Fano Manifolds, Spring 2018

Fourth problem set. Contractions of curves.

1. Let S be a smooth projective surface. Hodge index theorem says that the intersection form on $N(S)=N^{1}(S)=N_{1}(S)$ is of index $(+,-, \cdots,-)$. Using the Hodge index theorem prove the following:
(a) the set $\mathcal{P}=\left\{u \in N(S): u^{2}>0\right\}$ has two components;
(b) the closure (standard topology) of one of the components of \mathcal{P}, call it \mathcal{P}^{+}, contains the cone \mathcal{A} generated by the classes of ample divisors;
(c) we have the inclusion of convex cones:

$$
\mathcal{A} \subseteq \mathcal{C}^{\vee} \subseteq \overline{\mathcal{P}}^{+} \subseteq \mathcal{C}
$$

where $\mathcal{C}=\mathcal{C}(S)$ is the Mori cone of effective 1 -cycles and \mathcal{C}^{\vee} its dual.
In what follows we will use Kleiman theorem which says $\overline{\mathcal{A}}=\mathcal{C}^{\vee}$.
2. A curve C on a variety X is extremal if from the numerical equivalence $C \equiv$ $a_{1} C_{1}+a_{2} C_{2}$, with $a_{1}, a_{2}>0$ and C_{1}, C_{2} curves it follows that C, C_{1} and C_{2} are numerically proportional, that is $C \equiv b_{1} C_{1} \equiv b_{2} C_{2}$. Prove that if C is extremal on a surface S and $C^{2}>0$ then $\rho(S)=\operatorname{dim} N^{1}(S)=1$.
3. Let S be a smooth algebraic surface with $\rho(S)>1$. Suppose that the curve C is extremal and $-K_{S} \cdot C=2$.
(a) Prove that $C \simeq \mathbb{P}^{1}$ and $C^{2}=0$, use the adjunction formula for the normalization $\widehat{C} \rightarrow C$.
(b) Prove that the linear system $|\mathcal{O}(C)|$ is base-point free of dimension 1 hence it defines a morphism $\pi: S \rightarrow B$ onto a smooth curve B, which contract C to a point.
(c) Prove that all fibers of π are rational curves numerically equivalent to C, conclude that $\rho(S)=2$.
(d) Suppose that $-K_{S}$ is ample. Prove that either $S \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ or S is a blow-up of \mathbb{P}^{2} at one point. Use the next exercise.
4. Let S be a smooth algebraic surface with $\rho(S)>1$. Suppose that the curve C is extremal and $-K_{S} \cdot C=1$.
(a) Prove that $C \simeq \mathbb{P}^{1}$ and $C^{2}=-1$, use the adjunction formula for the normalization $\hat{C} \rightarrow C$.
(b) From this point on assume that $-K_{S}$ is ample so that, by Mori theorem, $\mathcal{C}(S)$ is rational polyhedral; prove that $C^{\perp} \cap \mathcal{C}^{\vee}=\left\{u \in \mathcal{C}^{\vee}: u \cdot C=0\right\}$ is a facet (codimension 1 face) of \mathcal{C}^{\vee}.
(c) Prove that there exists a divisor D on S such that $[D]$ is in the relative interior of $C^{\perp} \cap \mathcal{C}^{\vee}$ and $D^{2}>0$; conclude that if $D \cdot C^{\prime}=0$ for some curve $C^{\prime} \subset S$ then $C^{\prime}=C$.
(d) Prove that for $m \gg 0$ the class $m D-K_{X}$ is in the interior of the cone \mathcal{C}^{\vee}, conclude that the function $h^{0}(S, \mathcal{O}(m D)$) grows like degree two polynomial with leading term $\left(D^{2} / 2\right) m^{2}$.
(e) Prove that for $m \gg 0$ for any curve $C^{\prime} \subset S$ we have $H^{1}\left(S, \mathcal{O}\left(m D-C^{\prime}\right)\right)=$ 0 . Use Kleiman's theorem and Kodaira vanishing.
(f) Prove that for $m \gg 0$ the linear system $|\mathcal{O}(m D)|$ is base-point-free and the associated map $\phi: S \rightarrow S^{\prime}$ contracts C to a point and does not contract any other curve.

