
FINITE SUBGROUPS OF THE CREMONA GROUP OF THE PLANE

JÉRÉMY BLANC

1. Intro

These are notes for the 35th Autumn School in Algebraic Geometry, entitled Subgroups of Cremona groups in
Lukecin, Poland, September 23 – September 29, 2012.

Our aim is to study the finite subgroups of the group Bir(P2) of birational transformations of the plane P2. It is
a group, with a law given by composition of maps. Our base field will be an algebraic closed field k of characteristic
zero. (In fact, most of the results hold also in characteristic p, if p does not divide the order of the group).

1.1. The Cremona group - informal introduction. A birational map of the plane is a transformation defined
by quotients of polynomials. Such a map always sends most algebraic curves to algebraic curves, except for a finite
number of curves, which might be mapped to points. Moreover, some points might have no image. For this reason,
we denote the map by the symbol ”99K”. For example, the map (x, y) 99K (xy, y) has inverse (x, y) 99K (x/y, y):

On the left, the image of the octopus by (x, y) 99K (xy, y), which sends the line y = 0 to a point.

On the right, the image of the octopus by (x, y) 99K (x/y, y); the point (0, 0) has no image.

The set of all birational maps of the plane is called the Cremona group.
Note that the reflection and the 180◦ rotation, which are not conjugate in the automorphism group, are conjugate

in the Cremona group (in fact, this result is true in any dimension, as proved in [Bla06], Theorem 1). We can show
this explicitly:

reflection with horizontal axis //

(x,y)7→(xy,y)

��
(x,y)7→(xy,y)

��

180◦ rotation //

Thus, the two conjugacy classes of involutive isometries belong to the same conjugacy class of the Cremona group.
However, there are infinitely many conjugacy classes of involutions in the Cremona group; each class belongs to

one of three families, called de Jonquières, Geiser and Bertini involutions.
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The image of some vertical lines by a de Jonquières involution. The set of fixed points is in grey.

Our aim is to obtain such a classification for involutions, but also for some other finite groups of birational maps.
In fact we shall work with the complex plane rather than the real plane. This simplifies many of the results (but
not the figures).

So, let the story begin....

1.2. A long history of results. As we explained above, our subject is the Cremona group of the plane, which
is the group of birational maps of the surface P2(k) (or k2), or equivalently, the group of k-automorphisms of the
field k(X,Y ).

This very large group has been a subject of research for many years. We refer to [AlC02] for a modern survey
about its elements. Some presentations of the group by generators and relations are available (see [Giz82], [Isk83]
and [Bla12]), but these results does not provide substantial insight into the algebraic properties of the group. For
example, given an abstract group, it is not possible to say whether it is isomorphic to a subgroup of the Cremona
group. Moreover, the results of [Giz82], [Isk83] and [Bla12] do not allow one to decide whether the Cremona group
is isomorphic to a linear group or wether it is a simple group.

In fact, the group Bir(P2) is not simple [CL10] and not linear (not conjugate to a subgroup of GL(n,K)) for any
n and any K).

The study of the finite subgroups of the Cremona group is one way to understand the group. It begun over
one hundred years ago and it appears unlikely that it will be totally completed in the near future. Let us give a
historical review of the main results:

• The first results are attributed to Bertini, for his work on involutions in 1877 (see [Ber77]). He identified
three types of conjugacy classes, which are now known as de Jonquières, Geiser and Bertini involutions.
However, his proof of the classification of conjugacy classes in each type is generally considered incomplete
(see [Ba-Be00]).

• In 1895, S. Kantor [Kan95] and A. Wiman [Wim96] gave a description of finite subgroups. The list is
exhaustive, but not precise in two respects:

– Given some finite group, it is not possible using their list to say whether this group is isomorphic to
a subgroup of the Cremona group.

– The possible conjugation between the groups of the list is not considered.
• A great deal of work was done by the Russian school and in particular by M.K. Gizatullin, V.A. Iskovskikh

and Yu. Manin.
– They obtained many results on G-surfaces (rational surfaces with a biregular action of some group
G, see below). Our main interest is in the classification of minimal G-surfaces into two types (see
Proposition 8.5). The description of decompositions of birational maps into elementary links (see
[Isk96]) is also a very useful tool.

– We refer to the articles [Giz81], [Isk67], [Isk70], [Isk79] and [Isk96] for more information.
• The modern approach started with the work of L. Bayle and A. Beauville on involutions (see [Ba-Be00]).

They used the classification of minimal G-surfaces to classify the subgroups of order 2 of the Cremona
group. This is the first example of a precise description of conjugacy classes:

– The number of conjugacy classes and their descriptions are precise and clear, parametrised by isomor-
phism classes of curves.

– One can decide directly whether two involutions are conjugate or not.
• The techniques of [Ba-Be00] were generalised by T. de Fernex (see [dFe04]) to cyclic groups of prime order.

The list is as precise as one can wish, except for two classes of groups of order 5, for which the question of
their conjugacy is not answered, but done in [Be-Bl04] by A. Beauville and the author.

• A. Beauville has further classified the p-elementary maximal groups up to conjugation (see [Bea07]). He
obtains for example the following results:

– No group (Z/pZ)3 belongs to the Cremona group if p is a prime 6= 2, 3.
– There exist infinitely many conjugacy classes of groups isomorphic to (Z/2Z)4.
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Note that the conjugacy classes of subgroups (Z/2Z)4 of the de Jonquières group are well described ([Bea07],
Proposition 2.6). However it is not clear whether two groups non-conjugate in the de Jonquières group are
conjugate in the Cremona group.
• More recently, I.V. Dolgachev and V.A. Iskovskikh had updated the list of S. Kantor and A. Wiman, using

the modern theory of G-surfaces, the theory of elementary links of V.A. Iskovskikh, and the conjugacy
classes of Weyl groups (see [Do-Iz09]). This text contains many new results and is currently the most
precise classification of conjugacy classes of finite subgroups.
However, the following questions remain open:

– Given two subgroups of automorphisms of the same rational surface, not conjugate by an automor-
phism of the surface, are they birationally conjugate?

– [Do-Iz09] gives a list of elements of the Cremona group which are not conjugate to linear automor-
phisms. All these elements have order ≤ 30. The complete list of possible orders is not given.

– Given some finite group, it is still not possible using [Do-Iz09] to say whether the group is isomorphic
to a subgroup of the Cremona group.

Moreover, the conjugacy classes of automorphisms of conic bundles are only partially described.
• In [Bla09a], the classification of maximal algebraic subgroups of Bir(P2) is described.
• In [Bla09b], it is explain when a finite abelian subgroup of Bir(P2) is linearisable.
• In [Bla11], the complete classification of finite cyclic subgroups of Bir(P2) is given.
• In [Tsy11], more precise descriptions (and equation) of automorphisms of conic bundles are provided.
• The classification of finite nonsolvable subgroups of Bir(P2) appears in [Tsy12].

We omit to speak about the case where k has positive characteristic, or when k is non-algebraically closed, which
were also studied (only partially) in other texts.

1.3. The techniques. The main technique is the one which was used in most of the articles above:

• We consider finite subgroups of the Cremona group as biregular automorphisms of some complete rational
smooth surfaces (or equivalently as G-surfaces).
• We use the classification of minimal G-surfaces (Proposition 8.5), which comprises two cases:

– groups of automorphisms of conic bundles (see Section 9),
– groups of automorphisms of surfaces where the canonical class is, up to a multiple, the only invariant

class of divisors (see Section 10).
• We use some conjugacy invariants and tools with G-elementary links to decide when two subgroups are

conjugate. These tools are described in Section 11.

2. Blow-ups

The notion of blow-up is the most fundamental one in the subject of birational geometry.

2.1. Blowing-up the origin in A2.

Definition 2.1. We let Bl0(A2) ⊂ A2 × P1 be the following projective variety

Bl0(A2) = {
(
(x, y), (u : v)

)
∈ A2 × P1 | xv = yu},

and say that the map π : Bl0(A2)→ A2 is the blow-up of p = (0, 0) ∈ A2.

It follows directly from the definition that the following hold:

(1) The preimage E = π−1(p) = {p} × P1 is isomorphic to P1

(2) The map π restricts to an isomorphism Bl0(A2)\E → Pn\{p} whose inverse is (x, y) 7→
(
(x, y), (x : y)

)
.

(3) In particular, π is a birational morphism whose inverse is a birational map not being a morphism (it is not
defined exactly at p).

Remark 2.2. The name ”blow-up” of p comes from the fact that the point is replaced with a line E, so we want
to say that the point is ”blown-up”. We often say that π ”blows down E onto p” or that ”π blows up p”.

In fact, π should be considered as a blow-down but it is more π−1 which should be called blow-up. Because this
latter map is not a morphism, we often prefer to deal with π; that is why we say that π is also a blow-up.

2.2. The surface Bl0(A2) is smooth and is covered by two affine planes. The variety A2×P1 is covered by
the two open sets isomorphic to A3 given by the image of (x, y, z) 7→ ((x, y), (z : 1)) and (x, y, z) 7→ ((x, y), (1 : z)).
The trace of Bl0(A2) on each of the two subsets corresponds to the surface of equation x = yz and y = xz. Both
are isomorphic to A2, with coordinates (y, z) and (x, z) respectively, so are smooth. This shows in particular that
Bl0(A2) is smooth.
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2.3. Local description of the blow-up. Let us describe the blow-up π : Bl0(A2) → A2 in affine charts. We
choose two open subsets U, V ⊂ Bl0(A2) where respectively v 6= 0 and u 6= 0. As we observed above, these two
open subsets are isomorphic to A2 via the maps

A2 → U
(y, u) 7→ ((yu, y), (u : 1))

A2 → V
(x, v) 7→ ((x, xv), (1 : v))

In local coordinates, we can thus describe the blow-up by

A2 → A2

(y, u) 7→ (yu, y)
A2 → A2

(x, v) 7→ (x, xv)

These two maps have the same behaviour (they only differ by an exchange of coordinates).

The blow-up and its inverse are thus described in local coordinates by the following pictures:

(x,y) 799K(xy,y) //

(x/y,y)L997 (x,y)oo

2.4. Blowing-up the point (1 : 0 : · · · : 0) in Pn.

Definition 2.3. We let Y ⊂ Pn × Pn−1 be the following projective variety

Y = {
(
(x0 : x1 : · · · : xn), (y1 : · · · : yn)

)
∈ Pn × Pn−1 | xiyj = xjyi for 1 ≤ i, j ≤ n},

and say that the map π : Y → Pn is the blow-up of p = (1 : 0 : · · · : 0) ∈ Pn.

It follows directly from the definition that the following hold:

(1) The preimage E = π−1(p) = {p} × Pn−1 is isomorphic to Pn−1

(2) The map π restricts to an isomorphism Y \E → Pn\{p} whose inverse is (x0 : · · · : xn) 7→
(
(x0 : · · · :

xn), (x1 : · · · : xn)
)
.

(3) In particular, π is a birational morphism whose inverse is a birational map not being a morphism (it is not
defined exactly at p).

If X ⊂ Pn is a subset, we define by X̃ ⊂ Y the strict transform of X, which is equal to π−1(X\{p}) ∩ π−1(X).

Example 2.4. Let L ⊂ Y be a line passing through p. It corresponds to the image of a morphism P1 → Pn given
by

(u : v)→ (u : a1v : · · · : anv)

where (a1 : · · · : an) ∈ Pn−1. The set π−1(L) is the union of E with the image of the morphism P1 → Y given by

(u : v)→ ((u : a1v : · · · : anv), (a1 : · · · : an)).

This latter is equal to L̃, and is the preimage of (a1 : · · · : an) ∈ Pn−1 under the projection Y → Pn−1 on the second
factor.

The strict transform of the lines passing through p are thus disjoint in Y and are the fibres of the projection
Y → Pn−1.
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Definition 2.5. Let X be a quasi-projective variety and p ∈ X be a point. We take an isomorphism of X with
a closed subset of Pn, which sends p onto (1 : 0 : · · · : 0) and let π : Y → Pn be the blow-up of this point as in

Definition 2.3. The blow-up of X at p is the morphism X̃ → X given by the restriction of π to the strict transform
of X under the map p.

Note that this definition depends a priori of the embedding of X in Pn. In fact, we can see that if π : X̃ → X
and π′ : X̃ ′ → X are two blow-ups of the same point, there exists an isomorphism ϕ : X̃ → X̃ ′ that makes the
following diagram commutative:

X̃
ϕ //

π
  A

AA
AA

AA
A X̃ ′

π′~~||
||

||
||

X.

This can be done by hand or using a more intrinsic way of blowing-up like in [Har77]. It follows from the definition

that the blow-up τ : X̃ → X of p restricts to an isomorphism X̃\τ−1{p} → X\{p} and hence is birational. If X is

smooth, irreducible and projective, then X̃ has the same properties.
Taking an open subset U ⊂ X containing p, one can study the blow-up of p in X by looking at the blow-up of p

in U and then glueing this one with X\{p}. When U is for example isomorphic to A2, it suffices to study the map
Bl0(A2) → A2 given in §2.3. Since we will blow-up only rational surfaces, this will be what we will have in mind
when we blow-up points.

