Fano Manifolds, Spring 2018

Second problem set. Ruled surfaces.
We work over an algebraically closed field, usually \mathbb{C}.
Review the definition of Weil and Cartier divisors, WDiv (X) and $C \operatorname{Div}(X)$, as well as of class group $\mathrm{Cl}(X)$ and $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(X)$ of a variety X, see e.g. [Hartshorne, II.6]. If D is a Cartier (Weil) divisor on X, then $\mathcal{O}(D)=$ $\mathcal{O}_{X}(D)$ denotes the associated invertible (respectively reflexive) sheaf on X.
Please read Chapter 2 of Reid Chapters on Surfaces. For more information about ruled surfaces see also [Hartshorne, V.2].
For a rank $r+1$ vector bundle \mathcal{E} (or a locally free sheaf) on a variety X we take $\mathbb{P}(\mathcal{E})=\operatorname{Proj}_{X}(\operatorname{Sym\mathcal {E}})$ with the sheaf $\mathcal{O}(1)=\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ and the projection $\pi: \mathbb{P}(\mathcal{E}) \rightarrow X$ which is \mathbb{P}^{r} bundle such that $\pi_{*} \mathcal{O}(1)=\mathcal{E}$.

1. With the notation introduced above prove the following
(a) For any line bundle \mathcal{L} over X we have $\mathbb{P}(\mathcal{E} \otimes \mathcal{L}) \simeq \mathbb{P}(\mathcal{E})$ with

$$
\mathcal{O}_{\mathbb{P}(\mathcal{E} \otimes \mathcal{L})}(1)=\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) \otimes \pi^{*} \mathcal{L}
$$

(b) Suppose that X is smooth (or, at least, $-K_{X}$ is Cartier) then $\mathbb{P}(\mathcal{E})$ has the same feature and

$$
\mathcal{O}\left(-K_{\mathbb{P}(\mathcal{E})}\right)=\pi^{*}\left(\mathcal{O}\left(-K_{X}\right) \otimes \operatorname{det} \mathcal{E}\right) \otimes \mathcal{O}_{\mathbb{P}(\mathcal{E})}(r+1)
$$

