Fano Manifolds, Spring 2018
 Eight problem set.

Recall that a Del Pezzo surface S with $r=\rho(S)-1$ is obtained by blowing up r points on \mathbb{P}^{2}. We will assume that $r \geqslant 3$. We proved that in this case the cone $\mathcal{C}\left(S_{r}\right)$ is generated by classes of (-1) curves. We will identify spaces $N_{1}\left(S_{r}\right)=N^{1}\left(S_{r}\right)$ and call it $N\left(S_{r}\right)$. We use the lattice Pic $S_{r} \subset N\left(S_{r}\right)$, by l_{0} we denote the classes of a (general) line on \mathbb{P}^{2} (pulled back to S_{r}) and by $l_{1} \ldots, l_{r}$ the classes of exceptional curves. The present series of problems is inspired by Manin's book Cubic forms Chapter IV

1. Consider a linear subspace $\Lambda_{r} \subset N\left(S_{r}\right)$ orthogonal to the anticanonical class $-K_{S_{r}}$.
(a) Prove that $l_{0}-l_{1}-l_{2}-l_{3}$ and $l_{1}-l_{2}, l_{1}-l_{2}, \ldots, l_{1}-l_{r}$ make a basis of Λ_{r}. Prove that each of these vectors have intersection (-2).
(b) By Q_{r} denote the lattice in Λ_{r} generated by the classes enumerated above and by Q_{r}^{\vee} we denote the dual lattice $Q_{r}^{\vee}=\left\{w \in \Lambda_{r}:(w, v) \in \mathbb{Z} \forall v \in\right.$ $\left.Q_{r}\right\}$. Prove that $Q_{r}^{\vee} / Q_{r} \simeq \mathbb{Z}_{9-r}$.
2. Elements of $v \in Q_{r}$ such that $(v, v)=-2$ will be called roots; their set is denoted by R_{r}.
(a) Let $v=a l_{0}+\sum_{1}^{r} b_{i} l_{i}$ be a root, prove that $3 a=\sum_{1}^{r} b_{i}$ and $a^{2}-\sum_{1}^{r} b_{i}^{2}=-2$
(b) Prove that, up to permutation of positive i 's and changing signs of a and b_{i} 's there are only the following solutions of the above equations:
i. $l_{i}-l_{j}, i \neq j, i, j>0$
ii. $l_{0}-l_{1}-l_{2}-l_{3}$
iii. $2 l_{0}-l_{1}-l_{2}-l_{3}-l_{4}-l_{5}-l_{6}$, if $r \geqslant 6$
iv. $3 l_{0}-2 l_{1}-l_{2}-l_{3}-l_{4}-l_{5}-l_{6}-l_{7}-l_{8}$, if $r=8$
(c) Using the above presentation of roots find its number; these should be as follows for the respective r 's:

r	3	4	5	6	7	8
$\left\|R_{r}\right\|$	8	20	40	72	126	240

3. We will try to recalculate the number of roots using polytopes $\Gamma\left(S_{r}\right)$ introduced in the previous set of problems. Let us recall that we have calculated face polynomials for polytopes $\Gamma\left(S_{r}\right)$:

$$
\begin{aligned}
P_{3}= & 1+6 x+9 x^{2}+2 x^{3}+3 x^{3} y \\
P_{4}= & 1+10 x+30 x^{2}+30 x^{3}+5 x^{4}+5 x^{4} y \\
P_{5}= & 1+16 x+80 x^{2}+160 x^{3}+120 x^{4}+16 x^{5}+10 x^{5} y \\
P_{6}= & 1+27 x+216 x^{2}+720 x^{3}+1080 x^{4}+648 x^{5}+72 x^{6}+27 x^{6} y \\
P_{7}= & 1+56 x+756 x^{2}+4032 x^{3}+10080 x^{4}+12096 x^{5}+6048 x^{6}+ \\
& +756 x^{7}+126 x^{7} y
\end{aligned}
$$

(a) Prove that every root v can be presented as a difference of two nonmeeting (-1) curves on S_{r}, say $v=\gamma_{1}-\gamma_{2}$, where each γ_{i} is a class of a (-1) curve, a vertex in the polytope $\Gamma\left(S_{r}\right)$. Prove that there is an edge of $\Gamma\left(S_{r}\right)$ containing γ_{1} and γ_{2}, we denote it $\left\langle\gamma_{1}, \gamma_{2}\right\rangle<\Gamma$
(b) Prove that the above presentation is non-unique, that is for $r \leqslant 6$ if $\gamma_{1}-\gamma_{2}=\gamma_{3}-\gamma_{4}$, for $\left(\gamma_{1}, \gamma_{2}\right) \neq\left(\gamma_{3}, \gamma_{4}\right)$, then $\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ and $\left\langle\gamma_{3}, \gamma_{4}\right\rangle$ are edges in in a cross polytope, a facet of $\Gamma\left(S_{r}\right)$ dual to type 1 vertex of $\Delta\left(S_{r}\right)$. Conclude that the number of presentations of a root in R_{r} as edges of $\Gamma\left(S_{r}\right)$ is equal to the number of vertices of type 1 in $\Delta\left(S_{r-2}\right)$ plus 1.
(c) Find a similar condition for $r=7,8$
(d) Using the above information recalculate the number of roots.
4. For $r=3, \ldots, 6$ find roots in R_{r} consisting of vectors $\alpha_{1}, \ldots, \alpha_{r}$ such that $\left(\alpha_{i}, \alpha_{j}\right)=1$ if only if the respective \bullet 's are connected in one of the Dynkin diagrams; otherwise $\left(\alpha_{i}, \alpha_{j}\right)=0$
(a) for example, for $r=3$, take $\alpha_{1}=l_{0}-l_{1}-l_{2}-l_{3}, \alpha_{2}=l_{1}-l_{2}, \alpha_{3}=l_{2}-l_{3}$

(b)
A_{4} :

(c)
D_{5} :

(d)