2.5. Birational morphisms are sequences of blow-ups. The following shows that any birational morphism
between smooth projective surfaces is a sequence of blow-ups. Note that the result is false in dimension ≥ 3.

Proposition 2.6. [Har77, Chapter V, Corollary 5.4, page 411], [Bea96, Proposition II.11, page 16] Let η : X → Y
be a birational morphism between smooth projective surfaces. There exists a sequence of birational morphisms
η1, . . . , ηk between smooth projective surfaces such that ηi : Xi → Xi−1 is the blow-up of a point pi ∈ Xi−1 for
i = 1, . . . , k and such that Xk = Y , X0 = X and η = η1 ◦ · · · ◦ ηk.

Remark 2.7. In the above description, the point pi ∈ Xi−1 corresponds to a point of Xj with j < i − 1 if
ηj+1 ◦ · · · ◦ ηi is an isomorphism in a neighbourhood of pi. The blow-up being local, we can thus exchange the order
in this case and replace the sequence p1, . . . , pn with the sequence p1, . . . , pi, pj , pi+1, . . . , pj−1, pj+1 . . . , pk.

2.6. Bubble spaces. For any smooth projective surface X, we denote by B(X) the bubble space of X, which is
the set of points that belong to X as proper or infinitely near points. More precisely, B(X) can be viewed as the set
of equivalence classes of triplets (y, Y, π), where y is a point of a smooth projective surface Y and π : Y → X is a
birational morphism (which is a sequence of blow-ups) and where we say that (y, Y, π) is equivalent to (y′, Y ′, π′) if
(π′)−1 ◦ π : Y 99K Y ′ is a birational map which restricts to an isomorphism on a open neighbourhood of y, sending
y onto y′.

Points equivalent to (x,X, id) where id is the identity map, are proper points (or points of X), and other are
infinitely near points.

A point y ∈ B(X) is infinitely near to y′ ∈ B(X) if these points correspond respectively to triplets (y, Y, π) and
(y′, Y ′, π′) such that (π′)−1 ◦ π : Y → Y ′ is a birational morphism which contracts a curve containing y onto the
point y′ ∈ Y ′; if y belongs to the strict transform of the curve obtained by blow-up y′, we say that y if proximate
to y′ (and write y � y′), and if moreover (π′)−1 ◦ π is locally the blow-up of y′, we say that the point y is in the
first neighbourhood of y′.

A point y is in the n-th neighbourhood of y′ if there exists a sequence of points y1, . . . , yn, where yn = y, where
yi is in the first neighbourhood of yi−1 for i ≥ 2 and y1 is in the first neighbourhood of y′.

Exercise 1. Let X be a smooth projective surface. Show that any point y ∈ B(X) is either a proper point or is
in the n-th neighbourhood of a unique point x ∈ X, for some n ≥ 1. If n > 1, y is in the first neighbourhood of a
unique point y′ ∈ B(X) which is in the (n− 1)-th neighbourhood of x.

2.7. Birational morphisms and subsets of bubble spaces. Let X be a smooth projective surface and let
π : Y → X be a birational morphism. We can associate to it a subset of B(X), which will be denote by B(π−1),
which is the set of base-points of π−1. Decomposing π as π1 ◦ · · · ◦ πk, as in Proposition 2.6, where πi : Xi → Xi−1

is the blow-up of a point pi ∈ Xi−1 for i = 1, . . . , k, we say that B(π−1) is the union of the pi (or more precisely of
the triplets (pi, Xi−1, π1 ◦ · · · ◦ πi−1) ). We can see that this set does not depend on the factorisation. Moreover, if
π : Y → X and π′ : Y ′ → X are two birational morphisms such that B(π−1) = B(π′−1), there exists an isomorphism
τ : Y → Y ′ such that π′ ◦ τ = π.
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3. Intersection form on projective surfaces and relations with blow-ups

In this section, we assume the ground field k to be algebraically closed.

3.1. Intersection of two curves on a surface.

Proposition 3.1. [Har77, Chapter V, Theorem 1.1, page 357] Let X be a smooth projective surface. There exists
an unique bilinear symmetric form (called intersection form)

Div(X)×Div(X) → Z
(C,D) 7→ C ·D

having the following properties

(1) If C and D are smooth curves meeting transversally, then C ·D is equal to #(C ∩D), which is the number
of points of C ∩D.

(2) If C,C ′ are linearly equivalent, then C ·D = C ′ ·D.

In particular, this yields an intersection form

Pic(X)× Pic(X) → Z
(C,D) 7→ C ·D.

Example 3.2. Take X = P2, the intersection form is given by the following: if C,D are two curves of degree m
and n, C ·D = m · n. Indeed, recall that Pic(X) = ZL, where L is the divisor of a line. The fact that L · L = 1
follows from the fact that two distinct lines intersect into one point and are linearly equivalent. This shows that
C ·D = (mL) · (nL) = mn.

Let us recall what is the multiplicity of a curve at a point. If C ⊂ X is a curve in a smooth projective surface
and p ∈ X is a point, we can define the multiplicity mp(C) of C at p. Taking a local equation f of C, it can be
defined as the integer k such that f ∈ mk\mk+1, where m is the maximal ideal of the ring of functions Op,X . If
we can find an open neighbourhood U of p in X with U ⊂ A2, the point p can be choosed to (0, 0) in this affine
neighbourhood, and the equation of C is a polynomial

r∑
i=0

Pi(x, y) = 0

where all Pi are homogeneous polynomials in two variables. The multiplicity mp(C) is equal to the lowest i such
that Pi is not equal to 0. We always have the following:

(1) mp(C) ≥ 0;
(2) mp(C) = 0⇔ p /∈ C;
(3) mp(C) = 1⇔ p is a smooth point of C;
(4) mp(C) ≥ 2⇔ p is a singular point of C.

If π : Y → X is a blow-up of a point p ∈ X, we have a map π∗ : Pic(X) → Pic(Y ), which sends a curve or a
divisor on X onto its pull-back. Moreover, if C ⊂ X is an irreducible curve, the strict transform of C on Y is
defined to be the closure of π−1(C\{p}), and written often C̃. Observe that C̃ ⊂ Y is again an irreducible curve.

Lemma 3.3. Let X be a smooth surface, let p ∈ X be a point, let π : Y → X be the blow-up of p, and let C ⊂ X
be an irreducible curve. In Pic(Y ), we have

π∗(C) = C̃ +mp(C)E,

where C̃ is the strict transform of C and where E = π−1(p). In particular, C̃2 = C2 −mp(C)2.

Proof. Take local coordinates x, y at p and write k = mp(C). The curve C is given by

pk(x, y) + pk+1(x, y) + · · ·+ pr(x, y),

where pi are homogeneous polynomials of degree i. The blow-up can be viewed as (u, v) 7→ (uv, v). The pull-back
of C becomes

vk(pk(u, 1) + vpk+1(u, 1) + · · ·+ vr−kpr(x, y)),

so it decomposes into k times the exceptional divisor E (here v = 0), and the strict transform. �
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Proposition 3.4. [Har77, Chapter V, Proposition 3.2, page 386], [Bea96, Proposition II.3, page 12]
Let X be a smooth surface, let x ∈ X be a point, and let π : Y → X be the blow-up of x. We denote by E ⊂ Y

the curve π−1(p), which is isomorphic to P1.

Pic(Y ) = π∗(Pic(X))⊕ ZE

The intersection form on Y is induced by the intersection form on X via the following formulas:

π∗(C) · π∗(D) = C ·D for any C,D ∈ Pic(X),
π∗(C) · E = 0 for any C ∈ Pic(X)

E · E = −1

In particular, the curve obtained by blowing-up a point in a smooth surface is isomorphic to P1 and has self-
intersection −1. We will say that it is a (−1)-curve. In fact, we have the following converse statement, due to G.
Castelnuovo:

Proposition 3.5. [Har77, V, Theorem 5.7, page 414] Let E ⊂ X be a curve in a smooth projective surface. The
following are equivalent:

(i) There exists a morphism π : X → Y , where Y is a smooth projective surface, which contracts E onto a point
p and which is an isomorphism outside of E (π is the blow-up of p ∈ Y ).

(ii) E ∼= P1 and E2 = −1 (i.e. E is a (−1)-curve).

We will prove this Proposition in the case where X is rational (Corollary 7.8).
If S is a smooth projective surface, C ⊂ S is an irreducible curve and p ∈ B(S), we can define the multiplicity of

C at p which is a non-negative integer mp(C). The element p corresponds to a triplet (p,X, π), where π : X → S

is a birational morphism. Then mp(C) is the multiplicity of the strict transform C̃ ⊂ X of C.

Proposition 3.6. Let S be a smooth projective surface and let C,D ⊂ S be two distinct irreducible curves. We
have

C ·D =
∑

p∈B(S)

mp(C) ·mp(D).

In particular, only finitely many points p ∈ B(S) satisfy mp(C) ·mp(D) > 0.

Proof. Note that mp(C) is positive only for points that belong to C, as proper or infinitely near points, and the
same for C.

If C and D are disjoint, then C ·D = 0 and the result is obvious.
Otherwise, we let p ∈ S be a point of the intersection, and let π : S′ → S be the blow-up of p. By Lemma 3.3, the

strict transform C̃, D̃ ⊂ S′ of C,D are linearly equivalent to π∗(C)−mp(C)E and π∗(D)−mp(D)E. In particular,

C̃ · D̃ = C ·D −mp(C) ·mp(D). The result follows thus by induction on the non-negative integer C ·D. �

4. Del Pezzo surfaces

Recall that the canonical divisor on an algebraic variety X is given by the divisor of a differential form. Choosing
two distinct differential forms give linearly equivalent divisors. In particular, we have an unique element KX ∈
Pic(X) that we call the canonical divisor.

Proposition 4.1 (Ramification formula). Let X be a smooth surface, let p ∈ X be a point, let π : Y → X be the
blow-up of p, and let E = π−1(p). Then

KY = π∗(KX) + E.

Proof. Take local coordinates u, v at p so that this point corresponds to u = v = 0. Let ω be a differential
form on X, which locally corresponds to du ∧ dv. It has no pole or zero at p (but certainly outside of the local
neighbourhood). The divisor of ω, equal to KX , corresponds thus locally to the trivial divisor.

The blow-up can be viewed locally as (u, v) 7→ (uv, v), and the differential form π∗(ω) becomes d(uv) ∧ dv =
v · du ∧ dv. In these coordinates, v is the equation of the divisor E and η∗(KX) is the trivial divisor.

The canonical divisor of Y is the divisor of the differential form π∗(ω), which is equal thus equal to π∗(KX)+E:
this equation was computed locally above p, and is clear outside because π restricts to an isomorphism. �

Proposition 4.2 (Adjunction formula). [Har77, Chapter V, Proposition 1.5, page 361],[Bea96, I.15, page 8]
Let C ⊂ S be an irreducible curve on a surface S. We have C · (C+KS) = −2+2 ·g(C), where g(C) = H1(C,OC)

is the arithmetical genus of C.
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Remark 4.3. In fact, if X ⊂ Y is an hypersurface in a smooth projective variety, we have KX = (KY + X)|X .
In the case where X is a curve, the canonical divisor of X has degree −2 + 2 · g(C) where g(C) is the arithmetical
genus.

Let us recall that a divisor D on an algebraic projective variety X is ample if nD is very ample for some n ≥ 1,
which means that the linear system |nD| induces a closed embedding of X into a projective space. We also have
the following more algebraic criterion:

Proposition 4.4 (Nakai-Moishezon Criterion). [Har77, Chapter V, Theorem 1.10, page 365] A divisor D on a
smooth projective surface X is ample if and only if D2 > 0 and D · C > 0 for any (irreducible) curve C ⊂ X.

Definition 4.5. A del Pezzo surface is a smooth projective surface S such that its anti-canonical divisor −KS is
ample.

Proposition 4.6 (Descriptions of del Pezzo surfaces). Let π : S → P2 be a birational morphism, where S is a
smooth projective surface. The following conditions are equivalent:

1. −KS is ample (i.e. S is a del Pezzo surface);
2. the morphism π is the blow-up of 0 ≤ r ≤ 8 points of P2 (no infinitely near point) such that no 3 are

collinear, no 6 are on the same conic, no 8 lie on a cubic having a double point at one of them;
3. K2

S ≥ 1 and any irreducible curve of S has self-intersection ≥ −1;
4. C · (−KS) > 0 for any effective divisor C.

Remark 4.7. In general a divisor is ample if and only if it intersects positively the adherence of the cone of
effective divisors.

In our case (when the surface is rational and the divisor is the anti-canonical divisor), the equivalence of asser-
tions 1 and 4 shows that the criterion is true, even if we omit the adherence in the statement, or when we omit the
fact that C2 > 0.

