Fano Manifolds, Spring 2018 Third problem set. Various problems.

- 1. Addendum to the first problem sheet. Suppose that $\phi : X \to Y$ is a morphism of projective varieties.
 - (a) Prove that ϕ induces homomorphisms $\phi_* : N_1(X) \to N_1(Y)$ and $\phi^* : N^1(Y) \to N^1(X)$ which agrees with the intersection of 1-cycles and divisors; that is $\phi_*(C) \cdot D = C \cdot \phi^*(D)$.
 - (b) Prove that ϕ_* is surjective and ϕ^* is injective if ϕ is surjective.
 - (c) Show that injectivity of ϕ does not imply injectivity of ϕ_* .
- 2. A Q-Cartier divisor D on a variety X is nef if $C \cdot D \ge 0$ for every curve C. A variety X is uniruled if there exists a dominating rational map $\psi : M \times \mathbb{P}^1 \to X$, where dim $M = \dim X 1$. Prove that if X is uniruled then K_X is not nef. Use the ramification formula.
- 3. Let $\pi : Y = \mathbb{P}(\mathcal{E}) \to M$ be a \mathbb{P}^1 -bundle. Suppose that π admits a section $\sigma : M \to Y, \ \pi \circ \sigma = id_M$. Let us assume that there exists a surjective morphism $\psi : Y \to X$ of projective varieties, such that $\psi \circ \sigma(M)$ is a point. Prove that then dim $N^1(X) = 1$.
- 4. Let S be a smooth projective surface such that $-K_S \cdot C \ge 3$ for every curve $C \subset S$. Prove that $S \simeq \mathbb{P}^2$.
 - (a) Use Mori theorem of the existence of rational curves to see that there exists a rational curve $C \subset S$ such that $-K_X \cdot C = 3$.
 - (b) Use Mori-type arguments on $Mor((\mathbb{P}^1, p), (S, x))$ to prove that there exists a map like in the previous problem, hence dim $N^1(S) = 1$.
 - (c) Prove that $-K_S \equiv 3C$ and conclude that $S \simeq \mathbb{P}^2$.
- 5. Let $C \subset S$ be a curve on a smooth surface. Consider the normalization $f: \hat{C} \to C \subset X$.
 - (a) Suppose that C is defined locally by zeroes of regular functions f_i . Prove that differentials df_i determine an injection $\mathcal{O}_C(-C) \to \Omega_{S|C}$.

(b) Prove that there an exact sequence of sheaves on \hat{C}

$$0 \to f^* \mathcal{O}_S(-C) \to f^* \Omega_S \to \Omega_{\widehat{C}}$$

with torsion cokernel of the right-hand-side map.

(c) Prove that

$$g(\hat{C}) \leq \frac{1}{2}(K_S + C) \cdot C + 1$$

with equality if and only if C is smooth.

6. Del Pezzo surfaces. Consider the Veronese map $\nu : \mathbb{P}^2 \to \mathbb{P}^9$ defined by the anticanonical system $|\mathcal{O}(3)|$. The image will be called S_0 . For $r = 1, \ldots, 6$ we define S_r as the image of the projection

$$\pi_r: \mathbb{P}^{9-r+1} \supset S_{r-1} \longrightarrow S_r \subset \mathbb{P}^{9-r}$$

from a general point $x \in S_{r-1}$.

- (a) Prove that S_r is smooth and embedded in \mathbb{P}^{9-r} via the anticanonical system $|-K_{S_r}|$.
- (b) Prove that S_r is obtained from S_{r-1} by the blow-up at $x \in S_{r-1}$.
- (c) Prove that $(-K_{S_r})^2 = 9 r$.