Fano Manifolds, Spring 2018
 Sixth problem set.

We assume that S is a Del Pezzo surface, that is $-K_{S}$ is ample. We will consider dual (closed polyhedral) cones $\mathcal{C}=\mathcal{C}(S)$ and \mathcal{C}^{\vee} in $N^{1}(S)=N_{1}(S)$. By $\Gamma(S)$ and, respectively, $\Delta(S)$ we denote the intersection of these cones with the affine hyperplane $\left\{u \in N(S):-K_{S} \cdot u=1\right\}$. Duality of cones implies duality of polytopes $\Gamma(S)$ and $\Delta(S)$.
Before solving problems from this series we will have to complete the previous series. In fact the last exercise which we did not solve contained a misprint, now corrected.

1. For every polytope $\Delta(S)$ with $r=\rho(S)-1$ define a polynomial

$$
P_{r}(x, y)=\sum a_{i} x^{i}+b x^{r} y
$$

where b is the number of vertices of type 1 and a_{i} is the number of codimension i faces of $\Delta(S)$ except the vertices of type 1 . Prove that polynomials P_{r} satisfy the following equations:

- $\partial_{x} P_{r}(x, 0)=\partial_{x} P_{r}(0,0) \cdot P_{r-1}(x, 0)$
- $2(r-1) \cdot \partial_{y} P_{r}(1,0)=\partial_{x} P_{r}(0,0) \cdot \partial_{y} P_{r-1}(1,0)$
- $P_{r}(-1,1)=(-1)^{r}$

2. Let S be a Del Pezzo surface which has two extremal contractions of fiber type, $\varphi_{i}: S \rightarrow \mathbb{P}^{1}$, with fibers $f_{i}, i=1,2$.
(a) Prove that Pic $S=\mathbb{Z}\left[f_{1}\right] \oplus \mathbb{Z}\left[f_{2}\right]$.
(b) Prove that $f_{1} \cdot f_{2}=1$ and $-K_{S} \equiv 2 f_{1}+2 f_{2}$ or $f_{1} \cdot f_{2}=2$ and $-K_{S}=$ $f_{1}+f_{2}$.
(c) Prove that in the former case $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$ while in the latter we have a double cover $S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.
3. Double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Let $\pi: S_{4} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be a double cover which is a Del Pezzo surface. Assume moreover that $S_{4} \neq \mathbb{P}^{1} \times \mathbb{P}^{1}$.
(a) Prove that π is branched along a divisor B which is of bi-degree $(2,2)$; B is an eliptic curve and each of the projections $B \rightarrow \mathbb{P}^{1}$ has four ramification points.
(b) Prove that each of projections $S_{4} \rightarrow \mathbb{P}^{1}$ has four fibers which are unions of (-1)-curves. Conclude that $\rho\left(S_{4}\right)=6$.
(c) Prove that the anticanonical divisor $-K_{S_{4}}$ determines an embedding into \mathbb{P}^{4} and S_{4} becomes an intersection of two quadrics.
(d) Prove that S_{4} is blow-up of \mathbb{P}^{2} in five points, no two of them on a line not all of them on a conic.
4. Let S_{5} be the blow-up of 4 points no three of them on a line.
(a) Prove that the four points are base point locus of a pencil of conics which defines a rational map $\mathbb{P}^{2}-\rightarrow \mathbb{P}^{1}$ and a regular map $S_{5} \rightarrow \mathbb{P}^{1}$.
(b) Prove that as the graph of the rational map S_{5} is a divisor in $\mathbb{P}^{2} \times \mathbb{P}^{1}$ of bidegree $(2,1)$.
(c) Prove that there are ten (-1)-curves on S_{5} and their incidence is the Petersen graph
(d) Prove that S_{4} from the previous problem contains sixteen (-1)-curves whose incidence is the Clebsch graph.