Proof. The implication (1 ⇒ 4) is the easy sense of Kleiman’s ampleness criterion: as −KS is ample, −mKS is
very ample, for some integer m > 0, in which case m · (−KS) ·C is the degree of C in the corresponding embedding,
which must be positive.

If one point p blown-up by π is infinitely near to a point q (which is thus blown-up), the strict transform of the
curve obtained by the blow-up of q is a smooth curve C ⊂ S, isomorphic to P1 which has self-intersection C2 ≤ −2
on S. In particular Adjunction formula (Proposition 4.2) yields C ·KS ≥ 0. Hence, all assertions are false in this
case. We can thus assume that π is the blow-up of r points p1, . . . , pr ∈ P2. And Pic(S) is generated by L, the
pull-back of a line of P2, and E1, . . . , Er, the divisors contracted on p1, . . . , pr, which have self-intersection −1.
Moreover L · Ei = Ei · Ej = 0 for i 6= j.

(4 ⇒ 2, 3) We first prove that assertion 4 implies that any irreducible curve of S has self-intersection ≥ −1.
Suppose that some irreducible curve C of S has self-intersection ≤ −2. The adjunction formula (Proposition 4.2)
gives C · (C +KS) = −2 + 2 · g(C) ≥ −2, whence C · (−KS) ≤ 2 + C2 ≤ 0, which contradicts assertion 4.

If three are collinear, say p1, p2, p3, the strict transform of the line passing through the points is equivalent to
L−

∑
iEi where the sum has at least 3 terms, so has self-intersection ≤ −2. The same holds if six lie on a conic:

(2L−
∑6
i=1Ei)

2 = −2 or if 8 lies a cubic which is singular at one of the points: (3L− 2E1 −
∑8
i=2Ei)

2 = −2.
Furthermore, if the number of blown-up points is at least 9, there exists a cubic passing through 9 of the blown-

up points, which is irreducible as the points are in general position. The strict transform of this curve intersects
the anti-canonical divisor of S non positively. The number of blown-up points is then at most 8, and so K2

S ≥ 1.
We get assertions 2 and 3.

(3 ⇒ 2) The fact that (KS)2 ≤ 1 implies that the number of points is at most 8, and the fact that C2 ≥ −1
for any irreducible curve C implies that the points have the good configuration (no 3 collinear, no 6 on the same
conic,...)

(2⇒ 1) Applying Nakai-Moishezon Criterion (Proposition 4.4), we only need to show that −KX ·C > 0 for any
irreducible curve C ⊂ X (the fact that (−KX)2 > 0 is given by the fact that at most 8 points are blown-up).

Let C ⊂ X be an irreducible curve. If C = Ei for some i, then C · (−KX) = 1. Otherwise, C is linearly
equivalent to dL−

∑r
i=1 aiEi with d > 0. Moreover, ai = C · Ei ≥ 0 for i = 1, . . . , r.

If d = 1, the curve is the strict transform of a line, which can only pass through 2 points by (2); this implies that∑r
i=1 ai ≤ 2, whence C · (−KX) ≥ 1. The cases d = 2 and d = 3 are similar, we have

∑r
i=1 ai ≤ 5 (respectively

≤ 8), so C · (−KX) ≥ 1.
It remains to study the cases where d ≥ 4. Since r ≤ 9, −KX is effective (it is linearly equivalent to the strict

transform of a cubic passing through the r points), and because d ≥ 4 and C is irreducible, C has no common
component with −KX so C · (−KX) ≥ 0. It remains to show that C · KX = 0 is not possible. Otherwise, by
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adjunction formula we would have C2 = −2 + 2g for some integer g ≥ 0 (which is the arithmetic genus of C). We
get thus

r∑
i=1

(ai)
2 = d2 + 2− 2g,

r∑
i=1

ai = 3d.

Since (
∑r
i=1 ai)

2 ≤ r
∑r
i=1(ai)

2 ≤ 8
∑r
i=1(ai)

2, we get 9d2 ≤ 8(d2 + 2 − 2g) which implies that d2 ≤ 8(2 − 2g).
Since d ≥ 4, the only possibility should be d = 4, g = 0. But the equality implies that r = 8 and all ai are equal,
which contradicts the equality

∑r
i=1 ai = 3d. �

5. Resolution of indeterminacies

Proposition 5.1. [Bea96, Theorem II.7, page 14] Let X be a projective smooth surface and let ϕ : X 99K Y be
a rational map, where Y is a projective variety. There exists a birational morphism η : Z → X, which is a finite
sequence of blow-ups (so Z is a smooth projective surface), and a morphism π : Z → Y such that the following
diagram commutes:

Z
π

  @
@@

@@
@@

η

~~~~
~~

~~
~

X ϕ
//_______ Y.

Corollary 5.2. Let ϕ : X 99K Y be a birational map between projective smooth surfaces. There exists a projective
smooth surface Z and birational morphisms ηX : Z → X, ηY : Z → Y , which are finite sequences of blow-ups such
that the following diagram commutes:

Z
ηY

  @
@@

@@
@@

ηX

~~~~
~~

~~
~

X ϕ
//_______ Y.

Proof. Follows from Propositions 2.6 and 5.1. �

6. Hirzebruch surfaces

Definition 6.1. We define the n-th Hirzebruch surface Fn to be

Fn = {((x : y : z), (u : v)) ∈ P2 × P1 | yvn = zun},

and let πn : Fn → P1 be the map given by the projection on the second factor.

Remark 6.2. Note that F0 is isomorphic to P1 × P1, via ((x : y : z), (u : v)) 7→ ((x : y), (u : v)).

Lemma 6.3. The following maps

ρ1,n : P1 × A1 → Fn
((α : β), t) → ((α : β : βtn), (1 : t))

and
ρ2,n : P1 × A1 → Fn

((α : β), t) → ((α : βtn : β), (t : 1))

are open embeddings. Writing U1,n, U2,n ⊂ Fn the images of the two morphisms, we have U1,n ∪U2,n = Fn, so this
yields an open covering of Fn.

In particular, Fn is a smooth projective surface, and π : Fn → P1 is a P1-bundle.

Proof. We let the proof in exercise. �

Remark 6.4. With the notation above, we can compute that ρ1,n ◦ (ρ2,n)−1 is the birational involution of P1 ×A1

given by ((α : β), t) 99K ((α : βtn), 1
t ). We can thus view Fn as the union of two copies of P1 × A1 glued along

P1 × k∗ via this map.
In fact, we can see that Fn = PP1(OP1 ⊕ OP1(n)) (see [Bea96], Proposition IV.1 for more details on these

surfaces).
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Lemma 6.5. For any integer n ≥ 0, the map ρ1,n+1 ◦ (ρ1,n)−1 yields a birational map ϕn : Fn 99K Fn+1 whose
resolution of indeterminacies is

