Fano Manifolds, Spring 2018

Third problem set. Various problems.

1. Addendum to the first problem sheet. Suppose that $\phi: X \rightarrow Y$ is a morphism of projective varieties.
(a) Prove that ϕ induces homomorphisms $\phi_{*}: N_{1}(X) \rightarrow N_{1}(Y)$ and ϕ^{*} : $N^{1}(Y) \rightarrow N^{1}(X)$ which agrees with the intersection of 1-cycles and divisors; that is $\phi_{*}(C) \cdot D=C \cdot \phi^{*}(D)$.
(b) Prove that ϕ_{*} is surjective and ϕ^{*} is injective if ϕ is surjective.
(c) Show that injectivity of ϕ does not imply injectivity of ϕ_{*}.
2. A \mathbb{Q}-Cartier divisor D on a variety X is nef if $C \cdot D \geqslant 0$ for every curve C. A variety X is uniruled if there exists a dominating rational map $\psi: M \times \mathbb{P}^{1}-\rightarrow$ X, where $\operatorname{dim} M=\operatorname{dim} X-1$. Prove that if X is uniruled then K_{X} is not nef. Use the ramification formula.
3. Let $\pi: Y=\mathbb{P}(\mathcal{E}) \rightarrow M$ be a \mathbb{P}^{1}-bundle. Suppose that π admits a section $\sigma: M \rightarrow Y, \pi \circ \sigma=i d_{M}$. Let us assume that there exists a surjective morphism $\psi: Y \rightarrow X$ of projective varieties, such that $\psi \circ \sigma(M)$ is a point. Prove that then $\operatorname{dim} N^{1}(X)=1$.
4. Let S be a smooth projective surface such that $-K_{S} \cdot C \geqslant 3$ for every curve $C \subset S$. Prove that $S \simeq \mathbb{P}^{2}$.
(a) Use Mori theorem of the existence of rational curves to see that there exists a rational curve $C \subset S$ such that $-K_{X} \cdot C=3$.
(b) Use Mori-type arguments on $\operatorname{Mor}\left(\left(\mathbb{P}^{1}, p\right),(S, x)\right)$ to prove that there exists a map like in the previous problem, hence $\operatorname{dim} N^{1}(S)=1$.
(c) Prove that $-K_{S} \equiv 3 C$ and conlude that $S \simeq \mathbb{P}^{2}$.
5. Let $C \subset S$ be a curve on a smooth surface. Consider the normalization $f: \widehat{C} \rightarrow C \subset X$.
(a) Suppose that C is defined locally by zeroes of regular functions f_{i}. Prove that differentials $d f_{i}$ determine an injection $\mathcal{O}_{C}(-C) \rightarrow \Omega_{S \mid C}$.
(b) Prove that there an exact sequence of sheaves on \widehat{C}

$$
0 \rightarrow f^{*} \mathcal{O}_{S}(-C) \rightarrow f^{*} \Omega_{S} \rightarrow \Omega_{\widehat{C}}
$$

with torsion cokernel of the right-hand-side map.
(c) Prove that

$$
g(\widehat{C}) \leqslant \frac{1}{2}\left(K_{S}+C\right) \cdot C+1
$$

with equality if and only if C is smooth.
6. Del Pezzo surfaces. Consider the Veronese map $\nu: \mathbb{P}^{2} \rightarrow \mathbb{P}^{9}$ defined by the anticanonical system $|\mathcal{O}(3)|$. The image will be called S_{0}. For $r=1, \ldots, 6$ we define S_{r} as the image of the projection

$$
\pi_{r}: \mathbb{P}^{9-r+1} \supset S_{r-1}-\rightarrow S_{r} \subset \mathbb{P}^{9-r}
$$

from a general point $x \in S_{r-1}$.
(a) Prove that S_{r} is smooth and embedded in \mathbb{P}^{9-r} via the anticanonical system $\left|-K_{S_{r}}\right|$.
(b) Prove that S_{r} is obtained from S_{r-1} by the blow-up at $x \in S_{r-1}$.
(c) Prove that $\left(-K_{S_{r}}\right)^{2}=9-r$.

