Fano Manifolds, Spring 2018

 Seventh problem set.Recall that for a Del Pezzo surface S with $r=\rho(S)-1$ we consider dual polytopes $\Gamma(S)$ and, respectively, $\Delta(S)$ we denote the intersection of $\mathcal{C}(S)$ and $\mathcal{C}(S)^{\vee}$ with the affine hyperplane $\left\{u \in N(S):-K_{S} \cdot u=1\right\}$. We define a polynomial $P_{r}(x, y)=\sum a_{i} x^{i}+b x^{r} y$ where b is the number of vertices associated to contractions to \mathbb{P}^{1} (type 1) and a_{i} is the number of codimension i faces of $\Delta(S)$ except the vertices of type 1 . The polynomials P_{r} satisfy the following equations:
(i) $\partial_{x} P_{r}(x, 0)=\partial_{x} P_{r}(0,0) \cdot P_{r-1}(x, 0)$
(ii) $2(r-1) \cdot \partial_{y} P_{r}(1,0)=\partial_{x} P_{r}(0,0) \cdot \partial_{y} P_{r-1}(1,0)$
(iii) $P_{r}(-1,1)=(-1)^{r}$

We know polynomials P_{2} and P_{3}.

1. Calculate polynomials P_{r} for $r=4, \ldots, 7$. Note that relation (iii) is useless for $r=4$ and 6. However, it can be applied to $r=5$ and 7 , see Stalij's MSc Thesis. Use this information to calculate the number of (-1) curves on the respective Del Pezzo
2. Cubic surface. Prove that the folowing conditions are equivalent:

- S is a Del Pezzo surface with $\rho(S)=7$.
- S is a Del Pezzo surface with $-K_{S}^{2}=3$.
- S is blow-up of \mathbb{P}^{2} at 6 points, no three of them on a line, on five of them on a conic.
- S is isomorphic to a smooth cubic surface in \mathbb{P}^{3}.

3. Find 27 lines on Fermat cubic given by equation $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+$ $x_{3}^{3}=0$ in \mathbb{P}^{3}. https://math.stackexchange.com/questions/1281981/ 27-lines-on-fermat-surface
4. Double cover of \mathbb{P}^{2}. Prove that the folowing conditions are equivalent:

- S is a Del Pezzo surface with $\rho(S)=8$.
- S is a Del Pezzo surface with $-K_{S}^{2}=2$.
- S is isomorphic to a double cover of \mathbb{P}^{2} ramified along a smooth curve of degree 4.

5. It is known that a smooth quartic in \mathbb{P}^{2} admits 28 bitangent lines, see e.g. https://en.wikipedia.org/wiki/Bitangents_of_a_quartic. Suppose that $S \rightarrow \mathbb{P}^{2}$ is a double cover from the previous problem.
(a) Prove that the inverse image of each of the bitangent lines consists of two (-1) curves on S.
(b) Calculate bitangent lines of the Klein quartic given by equation $x_{0}^{3} x_{1}+$ $x_{1}^{3} x_{2}+x_{2}^{3} x_{0}=0$.
6. This problem emerged in a discussion during the last problem session. Let $X \subset \mathbb{P}^{N}$ be a (irreducible possibly singular) subvariety which is not contained in any linear subspace of \mathbb{P}^{N}. Prove that $\operatorname{deg} X \geqslant \operatorname{codim} X+1$. Cut X by a general hyperplane and use induction with respect to $\operatorname{dim} X$. More on low degree projective varieties can be found a paper by by Eisenbud and Harris On varieties of minimal degree