Y
ηn+1

!!D
DD

DD
DD

D
ηn

~~~~
~~

~~
~~

Fn
ϕn //_______ Fn+1

where ηn, ηn+1 are two birational morphisms having the following properties:

(1) ηn is the blow-up of p = ρ2,n((1 : 0), 0) ∈ Fn;
(2) ηn+1 is the blow-up of q = ρ2,n+1((0 : 1), 0) ∈ Fn+1;
(3) the curve contracted by ηn+1 on q is the strict transform by ηn of the fibre of πn passing through p;
(4) the curve contracted by ηn on p is the strict transform by ηn+1 of the fibre of πn+1 passing through q.

Proof. For k = n, n + 1, Lemma 6.3 shows that ρ1,k induces an isomorphism between P1 × A1 and U1,k, which is
an open subset of Fk.

In particular, ϕn = ρ1,n+1 ◦ (ρ1,n)−1 restricts to an isomorphism between U1,n and U1,n+1, and is therefore a
birational map from Fn and Fn+1.

Recalling that the map U1,k 99K U2,k is given by ((α : β), t) 99K ((α : βtk), 1
t ) (with coordinates given by P1×A1),

the map ϕn restricts to a birational map from U1,n to U1,n+1 which is the identity and thus to a birational map
U2,n 99K U2,n+1 given by

((α : β), t) 99K ((αt : β), t).

We define Y ′ = {((a : b), (c : d), t) ∈ P1 × P1 × A1 | tad = bc}, and let η′n : Y ′ → U2,n be given by ((a : b), (c :
d), t) 7→ ((a : b), t) and η′n+1 : Y ′ → U2,n+1 be given by ((a : b), (c : d), t) 7→ ((c : d), t). We observe that η′n is the
blow-up of p = ((1 : 0), 0) ∈ U2,n, that η′n+1 is the blow-up of q = ((0 : 1), 0) ∈ U2,n+1 and that the restriction of
ϕn is given by (η0) ◦ (π0)−1. Moreover, the curve contracted by η′n is sent by η′n+1 onto the curve t = 0, which
corresponds to the fibre of πn+1 passing through q. Similarly, the curve contracted by η′n+1 is sent by η′n onto the
curve t = 0, which corresponds to the fibre of πn passing through p. We extend the morphism η′n and η′n+1 (by
taking the identity outside of U2,n and U2,n+1) and obtain a morphism ηn : Y → Fn which is the blow-up of p and
a morphism ηn+1 : Y → Fn+1, which is the blow-up of q. �

Definition 6.6. We denote by En ⊂ Fn the curve given by En = {((1 : 0 : 0), (u : v)) | (u : v) ∈ P1}.

The curve here is a section of the line bundle πn : Fn → P1, which is a special one for n ≥ 1, as we will below
(Lemma 6.9).

Lemma 6.7. For any n ≥ 0, the Picard group Pic(Fn) is given by:

(1) Pic(Fn) = Zf ⊕ ZEn, where f is the divisor of a fibre of πn;
(2) the intersection form on Pic(Fn) is given by

f2 = 0, (En)2 = −n,En · f = 1;

(3) moreover, the canonical divisor KFn ∈ Pic(Fn) is equal to −2En − (2 + n)f .

Proof. Note that E0 ·f = 1 is given by the fact that En is a section, and f2 = 0 is given by intersecting two distinct
fibres, both equivalent to f . Assuming the first two assertions, let us see that the canonical divisor KFn

∈ Pic(Fn)
is equal to −2En − (2 + n)f . Indeed, KFn

= aEn + bf , and adjunction formula (Proposition 4.2) for En and f
implies that a = En ·KFn = −2− n and b = f ·KFn = 0.

We prove now the result (Assertion 1 and the fact that (En)2 = −n) by induction on n. For n = 0, Fn is
isomorphic to P1 × P1 and the fibres of the two projections are E0 and f . This implies that Pic(Fn) is generated
by E0 and f and that (E0)2 = 0.

We then use the map ϕn : Fn 99K Fn+1 given in Lemma 6.5, which is given by the blow-up ηn : Y → Fn of

p ∈ En, followed by the contraction ηn+1 : Y → Fn+1 of the strict transform f̃p ⊂ Y of the fibre fp of πp passing
through p onto the point q ∈ Fn+1. Note that En is sent by ϕn onto En+1; we denote by EY ⊂ Y the strict

transform of these curves. We also denote by fq ⊂ Fn+1 the fibre of πn+1 passing through q and by f̃q ⊂ Y its
strict transform, which is contracted by ηn onto p. The situation is described by the following diagram:
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p

fp

En

q
fq

En+1

f̃q

f̃p

EY

ηn ηn+1

1

Because p belongs to En, the strict transform EY of En on Y has self-intersection −n − 1 and its image in
Fn+1 has the same self-intersection because EY does not intersect the curve f̃p, contracted by ηn+1. This yields
(En+1)2 = −(n+ 1). To prove the result, we only need to show that Pic(Fn+1) is generated by En+1 and fq (the
fact that we have a direct sum is given by the intersections).

Because ηn+1 is the contraction of f̃p, we have Pic(Y ) = (ηn+1)∗(Pic(Fn+1))⊕Zf̃p (Proposition 3.4), so we need

to see that (ηn+1)∗(fq), (ηn+1)∗(En+1) and f̃p generate Pic(Y ). These are respectively equal to f̃p + f̃q, EY and

f̃p. We use the fact that ηn is the contraction of f̃q to obtain Pic(Y ) = (ηn)∗(Pic(Fn))⊕Zf̃q, and get (by induction

hypothesis) that Pic(Y ) is generated by (ηn+1)∗(fp), (ηn+1)∗(En) and f̃q, being respectively equal to f̃p + f̃q, EY
and f̃q. This achieves to give the result. �

Remark 6.8. As we already observed, F0 is isomorphic to P1 × P1, via ((x : y : z), (u : v)) 7→ ((x : y), (u : v)). It
has thus two line bundle structures given by the two projections P1 × P1 → P1.

Writing F0 = {((x : y : z), (u : v)) ∈ P2 × P1 | y = z}, as in Definition 6.1, the two maps correspond to π0,
introduced before, given by ((x : y : z), (u : v)) 7→ (u : v) and π′0 given by ((x : y : z), (u : v))→ (x : y).

A fibre of π0 (respectively π′0) is a section of π′0 (respectively π0), so the morphisms have distinct fibres. The
following result (Assertion 3) implies that this is the only case where such phenomenon occurs.

Lemma 6.9. The Hirzebruch surfaces Fn have the following properties:

(1) Any curve of Fn is linearly equivalent to aEn + bf for some a, b ≥ 0. (Here f ∈ Pic(Fn) denotes as before
a fibre of πn : Fn → P1)

(2) Any section s of πn : Fn → P1 which is different from En is linearly equivalent to En + (n+ k)f for some
integer k ≥ 0. In particular, s2 = n+ k and s · En = k.

(3) If π : Fn → P1 is a morphism having a general fibre isomorphic to P1, there exists α ∈ Aut(P1) such that
either π = α ◦ πn or n = 0 and π = α ◦ π′0, where π′0 : F0 → P1 is the morphism given in Remark 6.8.

(4) If π : Fn → P1 is a morphism having a general fibre isomorphic to P1, the minimum of the self-intersections
of the sections of π is equal to −n.

(5) The surfaces Fm and Fn are isomorphic if and only if m = n.

Proof. Let C ⊂ Fn be an irreducible curve, that is linearly equivalent to aEn + bf for some a, b ∈ Z (Lemma 6.7).
If C is a fibre of πn or C = En we have {a, b} = {0, 1}, hence a, b ≥ 0. If C 6= En, we have 0 ≤ C · En = −na+ b
and 0 ≤ C · f = a, hence b ≥ na ≥ a ≥ 0. This proves (1). If C is moreover a section (distinct from En), we
have 1 = C · f = a and k = b− n = C · En ≥ 0. The section is thus linearly equivalent to s = En + (k + n)f and
s2 = n+ 2k, s · En = k. This achieves to prove (2).

(3) Let π : Fn → P1 be a morphism having a general fibre f ′ isomorphic to P1. If π and πn have the same fibres,
we have π = α ◦ πn for some α ∈ Aut(P1). We can thus assume that f ′ is not equal to a fibre of πn. In particular,
we have f · f ′ > 0, so f ′ ∼ aEn + bf with a > 0, b ≥ 0, which yields 0 = (f ′)2 = −na2 + 2ab = a(2b− na), hence
2b = na. Intersecting En with f ′ we get b− an = −b, so b = 0 and f ′ = En. Since (f ′)2 = 0 this yields n = 0, and
implies that the fibres of π are equal to the fibres of π′0. Hence, π = α ◦ π′0 for some α ∈ Aut(P1).

(4) − (5) By (2), the minimum of the self-intersections of the sections of πn is equal to −n. Because π′0 is
equal to π0τ , where τ is the automorphism of F0

∼= P1 × P1 that exchanges the two factors, the minimum of the
self-intersections of the sections of π′0 is also equal to 0. Using (3), this achieves to prove (4), which implies (5). �

6.1. Automorphisms of Hirzebruch surfaces. Note that GL(2,k) acts linearly on k2, hence on the set of poly-
nomials on two variables, which is a k-vector space. It preserves the subvector space of homogeneous polynomials
of degree n. The corresponding action yields an algebraic group kn+1 o GL(2,k), whose elements are(

a0Y
n + a1XY

n−1 + ...+ anX
n,

(
a b
c d

))
∈ kn+1 o GL(2,k).
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We observe that this group acts on the Hirzebruch surface Fn = {((x : y : z), (u : v)) ∈ P2 × P1 | yvn = zun}. The(
a0Y

n + a1XY
n−1 + ...+ anX

n,

(
a b
c d

))
sends ((x : y : z), (u : v)) ∈ Fn onto

{
((xun + y(a0v

n + a1uv
n−1 + · · ·+ anu

n) : y(au+ bv)n : y(cu+ dv)n), (au+ bv : cu+ dv)) if u 6= 0,
((xvn + z(a0v

n + a1uv
n−1 + · · ·+ anu

n) : z(au+ bv)n : z(cu+ dv)n), (au+ bv : cu+ dv)) if v 6= 0.

The kernel of this action is easy to compute. It is the finite cyclic subgroup of GL(2,k) consisting of diagonal

matrices of the form

(
µ 0
0 µ

)
, where µn = 1. In particular, kn is an algebraic subgroup of Aut(Fn); (a0, . . . , an)

sends ((x : y : z), (u : v)) ∈ Fn onto{
((xun + y(a0v

n + a1uv
n−1 + · · ·+ anu

n) : yun : yvn), (u : v)) if u 6= 0,
((xvn + z(a0v

n + a1uv
n−1 + · · ·+ anu

n) : zun : zvn), (u : v)) if v 6= 0.

Denote by f0 the fibre of (1 : 0), which is the set of points where v = 0. The open set Fn\(En ∪ f0) is naturally
invariant by the action of kn, and is isomorphic to A2, via the map (x, y) 7→ ((x : yn : 1), (y : 1)). The action of kn

on this open subset corresponds thus to

(x, y) 7→ (x+ a0 + a1y + a2y
2 + · · ·+ any

n, y).

One has the following result:

Lemma 6.10. For n = 0, the group Aut(Fn) acts transitively on Fn.
For n ≥ 1, the action of Aut(Fn) on Fn has two orbits: En and Fn\En.

Proof. The case n = 0 follows from the fact that PGL(2,k)× PGL(2,k) acts transitively on P1 × P1.
If n ≥ 1, then En is the unique section of self-intersection −n (Lemma 6.9), hence is invariant by Aut(Fn). Its

complement Fn\En is thus also invariant. The group GL(2,k) acts transitively on the set of fibres and kn+1 acts
transitively on f\En, where f is any fibre. This implies thatkn+1 o GL(2,k) acts transitively on the two sets En
and Fn\En. �

Exercise 2. For n ≥ 1, prove that Aut(Fn) is the quotient of kn+1oGL(2,k) by the subgroup of GL(2,k) consisting

of diagonal matrices of the form

(
µ 0
0 µ

)
, where µn = 1. (One way to do is to use induction on n: the case of

F1 comes from P2 and the automorphisms of Fn+1 that fix the base-point of (ϕn)−1 correspond to automorphisms
of Fn fixing the base-point of ϕn).

7. Elementary links and the decomposition theorem

In Section 6, we defined the Hirzebruch surfaces Fn, for n ≥ 0, as

Fn = {((x : y : z), (u : v)) ∈ P2 × P1 | yvn = zun},

and defined πn : Fn → P1 to be the map given by the projection on the second factor (Definition 6.1).
By construction, there is a morphism Fn → P2, given by the first projection. It sends the curve En = {((1 : 0 :

0), (u : v)) | (u : v) ∈ P1} onto the point (1 : 0 : 0). For n = 1, this morphism is the blow-up of (1 : 0 : 0) ∈ P2,
which is the contraction of the curve E1 ⊂ F1 of self-intersection −1. Composing the morphism τ : F1 → P2, with
an automorphism of P2, we obtain the blow-up of any point of P2. In particular, if X → P2 is the blow-up of one
point, then X is isomorphic to F1.

Definition 7.1. If τ : F1 → P2 is the blow-up of a point, the birational map τ−1 : P2 99K F1 will be called a link of
type I.

After automorphisms, the map τ−1 above is the simplest case of a birational map starting from P2 and will
be the first block in a decomposition of a birational map. By Corollary 5.2, any birational map from P2 to a
smooth projective surface decomposes into a sequence of blow-ups followed by a sequence of blow-downs. However,
this decomposition factors through surfaces that are complicate to understand. As we will see, it is possible to
decompose the maps through only simple maps between ”simple surfaces”, i.e. P2 and the Hirzebruch surfaces.

Starting from P2, we can ”go” to F1 via a link of type I. A next possible step is to go to F0 or F2 via a simple
map as in Lemma 6.5. More generally, the links of type II that we will consider are the following:
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Definition 7.2. A birational map ϕ : Fn 99K Fm is a link of type II if there exists a commutative diagram

Y
ηm

  B
BB

BB
BB

B
ηn

~~}}
}}

}}
}

Fn
πn

��

ϕ //_______ Fm
πn

��
P1 α // P1,

where α ∈ Aut(P1) and ηn, ηm are blow-ups of one point of Fn,Fm respectively.

Lemma 7.3. For any point p ∈ Fn, there exists an elementary link ϕ : Fn 99K Fm, unique up to automorphism of
Fm, whose unique base-point is p. Moreover, m = n − 1 if n ≥ 1 and p does not belong to En, and m = n + 1
otherwise.

Proof. The unicity follows from the unicity of blow-ups up to automorphisms; it remains to show the existence.
Lemma 6.5 yields the existence of an elementary link ϕn : Fn 99K Fn+1 such that ϕn has one base-point on En and
(ϕn)−1 has a base-point in Fn+1\En+1. Choosing αn ∈ Aut(Fn) and αn+1 ∈ Aut(Fn+1), the map ψn = αn+1ϕnαn
is an elementary link Fn 99K Fn+1. Moreover, the transitivity lemma above (Lemma 6.10) shows that we can
obtain any point of En as base-point of ψn and any point of Fn+1\En+1 as base-point of (ψn)−1. This yields the
result. �

After blowing-up a point in P2 and having performed elementary links of type II, we can go back to P2 from F1:

Definition 7.4. A birational map F1 → P2 is a link of type III if it is the blow-up of a point of P2.

The last link is the following:

Definition 7.5. A birational map F0 → F0 is a link of type IV if it is an automorphism which exchanges the fibres
of the two projections.

One of the main results of birational geometry of projective surfaces is that any birational map of P2 decomposes
into the elementary links. To prove this result, we will show the following lemma, that is in fact more general
because it also yields the description of minimal surfaces and Castelnuovo’s contraction criterium for projective
smooth rational surfaces:

Lemma 7.6. Let X be equal to P2 or to an Hirzebruch surface Fn for some n ≥ 0. Let η : Y → X be a birational
morphism and let E ⊂ Y be a smooth curve isomorphic to P1 and of self-intersection −1. Then, the following hold:

(1) There exists a birational morphism τ : Y → Z, where Z is a smooth projective surface which contracts
E onto a point q, and which is the blow-up of this point (in particular, τ restricts to an isomorphism
Y \E → Z\{q}).

(2) There exists a sequence of birational maps ϕ1, . . . , ϕk, where ϕi : Xi−1 99K Xi is elementary link of type
I, II, III or IV for i = 1, . . . , k, where X = X0, and such that ψ = ϕkϕk−1 . . . ϕ1ητ

−1 is a birational
morphism. (Note that k = 0 is allowed, which implies that ψ = ητ−1 is a birational morphism).

In particular, the following diagram is commutative:

Y

η

��

τ

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Z

ψ

��
X

ϕ1 //___ X1
ϕ2 //___ . . . ϕk //___ Xk

Proof. We decompose η into blow-ups: we set Y0 = X, and for i = 1, . . . ,m, we let pi ∈ Yi be a point and
ηi : Yi → Yi−1 be the blow-up of pi, such that η = ηm ◦ ηm−1 ◦ · · · ◦ η1 (in particular, Y = Ym). We let Ei ⊂ Yi be
the unique irreducible curve contracted by ηi, and let Ei ∈ Pic(Y ) be equal to (ηm . . . ηi+1)∗(Ei).

Let E ⊂ Y = Ym be a smooth curve isomorphic to P1 and of self-intersection −1.
If E is contracted by η then because E has self-intersection −1 it is equal to Ei for some i, where pi has no

point pj which is infinitely near to it. In particular, we can reorder the points and assume that i = m. We choose
then τ = ηm and k = 0 to conclude.



14 JÉRÉMY BLANC

We can now assume that E is not contracted by η. It is thus the strict transform of the curve η(E) = EX ⊂ X,
and is linearly equivalent to η∗(EX)−

∑
aiEi, where ai is the multiplicity of EX at pi. We can assume that X = Fn

(if X = P2, we blow-up a point and obtain F1) and write d = E · fY , where fY ∈ Pic(Y ) is the pull-back of a fibre
of πn : Fn → P1. Note that d = EX · fX , where fX ∈ Pic(X) is a fibre of πn. Moreover, −1 = E2 = (EX)2 −

∑
a2
i .

Suppose that d = 0, which implies that EX is a fibre of πn, so (EX)2 = 0. Because E2 = −1, exactly one of the
ai is equal to 1 and the other are equal to 0. The point pi corresponding to ai is thus a proper point of X = Fn so
we can assume that i = 1. We denote by τ ′ : X1 → Fn±1 the contraction of the strict transform of EX , which exists
and yields an elementary link ϕ : Fn 99K Fn′ (with n′ = n ± 1) equal to τ ′ ◦ (η1)−1. The morphism η′ : Y → Fn′
given by ηn ◦ · · · ◦ η2 ◦ τ ′ is a sequence of blow-ups; it contracts E onto a point q ∈ Fn′ , whose blow-up corresponds
to τ ′. Because no infinitely near point is blown-up, we can decompose η′ in another sequence of blow-ups where q is
the last point blown-up instead of begin the first one. The last blow-up will then be τ : Y → Z and the remaining
part will be a birational morphism ψ : Z → Fn′ . We have thus k = 1, Xk = Fn′ and ϕ = ϕ1.

We can now assume that d > 0 and prove the result by induction on d.
Suppose that one of the ai satisfies 2ai > d. We can order the points and assume that a1 > d. We denote by

τ ′ : X1 → Fn′ the contraction of the strict transform of the fibre f1 ⊂ X of πn passing through p1, which exists
and yields an elementary link ϕ : Fn 99K Fn′ (with n′ = n ± 1) equal to τ ′ ◦ (η1)−1. Denote by q ∈ Fn′ the point
blown-up by τ ′ and Fq ∈ X1 the curve contracted on it. We replace η : Y → Fn with the morphism η′ : Y → Fn′
given by ηn ◦ · · · ◦ η2 ◦ τ ′. This does not change d (because ϕ sends a general fibre of πn onto a general fibre of πn′)
and does not change the multiplicities a2, . . . , an. However, a1 is replaced with the multiplicity a′1 of η′(E) at q,
which is equal to (ηn ◦ · · · ◦ η2)(E) · Fq. Because a1 is equal to (ηn ◦ · · · ◦ η2)(E) · E1 and E1 + Fq corresponds to a
fibre of the map to P1, we get a1 + a′1 = d, hence a′1 < a1 because 2a1 > d.

Doing this will all other possible points, we can assume that each of the ai satisfies 2ai ≤ d.
We write EX = dEn + bf for some integer b ∈ N (Lemma 6.9). If EX · En < 0, we have EX = En and n = −1

because (EX)2 ≥ E2 = −1, so it suffices to choose the contraction of En, which is an elementary link F1 → P2, to
get the result. We can thus assume that EX · En = b − dn > 0. In particular, ε = 2b − dn satisfies ε > b > dn.
Since E = dη∗(En) + bη∗(f)−

∑
aiEi and KY = η∗(KX) +

∑
Ei with KX ·En = −2− n, KX · f = −2, we obtain

−1 = E2 = −d2n+ 2bd−
∑
a2
i = εd−

∑
a2
i

−1 = KY E = (−2− n)d− 2b+
∑
ai = −ε− 2d+

∑
ai,

hence ∑
ai = ε+ 2d− 1,

∑
a2
i = εd+ 1.

The fact that 0 ≤ 2ai < d for each i yields

0 <
∑

ai(d− 2ai) = d
∑

ai − 2
∑

a2
i = 2d2 − d− εd− 2,

which implies that 2d2− εd > d+ 2 > 0, hence 2d > ε = 2b− nd > b > nd. In particular, n < 2, so n = 0 or n = 1.
If n = 0, the inequality 2d > ε yields d > b. Performing an elementary link of type IV, we exchange E0 and f ,

and thus exchange d with b, which decreases d as we wanted.
If n = 1, the inequality b > nd yields b > d. We claim that at least one of the ai satisfies ai > b − d. Indeed,

otherwise we would have

0 ≥
∑

a2
i −

∑
ai(b− d) = 2bd− d2 + 1− (2b+ d− 1)(b− d) = b(3d− 2b) + (b− d)− 1

which implies that 3d− 2b ≤ 0 and contradicts 2d > ε = 2b− d.
Note that b−d = EX ·E1, so the point pi corresponding to the multiplicity ai with ai > b−d does not belong to

E1. We can also assume that it is a proper point of F1. Contracting the curve E1 (via τ : P2 → F1) then blowing
up the point (going to F1), the intersection with the fibre decreases. Indeed, it is equal to the degree of τ(EX)
minus the multiplicity at the point τ(E1) or the point pi, which is respectively b− d and ai. �

Lemma 7.6 gives the following corollaries

Corollary 7.7. Any smooth projective rational surface S admits a birational morphism κ : S → X where surface
is equal to P2 or to an Hirzebruch surface Fn for some n 6= 1.

Proof. The fact that n = 1 can be avoided is clear, because of a birational morphism F1 → P2. Because S
is rational, there exists a birational map ϕ : X 99K S, where X = P2. We decompose it with two birational
morphisms π : Y → S, η : Y → X such that ϕ = πη−1 (Corollary 5.2). If π is an isomorphism, it suffices to choose
κ = ηπ−1. Otherwise, π is a sequence of contractions. Denoting by E ⊂ Y the first curve contracted, which is a
(−1)-curve, we use Lemma 7.6, and obtain a birational morphism τ : Y → Z, which contracts E, and a birational
morphism ψ : Z → X ′ where X ′ is an Hirzebruch surface or P2. We replace X with X ′, η with ψ, Y with Z and
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π with πτ−1, which contracts one curve less that π. The result follows thus by induction on the number of curves
contracted by π, which is the number of blow-ups we need in decomposing it. �

Corollary 7.8 (Castelnuovo’s contraction criterium for rational surfaces). Let Y be a smooth projective rational
surface and E ⊂ Y be a (−1)-curve. There exists a birational morphism τ : Y → Z, where Z is a smooth projective
surface which contracts E onto a point q, and which is the blow-up of this point (in particular, τ restricts to an
isomorphism Y \E → Z\{q}).

Proof. By Corollary 7.7, there exists a birational morphism η : Y → X, where X is P2 or an Hirzebruch surface.
The existence of τ is thus given by Lemma 7.6. �

Corollary 7.9. Let S be a smooth projective rational surface and p ∈ S be a point. There exists an open subset
U ⊂ S isomorphic to A2 which contains p.

Proof. If S is equal to P2, the result is obvious. If S is equal to an Hirzebruch surface Fn, the result is given by
Lemma 6.3. We assume the result true for a projective rational surface S and prove it for the blow-up π : S′ → S
of one point q. By Corollary 7.7, this will imply the results for all projective rational surfaces. Let U ⊂ S be an
open subset isomorphic to A2. If q does not belong to U , then π−1(U) is isomorphic to U , and hence to A2. If U
contains q; we can assume that q corresponds to the origin of A2 (by use of a translation). By Lemma ??, the set
π−1(U) is isomorphic to Bl0(A2), which is covered by open subsets isomorphic to A2 (see §2.3). The covering of S
by open subsets isomorphic to A2 gives thus the covering of S′ by open subsets isomorphic to A2. �

Corollary 7.10. Let X1, X2 be two surfaces, such that Xi is equal to P2 or to an Hirzebruch surfaces Fn for i = 1, 2.
Any birational map ϕ : X1 99K X2 decomposes into automorphisms and elementary links of type I, II, III, IV

Proof. We decompose ϕ with two birational morphisms π : Y → X1, η : Y → X2 such that ϕ = πη−1 (Corollary 5.2).
If both are isomorphisms, the result is trivial. If only η is an isomorphism, the only possibility is that π is the
blow-up of one point, and ϕ is a link of type I. Otherwise, π is a sequence of contractions and we proceed as
in Corollary 7.7: we denote by E ⊂ Y the first curve contracted, which is a (−1)-curve, we use Lemma 7.6, and
obtain a birational morphism τ : Y → Z, which contracts E, and a birational morphism ψ : Z → X ′ where X ′ is
an Hirzebruch surface or P2, and where ψτη−1 is a sequence of elementary links.

We replace X with X ′, η with ψ, Y with Z and π with πτ−1, which contracts one curve less that π. The result
follows thus by induction on the number of curves contracted by π, which is the number of blow-ups we need in
decomposing it. �

In fact, Corollary 7.10 implies that any birational map of P2 is generated by Aut(P2) and by (x : y : z) 99K (yz :
xz : xy), which is the famous Noether-Castelnuovo theorem.

Exercise 3. Using the decomposition of birational maps from P2 to P2 into elementary links, shows that Bir(P2)
is generated by Aut(P2) and by the birational maps preserving a given pencil of lines through one point. Deduce
the Noether-Castelnuovo theorem.

We can now prove a more general version of Proposition 4.6:

Proposition 7.11. Let X be a smooth projective rational surface. The following are equivalent:

(1) X is a del Pezzo surface;
(2) X is isomorphic to P1 × P1, to P2 or to the blow-up of 1 ≤ r ≤ 8 points of P2 such that no 3 are collinear,

no 6 are on the same conic, no 8 lie on a cubic having a double point at one of them.
(3) K2

X ≥ 1 and any irreducible curve of X has self-intersection ≥ −1;
(4) C · (−KX) > 0 for any effective divisor C.

Proof. The canonical divisor of P1×P1 is equivalent to −2f1−2f2, where f1, f2 are the fibres of the two projections
(Lemma 6.7). Since C = − 1

2KP1×P1 = f1 + f2 satisfies C2 > 0 and C · fi > 0 for each i, it intersects any curve of

P1 × P1 positively. It is thus ample by Nakai-Moishezon Criterion. (It is in fact very ample because it gives the
embedding P1 × P1 → P3 given by ((x : y), (u : v)) → (xu : xv : yu : yv)). This shows that P1 × P1 is a del Pezzo
surface, and moreover that all assertions are true for X = P1 × P1.

If there exists a birational morphism π : X → P2, the equivalence of all assertions is provided by Proposition 4.6.
Otherwise, Corollary 7.7 yields a birational morphism π : X → Fn for some n 6= 1. If n = 0, either π is an

isomorphism (in which case X ∼= P1 × P1, case already done) or π factors through the blow-up τ : Z → F0 of one
point p. An elementary link centred at p gives rise to a birational morphism Z → F1, and thus to a birational
morphism X → P2. We can thus assume that n ≥ 2. In this case, the strict transform on X of the exceptional
section of Fn gives a smooth curve C ⊂ X isomorphic to P1 and of self-intersection ≤ −2. Adjunction formula
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yields KX · C + C2 = −2, hence KX · C ≤ 0. This shows that assertions 1), 3), 4) are not satisfied. The fact that
2) is not satisfied follows from Proposition 4.6. �

Definition 7.12. A smooth projective surface X is said to be minimal if any birational morphism X → Y , where
Y is a smooth projective surface, is an isomorphism.

Proposition 7.13. Let S be a smooth projective rational surface. The following are equivalent:

(1) S is minimal;
(2) S does not contain any (−1)-curve;
(3) S is isomorphic to P2 or to Fn for n 6= 1.

Proof. If S does not contain any (−1)-curve, any birational morphism starting from S to a smooth projective
surface is an isomorphism: there is no curve to contract. This yields 2)⇒ 1).

Suppose that S is minimal. Corollary 7.7 yields the existence of a birational morphism S → X, where X is
P2 or Fn for n 6= 1. If S is minimal, then this morphism has to be an isomorphism, which shows that S = P2 or
S = Fn for n 6= 1. We thus have 1)⇒ 3).

It remains to show 3)⇒ 2). It is clear that P2 does not contain any (−1)-curve: every curve has self-intersection
d2, where d is its degree. By Lemma 6.9, a curve C on Fn, is equivalent to aEn + bf for some a, b ≥ 0. Its
square is equal to −a2n + 2ab = a(2b− an). If C2 = −1, we thus have a = 1, which means that C is a section of
self-intersection −1. This is only possible when n = 1 by Lemma 6.9. �

8. Regularisation of finite groups

8.1. Base-points and action on Bubble spaces. Let X,Y is a smooth projective surface and ϕ : X 99K Y be a
birational map. By Corollary 5.2, there exist a projective smooth surface Z and birational morphisms ηX : Z → X,
ηY : Z → Y , which are finite sequences of blow-ups such that ϕ = ηY ◦ (ηX)−1. This gives a resolution of
indeterminacies

Z
ηY

  @
@@

@@
@@

ηX

