundaries. Sometimes it is
convenient to write the set of indexes I not in the increasing order: if we
change the order then we have to change the sign of σ, that is σi1···ip =
sgn(π) · σπ(i1)···π(ip)
Properties of this construction; do it yourself version.

• Check that the Čech complex is a complex, that is δp+1 ◦ δp = 0.

http://math.stanford.edu/~vakil/216blog/FOAGdec2915public.pdf


• Using the Čech complex show the following general nonsense properties
of Čech cohomology

1. H0(X,F) = F(X)

2. Hp(X, · ) is a covariant functor from category of sheaves of abelian
groups over X to category of abelian groups.

3. For an exact sequence of sheaves of abelian groups

0 −→ A −→ B −→ C −→ 0

we have an exact sequence of groups

0 // H0(X,A) // H0(X,B) // H0(X, C) // H1(X,A) //

H1(X,B) // H1(X, C) // · · · · · ·

where the connecting homomorphism Hp(X, C) → Hp+1(X,A) comes
from snake-lemma construction used to a diagram consisting of three
Čech complexes and the maps coming from maps of the sheaves which
you may assume make short exact sequences. Checking exactness is
tedious work but the idea is simple: divide the diagram to maps of two
consecutive exact sequences and use snake lemma to produce connect-
ing homomorphism for cohomology.

• Acyclic resolution. Suppose that we have a long exact sequence of
sheaves of abelian groups on a topological space X

0 −→ A −→ B0 −→ B1 −→ B2 −→ · · · −→ Bm −→ 0

and assume that all non-zero cohomology of sheaves Bi vanish (such Bi
is called acyclic). Divide the above sequence into short sequences and
prove that cohomology of A is equal to cohomology (kernel divided by
the image of the respective arrow) of the following complex of global
sections of the above sequence

0 −→ B0(X) −→ B1(X) −→ B2(X) −→ · · · −→ Bm(X) −→ 0



• A sheaf of rings A over a topological space admits a partition of unity
if for every finite (for simplicity) covering (Ui) there exist sections fi ∈
A(X), each fi having support inside Ui (which means that there exists
a closed set Ki ⊂ Ui such that fi|V = 0 for every V ⊂ X \Ki) such that∑

i fi = 1. A sheaf F of A modules is called fine; below, we assume F
is fine.

1. Let σ ∈
∏
|I|=p+1F(UI) be in the kernel of δp+1. We define σ̂ ∈∏

|I|=pF(UI) by the formula (think why does it make sense)

σ̂i1···ip =
∑
i

fiσi,i1···ip

Prove that δp(σ̂) = σ. (Note that our convention involves sign
change.)

2. Show that Hp(X,F) = 0 for p > 0.

3. If X is a differentiable manifold use differentials forms to construct
an acyclic resolution of a locally constant sheaf RX and prove
that its Čech cohomology is equal to de Rham cohomology of X:
Hp(X,RX) = Hr

DR(X).

• Calculating cohomology of constant sheaf on simplex or Pn. In this
exercise A = k and AnI = k (k is your favorite field) if n ≥ 0 and
∅ 6= I ⊆ {0, . . . , n}. Moreover, we assume that AnI = 0 if I is not a
subset of {0, . . . , n}. We define maps:

i. δ0 : A→
∏
|I|=1A

n
I is the diagonal map

k 3 t→ (t, . . . , t) ∈ kn+1

ii. δp :
∏
|I|=pA

n
I →

∏
|I|=p+1A

n
I is the usual differential, which we

write as follows (remember the sign convention)

δ(σ)I =
∑
i∈I

sgn(i, I \ {i}) · σI\{i}

The main task of this exercise is to prove that the following sequence
(call it ♣n) is exact

0 // A
δ0 //

∏
|I|=1A

n
I

δ1 // · · · //
∏
|I|=nA

n
I

δn //
∏
|I|=n+1A

n
I

// 0



1. Prove exactness of ♣n for n = 0 and n = 1.

2. Define the the following maps:

(a) αn−1 : An−1I → AnI∪{n} is the identity

(b) βn−1 : AnI → An−1I is identity if n 6∈ I or zero otherwise

Prove that the following sequence is exact

0 //
∏
|I|=p−1A

n−1
I

αn−1
//
∏
|I|=pA

n
I

βn−1
//
∏
|I|=pA

n−1
I

// 0

where α and β stand for the products of the respective maps.

3. Prove that the following diagram commutes∏
|I|=p−1A

n−1
I

//

��

∏
|I|=pA

n
I

//

��

∏
|I|=pA

n−1
I

��∏
|I|=pA

n−1
I

//
∏
|I|=p+1A

n
I

//
∏
|I|=p+1A

n−1
I

where the vertical arrows are differentials and the horizontal se-
quences are from the previous point.

4. Prove that α’s, β’s (vertical arrows) and δ’s (horizontal arrows)
in this table commute and use induction to prove exactness of ♣n

A //

��

· · · //
∏
|I|=n−1A

n−1
I

//

��

∏
|I|=nA

n−1
I

��
A //

��

∏
|I|=1A

n
I

//

��

· · · //
∏
|I|=nA

n
I

//

��

∏
|I|=n+1A

n
I

A //
∏
|I|=1A

n−1
I

// · · · //
∏
|I|=nA

n−1
I