2. Sections of projective bundles. With the notation introduced above consider a surjective map of locally free sheaves $\mathcal{E} \rightarrow \mathcal{F}$ over a variety X.
(a) Prove that we have an induced embedding $\mathbb{P}(\mathcal{F}) \hookrightarrow \mathbb{P}(\mathcal{E})$ which commutes with projections onto X.
(b) Given a projective bundle $\pi: \mathbb{P}(\mathcal{E}) \rightarrow X$ with a section $\sigma: X \rightarrow \mathbb{P}(\mathcal{E})$ (that is, $\pi \circ \sigma=i d_{X}$) a line bundle $\mathcal{L}=\sigma^{*} \mathcal{O}_{X}(1)$ prove that there exists a surjective morphism $\mathcal{E} \rightarrow \mathcal{L}$ such that the induced morphism $X=\mathbb{P}(\mathcal{L}) \rightarrow \mathbb{P}(\mathcal{E})$ coincides with σ.
(c) Prove that given a non-zero section $s \in \mathrm{H}^{0}(X, \mathcal{E})$ it determines a divisor $D_{s} \subset \mathbb{P}(\mathcal{E})$ such that $\pi: D_{s} \rightarrow X$ is generically a \mathbb{P}^{r-1} bundle with r-dimensional fibers over the set of zeroes of s.
3. Calculate Čech cohomology of $\mathcal{O}(a)$ on \mathbb{P}^{1}. Prove that $\mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}(a)\right)=$ $\max (0, a+1)$ and $\mathrm{H}^{1}\left(\mathbb{P}^{1}, \mathcal{O}(a)\right)=\max (0,-a-1)$ Use the standard affine covering \mathcal{U} of \mathbb{P}^{1} consisting of two copies of \mathbb{A}^{1}, U_{0} and U_{∞} with coordinates z and z^{-1}, respectively. Then
(a) the sheaf $\mathcal{O}(a)$ is associated to Cartier divisor $\left(U_{0}, z^{a}\right),\left(U_{\infty}, 1\right)$ hence given in $\breve{\mathrm{H}}^{1}\left(\mathcal{U}, \mathcal{O}^{*}\right)$ by the 1-cocycle $g_{\infty 00}=z^{-a}$ (we use right-to-left notation $\left.g_{\infty} f_{0}=f_{\infty}\right)$;
(b) for $a \geqslant 0$ a basis of sections of $\mathcal{O}(a)$ is given by 0 -cocycle $\left(U_{0}, z^{t}\right),\left(U_{\infty}, z^{t-a}\right)$ with $t=0, \ldots, a$
(c) for $a \leqslant-2$ a basis of cohomology $\check{\mathrm{H}}^{1}(\mathcal{U}, \mathcal{O}(a))$ is given by cocycles $\left(U_{0} \cap\right.$ U_{∞}, z^{t}) with $0>t>-a$, where the trivialization of $\mathcal{O}(a)$ on $U_{0} \cap U_{\infty}$ comes from embedding $U_{0} \cap U_{\infty} \hookrightarrow U_{0}$.
4. All bundles over \mathbb{P}^{1} are decomposable. Prove that every locally free sheaf \mathcal{E} over \mathbb{P}^{1} is isomorphic to $\mathcal{O}\left(a_{0}\right) \oplus \cdots \oplus \mathcal{O}\left(a_{r}\right)$ with $a_{0} \leqslant \cdots \leqslant a_{r}$. Use induction and the previous exercise and the following steps:
(a) For every \mathcal{E} over \mathbb{P}^{1} we can choose $d \in \mathbb{Z}$ such that $\mathcal{E}(d)=\mathcal{E} \otimes \mathcal{O}(d)$ has a section but $\mathcal{E}(d-1)$ has no section.
(b) If $s \in \mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{E}\right)$ is a nowhere vanishing section of a locally free sheaf \mathcal{E} then the cokernel $\mathcal{E}^{\prime}=\mathcal{E} / \mathcal{O}$ is locally free.
5. Intersection on a ruled surface. Let $\pi: S=\mathbb{P}(E) \rightarrow C$ be a ruled surface over a (smooth) curve C; that is \mathcal{E} is of rank 2 .
(a) Prove that, possibly twisting \mathcal{E} by a line bundle, we may assume that $\mathrm{H}^{0}(C, \mathcal{E}) \neq 0$ and $\mathrm{H}^{0}(C, \mathcal{E} \otimes \mathcal{L})=0$ for every line bundle \mathcal{L} which is of degree <0.
(b) Prove that every section s of \mathcal{E} vanishes nowhere so the resulting cokernel of $s: \mathcal{O} \rightarrow \mathcal{E}$ is a line bundle. By C_{0} we denote the associated section of the ruling π.
(c) Prove that $d=\operatorname{deg}(\operatorname{det} \mathcal{E})$ satisfies inequality $d \leqslant g(C)$ and if $d<0$ then C_{0} is unique.
(d) Prove that $(\operatorname{Pic} S / \equiv)=\mathbb{Z}[f] \oplus \mathbb{Z}\left[C_{0}\right]$ where \equiv denotes numerical equivalence, $[f]$ is the class of a fiber of π and $\left[C_{0}\right]$ is the class of a section of the ruling π associated to the cokernel of a section $\mathcal{O} \hookrightarrow \mathcal{E}$.
(e) Prove that $f^{2}=0, f \cdot C_{0}=1$ and $C_{0}^{2}=d$.
6. Breaking lemma. Let $\pi: S=\mathbb{P}(E) \rightarrow C$ be a ruled surface over a curve C. Let $\psi: S \rightarrow \mathbb{P}^{N}$ be a morphism which does not contract any fiber of π. (Contracted means mapped to a point.) Prove that one of the following holds:
(a) the morphism ψ is finite-to-one, that is ψ has no positive dimensional fiber, or
(b) there exists a unique curve $C_{0} \subset S$ which is contracted by ψ and this curve is the unique section of π from the previous problem such that $C_{0}^{2}=d<0$, or
(c) the image of the morphism ψ is a rational curve and $d=0$.