~~~~
~~

~~
~

X ϕ
//_______ Y.

We can moreover assume that the resolution is minimal, which means that no (−1)-curve of Z is contracted by
both ηX and ηY . In this case, we say that the base-points of ϕ (respectively of ϕ−1) are the points blown-up by
ηX (respectively by ηY ). These points form two subsets of the bubble spaces B(X) and B(Y ) respectively, that we
denote by B(ϕ) ⊂ B(X) and B(ϕ−1) ⊂ B(Y ).

Lemma 8.1. 1) If π : S → S′ is the blow-up of a point p ∈ S′, then π induces a bijection π• : B(S)→ B(S′)\{p}.
2) Let X,Y is a smooth projective surface and ϕ : X 99K Y be a birational map. Then ϕ induces a bijection

ϕ• : B(X)\B(ϕ)→ B(Y )\B(ϕ−1).
3) If ϕ : X 99K Y and ψ : Y 99K Z are birational maps between smooth projective surfaces, we have ψ•(ϕ•(p)) =

(ψϕ)•(p) for any point p ∈ B(X)\B(ϕ) such that ϕ•(p) ∈ B(Y )\B(ψ).

Remark 8.2. It follows from the construction that all bijections above preserve the partial order given by p > q if
p is infinitely near to q.

Proof. 1) Any point of B(S) corresponds to a triplet (x,X, η), where x ∈ X and η : X → S is a birational morphism.
It naturally corresponds to the triplet (x,X, π ◦ η) which gives an element of B(S′). Moreover, any point except p
is obtained by this process.

2) We take a minimal resolution of indeterminacies of ϕ, given by two birational morphisms ηX : Z → X,
ηY : Z → Y such that ϕ = ηY ◦ (ηX)−1, where Z is a smooth projective surface. Applying (1) finitely many times
we see that ηX induces a bijection B(Z) → B(X)\B(ϕ) and ηY induces a bijection B(Z) → B(Y )\B(ϕ−1). This
yields the bijection ϕ• : B(X)\B(ϕ)→ B(Y )\B(ϕ−1).

Assertion 3) follows from the construction of the bijections. �

8.2. Regularisation of finite subgroups. Recall that Bir(P2) is the group of birational maps of P2, also called
Cremona group.

Proposition 8.3. Let X be a smooth projective surface. Let G ⊂ Bir(X) be a finite subgroup. Let B(G) =⋃
g∈G B(g).

There exists a birational morphism π : S → X, which is the blow-up of the points of B(G), and such that
π−1Gπ ⊂ Aut(S).
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Proof. Because B(g) is finite for any g ∈ G, the set B(G) is finite. Moreover, if p ∈ B(g), q ∈ B(X) and p is
infinitely near to q, then q ∈ B(g). This implies that the same conditions holds for B(G) and thus that there exists
a birational π : S → X which is the blow-up of the points of B(G) (we let π be the identity if B(G) = ∅).

It remains to prove that ĝ = π−1gπ ∈ Aut(S) for any g ∈ G. As before, we take a minimal resolution of
indeterminacies of g, given by two birational morphisms η1 : Z → X, η2 : Z → X such that g = η2 ◦ (η1)−1.
Because π : S → X is the blow-up of B(G) and η1 blows-up B(g), the map τ1 = (η1)−1π : S → Z is a birational
morphism, which blows-up ((η1)−1)•(B(G)\B(g)). Similarly, η2 blows-up B(g−1), so τ2 = (η2)−1π : S → Z is a
birational morphism, which blows-up ((η2)−1)•(B(G)\B(g−1)):

S

π

��

τ1

  @
@@

@@
@@

@ S
τ2

~~}}
}}

}}
}}

π

��

Z
η2

  A
AA

AA
AA

A
η1

~~~~
~~

~~
~

X g
//_______ X.

It remains to see that (τ2)−1 ◦ τ1 is an automorphism of S, which amounts to see that τ1, τ2 blow-up the same set,
i.e. that

((η1)−1)•(B(G)\B(g)) = ((η2)−1)•(B(G)\B(g−1)).

Recall that η1 and η2 blow-up respectively the sets B(g) and B(g−1), and induce bijections (η1)• : B(Z) →
B(X)\B(g), (η2)• : B(Z) → B(X)\B(g−1), which induce a bijection g• : B(X)\B(g) → B(X)\B(g−1) given by
g• ◦ (η1)• = (η2)• (see Lemma 8.1). Applying (η2)• to both sides of the equality, we need to see that

g•(B(G)\B(g)) = (B(G)\B(g−1)).

If p ∈ B(G)\B(g), there exists h ∈ G such that p ∈ B(h). Because p is not a base-point of g, the element g•(p)
is well-defined element of B(X), which is in fact a base-point of hg−1 and is not a base-point of g−1. In particular,
g•(p) belongs to B(G)\B(g−1). Doing the same with g−1 shows that g• induces a bijection from B(G)\B(g) to
B(G)\B(g−1). �

Using Proposition 8.3, the study of finite sugbroups of Bir(P2) can be done by looking at finite groups acting
biregularly on smooth projective rational surfaces. T

Here is a simple but important observation: a birational map ϕ : S 99K P2 yields an isomorphism between
Bir(S) and Bir(P2). Choosing any smooth projective rational surface S, a finite group G ⊂ Aut(S) corresponds to
a subgroup of Bir(P2): we choose a birational ϕ : S 99K P2 and get ϕGϕ−1 ⊂ Bir(P2). The choice of ϕ only replace
the group obtained with another one in its conjugacy class.

We say that two groups G ⊂ Bir(S) and G′ ⊂ Bir(S′) are birationally conjugate if there exists a birational map
ϕ : S 99K S′ such that ϕGϕ−1 = G′. This means that the two groups represent the same conjugacy class in the
Cremona group.

Definition 8.4. • We denote by (G,S) a pair in which S is a smooth projective rational surface and G ⊂
Aut(S) is a group acting biregularly on S. A pair (G,S) is also classically called a G-surface.

• Let (G,S) be a G-surface. We say that a birational map ϕ : S 99K S′ is G-equivariant if the G-action on
S′ induced by ϕ is biregular. The birational map ϕ is called a birational map of G-surfaces.

• We say that a pair (G,S) is minimal (or equivalently that G acts minimally on S) if any G-equivariant
birational morphism ϕ : S → S′ is an isomorphism.

When G is the identity, a pair (G,S) is minimal if the surface S is minimal, so S is P2 or a Hirzebruch surface.
Given some finite subgroup G ⊂ Bir(P2), the modern approach (used in [Ba-Be00], [dFe04], [Bea07] and

[Do-Iz09]) is to see this subgroup as a group of automorphisms of a surface S (using Proposition 8.3) and to
suppose that the pair (G,S) is minimal by contracting orbits of disjoint (−1)-curves.

Then, we apply the following very powerful result, due to Yu. Manin in the abelian case (see [Man67]) and V.A.
Iskovskikh in the general case (see [Isk79]), which classifies the minimal G-surfaces.

Proposition 8.5. Let S be a smooth projective rational surface and G ⊂ Aut(S) be a finite subgroup of automor-
phisms of S. If the pair (G,S) is minimal then one and only one of the following holds:

1. The surface S has a conic bundle structure invariant by G, and rk Pic(S)G = 2, i.e. the fixed part of the
Picard group is generated by the canonical divisor and the divisor class of a fibre.
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2. rk Pic(S)G = 1, i.e. the fixed part of the Picard group is generated by the canonical divisor.

Let us comment on this proposition:

• In the first case, there exists a morphism π : S → P1 with general fibres rational and irreducible and such
that every singular fibre is the union of two rational curves F , F ′ with F 2 = F ′2 = −1 and FF ′ = 1. The
group G embeds in the group of automorphisms of the generic fibre P1

k(x) of π. This group is abstractly

PGL2(k(x)) o PGL(2,k) and can be viewed as the group of birational maps of P1 × P1 that preserve the
first projection (see Section 9.2 and in particular Proposition ??).

The de Jonquières involutions are examples of this case: they are given in this context as birational
maps of P1 × P1 of the form

(x1 : x2)× (y1 : y2) 99K (x1 : x2)× (y2

∏n
i=1(x1 − aix2) : y1

∏n
i=1(x1 − bix2)),

for some a1, ..., an, b1, ..., bn ∈ k all distinct.
• In the second case, S is a Del Pezzo surface (see Lemma ??). We recall that a Del Pezzo surface is a

rational surface whose anti-canonical divisor −KS is ample. In fact, it is either P2, P1×P1 or the blow-up
of r points A1, A2, ..., Ar ∈ P2, 1 ≤ r ≤ 8, in general position. (See [Dem76] and [Bea96] for more details.)
We describe in Chapter ?? the finite abelian subgroups G ⊂ Aut(S) when the group of invariant divisors
is of rank 1 (case 2 of Proposition 8.5).

Here is an example: the 3-torsion of the diagonal torus of PGL(4,k), isomorphic to (Z/3Z)3, acting on
the cubic surface in P3 with equation w3 +x3 + y3 + z3 = 0. This surface is a Del Pezzo surface of degree 3
(see Section ??). Other famous examples are Geiser and Bertini involutions, acting minimally respectively
on Del Pezzo surfaces of degree 2 and 1 (see Sections ?? and ??).

Remark 8.6. • In the second case, no conic bundle structure can be invariant (for this would imply that
both the canonical divisor and the fibre are invariant, so rk Pic(S)G > 1). However, in the first case, the
underlying surface may be a Del Pezzo surface (see Section ??).

• Although the two cases are distinct, they are not birationally distinct (see Section ??).

9. Automorphisms of conic bundles

In this chapter we give some description of the case of conic bundles (second case of Proposition 8.5).

9.1. Description of conic bundles. We first describe conic bundles without goups. We begin with the definition
of a conic bundle:

Definition 9.1. Let S be a rational surface and π : S → P1 a morphism. We say that the pair (S, π) is a conic
bundle if

• A general fibre of π isomorphic to P1.
• There is a finite number of exceptions: these singular fibres are the union of rational curves F and F ′ such

that F 2 = F ′
2

= −1 and FF ′ = 1.

Note that the condition that S be rational is in fact induced by the others (using for example a Noether-Enriques
theorem whose proof can be found in [Bea96], Theorem III.4). Moreover a conic bundle is not in general a bundle
(it is not locally trivial) but is a conic section of a P2-bundle.

In this context, the natural notion of minimality is defined as follows:

Definition 9.2. • Let (S, π) and (S′, π′) be two conic bundles. We say that ϕ : S 99K S′ is a birational map
of conic bundles if ϕ is a birational map which sends a general fibre of π on a general fibre of π′.

• We say that a conic bundle (S, π) is minimal if any birational morphism of conic bundles (S, π)→ (S′, π′)
is an isomorphism.

The following lemma is classical:

Lemma 9.3. Let (S, π) be a conic bundle. The following conditions are equivalent:

(1) (S, π) is minimal.
(2) The fibration π is smooth, i.e. no fibre of π is singular.
(3) S is a Hirzebruch surface.
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Proof. Let ϕ : (S, π) → (S′, π′) be some birational morphism of conic bundles. The morphism ϕ is not an
isomorphism if and only if it contracts at least one (−1)-curve F . If this is the case, as the conic bundle structure
is preserved, F does not intersect a regular fibre and so π(F ) is a point. This implies that F is contained in some
singular fibre. This yields 2)⇒ 1).

3)⇒ 2) is easy (see Lemma 6.3).
1) ⇒ 3): If (S, π) is minimal, there is no (−1)-curve contained in a fibre (the contraction of it would give a

birational morphism which is not an isomorphism and would give another conic bundle). In particular, the rank
of the Picard group of S is 2. Corollary 7.7 implies that S is an Hirzebruch surface. �

Here is a useful result:

Lemma 9.4. Let (S, π) be a conic bundle on a surface S 6∼= P1 × P1.

(1) There exists a section s of π of self-intersection s2 < 0.
(2) For any section s of self-intersection s2 = −n < 0, there exists a birational morphism of conic bundles

p : S → Fn which sends s onto the exceptional section En.
(3) Suppose that s, t are two sections of self-intersection −n < 0; denote by r the number of singular fibres of

π and by k the number of these fibres where s, t intersect the same component. We have

r = 2s · t+ 2n+ k

and there exist birational morphisms of conic bundles p0 : S → F0 and p1 : S → F1.

Proof. There exists a birational morphism of conic bundles p : (S, π) → (Fn, πn) by Lemma 9.3. If n > 0, the
strict transform of the exceptional section yields a section of negative self-intersection on S. If n = 0, the fact that
S 6∼= P1 × P1 implies that p blows-up at least one point of F0 = P1 × P1, so the strict transform of the section of
self-intersection 0 passing through the point has negative intersection on S. This yields assertion (1).

Let s be a section of π of self-intersection −n < 0 and r be the number of singular fibres of π. If r = 0, the
lemma is trivial: we take in assertion (2) the identity map and (3) is trivially true because only one section of π
has self-intersection < 0 (Lemma 6.9). We suppose now that r ≥ 1.

We denote by F1, ..., Fr the irreducible components of the singular fibres which do not intersect s. Blowing these
down, we get a birational morphism of conic bundles p : S → Fm, for some integer m ≥ 0. The image of s has
again self-intersection −n < 0, so m = n and s is sent on the exceptional section En. This yields (2).

Let t be another section on S of self-intersection −n. The Picard group of S is generated by s = p∗(En), the
divisor f of a fibre of π and F1, ..., Fr. Write some section t = s + bf −

∑r
i=1 aiFi, for some integers b, a1, ..., ar,

where ai is equal to t · Fi, so belongs to {0, 1}. Moreover, ai = 0 if and only if s, t intersect the other component
of the fibre where Fi is. In particular, k = r −

∑r
i=1 ai. We compute t2 = s2 −

∑r
i=1 a

2
i + 2b = s2 − (r − k) + 2b,

which is equal to s2 by hypothesis, so 2b = r − k. We then compute s · t = b− n, and find thus

r = 2b+ k = 2s · t+ 2n+ k,

which yields (3). We have in particular r ≥ 2n. We can thus contract f −F1, f −F2, ..., f −Fn, Fn+1, Fn+2, ..., Fr,
we obtain a birational morphism p0 of conic bundles which sends s on a section of self-intersection 0 and thus whose
image is F0 = P1 × P1. Similarly, the morphism p1 : S → F1 is given by the contraction of f − F1, f − F2, ..., f −
Fn−1, Fn, Fn+1, ..., Fr. �

The above lemma shows that r ≥ 2n. The extremal case is when r = 2n, a case called exceptional in [Do-Iz09]:

Definition 9.5. A conic bundle (S, π) is said to be exceptional if it has 2n singular fibres and two sections of
self-intersection −n.

Note that such conic bundle can be viewed as obtained by blowing-up 2n points on a section of self-intersection
n of Fn.

9.2. Finite groups of automorphisms: two representations.

Example 9.6. Let π1 : P1 × P1 → P1 be the projection on the first factor.
The group of birational maps P1 × P1 which send a general fibre of π1 onto a general fibre of π1 is the group of

birational maps of the form:

(x, y) 99K

(
ax+ b

cx+ d
,
α(x)y + β(x)

γ(x)y + δ(x)

)
,

where a, b, c, d ∈ k, α, β, γ, δ ∈ k(x), and (ad− bc)(αδ − βγ) 6= 0.
This group, called the de Jonquières group, is isomorphic to PGL(2,k(x)) o PGL(2,k).
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Definition 9.7. Let (S, π) be a conic bundle. The group of automorphisms of S that leave the conic bundle
structure invariant (i.e. that send every fibre to another fibre) is denoted by Aut(S, π).

The study of finite groups of automorphisms of conic bundles, is in fact equivalent to the study of finite subgroup
of the de Jonquières group given before. If G ⊂ Aut(S, π), we have a birational morphism of conic bundles
(S, π) → (S′, π′), where (S′, π′) is minimal and hence isomorphic to (Fn, πn) for some n. Performing elementary
links, we can go to F0 = P1 × P1 and see G as a subgroup of the de Jonquières group. The converse also holds.

9.3. The exact sequence. Let G ⊂ Aut(S, π) be some subgroup acting (biregularly) on a conic bundle (S, π).
We have a natural homomorphism π : G → Aut(P1) = PGL(2,k) that satisfies π(g)π = πg, for every g ∈ G. We
observe that the group G′ = Ker(π) of automorphims that leaves every fibre invariant embeds in the subgroup
PGL(2,k(x)) of automorphisms of the generic fibre P1(k(x)).

We use the exact sequence

(9.1) 1→ G′ → G
π→ π(G)→ 1

to restrict the structure of G.
When G is finite, so are G′ and π(G). These are moreover finite subgroups of PGL(2,k) and PGL(2,k(x)) so

either cyclic, diedral, Alt4, Alt5, Sym4.

9.4. Exceptional conic bundles and Z/2Z-conic bundles.

Proposition 9.8. Let (S, π) be a conic bundle with at least one singular fibre, and assume the existence of a finite
group G ⊂ Aut(S, π) such that (G,S) is minimal. Then, one of the following occurs:

(1) the conic bundle (S, π) is exceptional;
(2) the subgroup G′ ⊂ G of elements that preserve any fibre (i.e. that act trivially on the basis of the fibration)

is isomorphic to Z/2Z or (Z/2Z)2.

Proof. Let s ∈ S be a section of π of negative self-intersection (which exists by Lemma 9.4), and let us take one
singular fibre, whose components are F1, F2; we choose the order so that s intersects F1. Because the pair (G,S)
is minimal, there exists g ∈ G such that g(F1) = F2 and g(F2) = F1 (otherwise we can contract the orbit of F1).
In particular, the section t = g(s) is distinct from s and has the same self-intersection.

1) Assume first the existence of h ∈ G which is not trivial but acts trivially on Pic(S) and on the basis of the
fibration. It preserves thus s and t (because they have negative self-intersection) and fixes them pointwise. The
set of points of S fixed by h being smooth, we have s · t = 0. Moreover, the sections s and t intersect distinct
components of any singular fibre (otherwise we would have three fixed points on a component, which is impossible).
Lemma 9.4 implies that the number of singular fibres is equal to 2n, where s2 = −n. Hence, (S, π) is exceptional.

2) We can now assume that any non-trivial element of the subgroup G′ ⊂ G of elements acting trivially on the
basis induces a non-trivial action on the Picard group. This implies that each element of G′ has order 1 or 2: the
square of each element preserves the two components of each singular fibre so acts trivially on the Picard group
(contract fibres to go to Fn with n > 0, the element corresponds to an automorphism of Fn so acts trivially on the
Picard group). Because G′ ⊂ PGL(2,k(x)), it can be isomorphic to {1}, Z/2 or (Z/2Z)2. It remains to exclude
the case where G′ is trivial.

We assume that G′ is trivial and look for a contradiction. The element g ∈ G that exchanges F1 and F2 has
even order. Replacing g with an odd power, we can assume that g has order 2m.
a) Suppose that m = 1. The point F1∩F2 is fixed by g and cannot be an isolated fixed point because g does not

act trivially on the tangent directions. In particular, g fixes some curve passing through the point, so acts trivially
on the basis, which contradicts the fact that G′ is trivial.

b) Suppose that m > 1. The element g′ = g2m−1

has order 2 and preserves the two components F1, F2. Observe
that the action of g′ on F1 and F2 is the same because g, g′ commute. The fixed locus of g′ being smooth, it
does not act trivially on F1 and F2, so fixes exactly three points on the fibre: x = F1 ∩ F2, y1 ∈ F1\F2 and
y2 = g(y1) ∈ F2\F1. Contracting F1 we conjugate g′ to an automorphism of order 2 fixing the point q being the
image of F1. Because the action on F1 is not trivial, the point q cannot be an isolated fixed point. There exists
thus a curve of S of fixed points of g′ passing through F1, so g′ ∈ G′, which again contradicts the fact that G′ is
trivial. �

The automorphisms of exceptional bundles (S, π) are nice algebraic groups of dimension 1, easy to describe.
See [Do-Iz09, Proposition 5.3] and [Bla09a, Lemma 4.3.3].

The second case of Proposition 9.8 is more complicated to study. One can have some descriptions on the number
of fibres where the involutions in G′ act non-trivially (i.e. exchange the two components) and relate this to the
genus of the curves fixed. Apart from this, it is quite hard to describe really all possibilities for the groups G, up
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to conjugation. This is partly done in [Do-Iz09], but not achieved. It is only completely achieved in the case where
G is cylic [Bla11]. Some more detailed work on conic bundles was also done recently by V.I. Tsygankov: [Tsy11],
[Tsy12].

10. Actions on del Pezzo surfaces with fixed part of the Picard group of rank one

As we observed above, del Pezzo surfaces are isomorphic to P1 × P1, P2 or blow-ups of 1 ≤ r ≤ 8 points of the
plane in general position. In fact, the automorphism groups of these varieties are nice algebraic groups, that can
be completely described.

The cases of P2 and P1 × P1 are very classical: Aut(P2) = PGL(3,k) and Aut(P1 × P1) = (PGL(2,k) ×
PGL(2,k)) o Z/2Z. There is a huge list of finite subgroups, see [Do-Iz09] for more details.

If S is the blow-up of 1 ≤ r ≤ 8 points in P2 in general position, the group Aut(S) acts on the set of (−1)-curves,
which is finite. The kernel of this action correspond naturally to the group of automorphisms of P2 that fix the
r points. This kernel is thus infinite when r ≤ 3 and finite when r ≥ 4. The group Aut(S) is thus an algebraic
group, which is finite if and only if r ≥ 4.

Recall that the degree of a del Pezzo surface S is equal to (KS)2 ∈ {1, . . . , 9}, and corresponds classically to the
degree of S viewed in Pd via the embedding | −KS |, for d ≥ 3. (When d = 1, 2, the divisor −KS is ample but not
very ample, and S was not called del Pezzo in the classical sense, but nowadays the notion has been extended).

Proposition 10.1. Let π : S → P2 be the blow-up of 1 ≤ r ≤ 8 points p1, ..., pr ∈ P2 in general position (no 3
collinear, no 6 on the same conic, no 8 on the same cubic singular at one of the points). The (−1)-curves of S are:

• The r exceptional curves corresponding to the total pull-backs π−1(p1),...,π−1(pr) of the blown-up points.
• The strict transforms of the curves of degree d passing through the pi’s with multiplicities given in the

following table:

r degree multiplicities number of such curves for
d at the points r = 1, 2, 3, 4, 5, 6, 7, 8

≥ 2 1 (1, 1) 1 3 6 10 15 21 28
≥ 5 2 (1, 1, 1, 1, 1) 1 6 21 56
≥ 7 3 (2, 1, 1, 1, 1, 1, 1) 7 56
8 4 (2, 2, 2, 1, 1, 1, 1, 1) 56
8 5 (2, 2, 2, 2, 2, 2, 1, 1) 28
8 6 (3, 2, 2, 2, 2, 2, 2, 2) 8

Remark 10.2. The number of exceptional curves of a Del Pezzo surface is well known for a long time, see for
example [Dem76, Table 3, page 35].

Proof. We denote by Ei = π−1(pi) the exceptional curve corresponding to the blow-up of Ai for i = 1, ..., r and by
L the pull-back of a general line of P2. Apart from these, the divisor class D of an exceptional curve of S is equal
to mL −

∑
aiEi for some non-negative integers m, a1, ..., ar, with m > 0. The self-intersection D2 = −1 and the

adjunction formula D(KS +D) = −2 (see Proposition 4.2) give the following relations:

(10.1)

∑r
i=1 a

2
i = m2 + 1,∑r

i=1 ai = 3m− 1,

which imply that
∑r
i=1 ai(ai − 1) = (m − 1)(m − 2). Applying Cauchy-Schwarz to the vectors (1, . . . , 1) and

(a1, . . . , ar) we have
(∑r

i=1 ai
)2 ≤ r∑r

i=1 ai
2, hence (3m− 1)2 ≤ r(m2 + 1), which yields

P (m) ≤ 0, where P (m) = (9− r)m2 − 6m+ (1− r).
Because 9−r > 0, P (m) corresponds to a parabola, which minimum is at m = 3

9−r > 0. Because P (0) = 1−r ≤ 0,

and P (6) = 50(8 − r) ≥ 0, the positive values of m for which P (m) ≤ 0 are between 1 and 6. Replacing m with
1, 2, 3, 4, 5, 6 in the above equation gives the solutions above. It is then easy to check that all numeric solutions
really give a curve by computing the dimension of the system of curves of degree d with multiplicity a1, . . . , ar
at the points, which is positive. Moreover, the curves of this systems are irreducible because of the fact that the
points are in general position. �

Corollary 10.3. Let π : S → P2 be the blow-up of 1 ≤ r ≤ 2 points. The pair (Aut(S), S) is not minimal.

Proof. Proposition 10.1 gives the number of (−1)-curves. On the blow-up of one point (which is F1, there is only
E1, which is thus invariant by Aut(S). On the blow-up of two points we have E1, E2 and L−E1−E2. Because E1

and E2 do not intersect each other but both intersect L−E1−E2, the curve L−E1−E2 is invariant. Contracting
the (−1)-curve which is invariant, we see that (Aut(S), S) is not minimal. �



22 JÉRÉMY BLANC

In case 2 of Proposition 8.5 (when rk Pic(S)G = 1), the following lemma (which was first used in [dFe04,
Proposition 4.1.4]) restricts the possibilities for the surface S and the group G:

Lemma 10.4 (Size of the orbits). Let S be a Del Pezzo surface, which is the blow-up of 1 ≤ r ≤ 8 points of P2 in
general position, and let G ⊂ Aut(S) be a finite subgroup of automorphisms with rk Pic(S)G = 1. Then:

• G 6= {1};
• the size of any orbit of the action of G on the set of exceptional divisors is divisible by the degree of S,

which is 9− r;
• in particular, the order of G is divisible by the degree of S.

Proof. It is clear that G 6= {1}, since rk Pic(S) > 1. Let D1, D2, ..., Dk be k exceptional divisors of S, forming an

orbit of G. The divisor
∑k
i=1Di is fixed by G and thus is a multiple of KS . We can write

∑k
i=1Di = −aKS , for

some rational number a ∈ Q.
Since the Di’s are irreducible and rational, we deduce from the adjunction formula Di(KS +Di) = −2 (Propo-

sition 4.2) that Di ·KS = −1. Intersecting D1 with
∑k
i=1Di = −aKS , we find that a is an integer. Moreover, we

get

KS ·
∑k
i=1Di =

∑k
i=1KS ·Di = −k = KS · (−aKS) = a(r − 9).

Consequently, the degree 9− r divides the size k of the orbit. �

10.1. The del Pezzo surface of degree 6. A del Pezzo surface S of degree 6 is the blow-up of three points of
P2 which are not collinear. Up to isomorphism, these points can be chosen to be p1 = (1 : 0 : 0), p2 = (0 : 1 : 0)
and p3 = (0 : 0 : 1), so the surface S is unique. We can view it in P6 as the image of the rational map
(x : y : z) 99K (x2y : x2z : xy2 : xyz : xz2 : y2z : yz2), given by the linear system of cubics passing through p1, p2

and p3. We may also view it in P2 × P2, defined as {(x : y : z)× (u : v : w) | ux = vy = wz}, where the blow-down
is the projection on one copy of P2, explicitly p : (x : y : z) × (u : v : w) 7→ (x : y : z). Denoting by dij ⊂ S the
strict transform of the line passing through pi and pj , the six (−1)-curves of S are given by

E1 = {(1 : 0 : 0)× (0 : a : b) | (a : b) ∈ P1} = p−1(p1),
E2 = {(0 : 1 : 0)× (a : 0 : b) | (a : b) ∈ P1} = p−1(p2),
E3 = {(0 : 0 : 1)× (a : b : 0) | (a : b) ∈ P1} = p−1(p3),
d23 = {(0 : a : b)× (1 : 0 : 0) | (a : b) ∈ P1},
d13 = {(a : 0 : b)× (0 : 1 : 0) | (a : b) ∈ P1},
d12 = {(a : b : 0)× (0 : 0 : 1) | (a : b) ∈ P1}.

d23

E3

d13

E1

d12

E2

Lemma 10.5. • The (−1)-curves of S form a hexagon: it is connected and each curve intersects two others.
• The action of Aut(S) on the hexagon gives rise to the exact sequence

1→ (k∗)2 → Aut(S)
ρ→ Sym3 × Z/2Z→ 1.

• The exact sequence splits and Aut(S) = (k∗)2 o (Sym3 × Z/2Z), where:
– (k∗)2 is generated by automorphisms of the form

(x : y : z)× (u : v : w) 7→ (x : αy : βz)× (αβu : βv : αw), α, β ∈ k∗.
– (k∗)2 o Sym3 is the lift on S of the group of automorphisms of P2 that leave invariant the set
{A1, A2, A3}.

– Z/2Z is generated by the automorphism
(x : y : z)× (u : v : w) 7→ (u : v : w)× (x : y : z),

which corresponds to the standard quadratic transformation
(x : y : z) 99K (yz : xz : xy) of P2. It exchanges Ei and djk, for {i, j, k} = {1, 2, 3}.

– Sym3 acts on the torus (k∗)2 by permuting the coordinates, and the action of Z/2Z is the inversion.

Proof. The first assertion follows directly from the description of exceptional divisors given above. By rotating the
hexagon we find E1, d12, E2, d23, E3, d13 and then E1 again.

As Aut(S) preserves the exceptional divisors and the intersection form, it must preserve the hexagon. So the
action of Aut(S) on the hexagon gives rise to a homomorphism

ρ : Aut(S)→ Sym3 × Z/2Z.

As any element of the kernel leaves invariant every exceptional divisor, it comes from an automorphism of P2

that fixes the three points p1, p2 and p3. The kernel of ρ thus consists of automorphisms of the form (x : y : z)×(u :
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v : w) 7→ (x : αy : βz)× (αβu : βv : αw), with α, β ∈ k∗, and is the lift of the torus T of diagonal automorphisms
of P2.

Note that the group Sym3 of permutations of the variables x, y and z (and the corresponding variables u, v and
w), generated by the two automorphisms

(x : y : z)× (u : v : w) 7→ (y : x : z)× (v : u : w),
(x : y : z)× (u : v : w) 7→ (z : y : x)× (w : v : u),

is sent by ρ on Sym3. The group generated by the automorphism

(x : y : z)× (u : v : w) 7→ (u : v : w)× (x : y : z)

is sent by ρ on Z/2Z. This gives the surjectivity of ρ and an obvious section. The other assertions are evident. �

Proposition 10.6. Let S be the del Pezzo surface of degree 6 and let G ⊂ Aut(S). The pair (G,S) is minimal if
and only if the action on the hexagon of (−1)-curves is transitive.

Proof. If the action is transitive, no orbit of (−1)-curves can be contracted so (G,S) is minimal. If the action
is not transitive, there are two or three disjoint (−1)-curves of the hexagon which are invariant, so (G,S) is not
minimal. �

There are plenty of possibilities for the pair (G,S) above. One example is a group isomorphic to Sym4 [Do-Iz09,
§6.2].

Exercise 4. On the del Pezzo surface S of degree 6, show that there is only one finite cyclic group G ⊂ Aut(S)
such that (G,S) is minimal, up to conjugation in Aut(S). Show that this group is conjugate to a subgroup of
Aut(P2) by a birational map S 99K P2. (The answer to this question can be found in [Bla09b, Lemma 9.7]).

10.2. The del Pezzo surface of degree 5. As for the del Pezzo surface of degree 6, there is a single isomorphism
class of del Pezzo surfaces of degree 5. Consider the del Pezzo surface S5 of degree 5 defined by the blow-up
p : S5 → P2 of the points p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1) and p4 = (1 : 1 : 1). There are 10
exceptional divisors on S5, namely the divisor Ei = p−1(pi), for i = 1, ..., 4, and the strict pull-back dij of the line
of P2 passing through pi and pj , for 1 ≤ i < j ≤ 4. There are 5 sets of 4 skew exceptional divisors on S5, namely

F1 = {E1, d23, d24, d34}, F2 = {E2, d13, d14, d34}, F3 = {E3, d12, d14, d24},
F4 = {E4, d12, d13, d23}, F5 = {E1, E2, E3, E4}.

Proposition 10.7. The action of Aut(S5) on the five sets F1, ..., F5 of four skew exceptional divisors of S5 gives
rise to an isomomorphism

ρ : Aut(S5)→ Sym5.

Furthermore, the actions of Symn, Altm ⊂ Aut(S5) on S5 given by the canonical embedding of these groups into
Sym5 are fixed-point free if and only if n = 3, 4, 5, respectively m = 4, 5.

Proof. Since any automorphism in the kernel of ρ leaves E1, E2, E3 and E4 invariant and hence is the lift of an
automorphism of P2 that fixes the 4 points, the homomorphism ρ is injective.

We now prove that ρ is also surjective. Firstly, the lift of the group of automorphisms of P2 that leave the
set {p1, p2, p3, p4} invariant is sent by ρ on Sym4 = Sym{F1,F2,F3,F4}. Secondly, the lift of the standard quadratic

transformation (x : y : z) 99K (yz : xz : xy) is an automorphism of S5, as its lift on S6 is an automorphism, and as
it fixes the point p4; its image by ρ is (F4 F5). �

Remark 10.8. The structure of Aut(S5) is classical and can be found for example in [Wim96] and [Do-Iz09].

Exercise 5. Show that the cyclic subgroups G of order 5 of Aut(S5) (which are all conjugate) are such that (G,S)
is minimal. Prove that however G is conjugate to a subgroup of Aut(P2) by a birational map S 99K P2 (as before,
the answer can be found in [Bla09b, Lemma 9.8])

Proposition 10.9. Let S be the del Pezzo surface of degree 5 and let G ⊂ Aut(S). The pair (G,S) is minimal if
and only if the action of G on the set {F1, . . . , F5} is transitive.

Proof. If the action is transitive, G contains an element of order 5 and (G,S) is minimal by Exercise 5. If the
action is not transitive, one of the sets Fi is invariant and can thus be contracted, so (G,S) is not minimal. �
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10.3. Del Pezzo surfaces of degree 4. Let S be a smooth del Pezzo surface of degree 4, which is the blow-up of
5 points p1, . . . , p5 ∈ P2 such that no 3 are collinear. Here the isomorphic classes are infinite (of dimension 1). The
anti-canonical morphism induced by |−KS | gives rise to an embedding into P4 and the image is the intersection of

two quadrics ([Hos96] and [Bea07]). The surface is in fact given by
∑5
i=0 x

2
i =

∑5
i=0 λix

2
i = 0 for some λi general

enough so that the surface is smooth [Do-Iz09, Lemma 6.1]. We then find that Aut(S) contains a group isomorphic
to (Z/2Z)4 given by the diagonal 2-torsion of PGL(5,k). The group Aut(S) is in fact isomorphic to (Z/2Z)4 oD
where D is the subgroup of Aut(P2) preserving the 5 points [Bla09b, Lemma 9.11].

There are many interesting examples of subgroups G ⊂ Aut(S) with (G,S) minimal (see [Do-Iz09, Theorem
6.9]).

10.4. Del Pezzo surfaces of degree 3. Let S be a smooth del Pezzo surface of degree 3, which is the blow-up of
6 points p1, . . . , p6 ∈ P2 such that no 3 are collinear and no 6 lie on the same conic. The anti-canonical morphism
induced by | − KS | gives rise to an embedding into P3 and the image is a smooth cubic surface and all smooth
cubic surfaces are obtained by this way [Kol96, Theorem III.3.5]. In general, Aut(S) is trivial, but there are plenty
of examples of cubic surfaces with non-trivial groups of automorphisms [Do-Iz09, Table 4].

Exercise 6. Using that a smooth cubic surface S is the blow-up of 6 points of P2 in general position, show that it
contains exactly 27 lines, which are the 27 (−1)-curves of S.

10.5. Del Pezzo surfaces of degree 2. Let S be a smooth del Pezzo surface of degree 2, which is the blow-up of
7 points p1, . . . , p7 ∈ P2 such that no 3 are collinear and no 6 lie on the same conic. The anti-canonical morphism
ρ : S → P2 is surjective but of course not an isomorphism. Because (KS)2 = 2, it is a double covering. The preimage
of a general line corresponds to a smooth cubic through the 7 points and is thus of genus 1. By Riemann-Hurwitz,
the restriction of the double covering to the curve has four ramification points. This shows that the ramification
curve of ρ is a quartic, and is in fact smooth because S is smooth. One can thus see S as a surface given by

w2 = F4(x, y, z)

in a weighted projective space P(2, 1, 1, 1) (which is the set of equivalence classes on k4\{0}, where (w, x, y, z) ∼
(λ2w, λx, λy, λz) for λ ∈ k∗ ).

Moreover, all smooth quartic curves are obtained by this way (see [Kol96, Theorem III.3.5], and [KSC04,
Corollary 3.54]). We can also see that the 56 (−1)-curves of S correspond to the 28 bitangents of the smooth
quartic. The involution ιG of S given by the double covering is called Geiser involution. In fact, we have an exact
sequence

1→< ιG >→ Aut(S)→ Aut(Γ)→ 1

where Aut(Γ) is the group of automorphisms of the curves, and also the group of automorphisms of P2 that preserve
the quartic (by adjunction formula, the canonical divisor of Γ is the trace of an hyperplane so any automorphism
of Γ extends to P2).

The study of automorphisms of quartic curves is a classical study. The description of automorphisms of del
Pezzo surfaces can be deduced from this work (see [Do-Iz09, §6.6]).

10.6. Del Pezzo surfaces of degree 1. Let S be a smooth del Pezzo surface of degree 1, which is the blow-up
of 8 points p1, . . . , p8 ∈ P2 such that no 3 are collinear, no 6 lie on the same conic and not all lie on the same cubic
with a singular point at one of them.

The anti-canonical morphism | −KS | gives a rational map S 99K P1 whose fibres correspond to the cubics of P2

through the 8 points p1, . . . , p8. This pencil has one ninth base-point (because two cubics intersect into 9 points),
which is a special point of S fixed by any automorphism, and is the unique base-point of the anti-canonical map
S 99K P1.

The linear system | − 2KS | induces a morphism to P3, which lies in a quadric cone Q. The restriction yields
a double covering of Q, ramified over the vertex v of Q and a smooth curve C of genus 4. Moreover C is the
intersection of Q with a cubic surface. (See [Ba-Be00], [dFe04], [Do-Iz09].)

Note that a quadric cone is isomorphic to the weighted projective plane P(1, 1, 2) and the ramification curve C
has equation of degree 6 there. Up to a change of coordinates, we may assume that the surface S has the equation

w2 = z3 + F4(x, y)z + F6(x, y)

in the weighted projective space P(3, 1, 1, 2), where F4 and F6 are forms of respective degree 4 and 6 (see [Kol96,
Theorem III.3.5], and [KSC04, Corollary 3.54]). Note that multiple roots of F6 are not roots of F4, since S is
non-singular. The point v = (1 : 0 : 0 : 1) = (−1 : 0 : 0 : 1) is the vertex of the quadric.

We denote by σ(w : x : y : z) = (−w : x : y : z) the involution associated to the 2-covering. This is classically
called the Bertini involution of the surface.
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If F4 = 0, the surface is a triple covering of P(3, 1, 1), ramified over v and the hyperelliptic curve of genus 2 of
equation z = 0, w2 = F6(x, y). In this case we denote the automorphism of order 3 corresponding to this covering
by ρ(w : x : y : z) = (w : x : y : ωz) (where ω is a 3-rd root of unity).

The family of del Pezzo surfaces of degree 1 are those with the more complicated group of automorphisms. These
are classified in [Do-Iz09, §6.7].

11. Conjugacy classes between examples

After studying possible minimal pairs (G,S), one has to determine if two pairs (G,S) and (G,S′) are birationally
conjugate, which means that there exists a birational map ϕ : S 99K S′ which is G-equivariant.

There are two main tools for this:

11.1. Curves of fixed points. If g ∈ Aut(S) pointwise fixes an irreducible (smooth) curve Γ of genus > 0 (i.e.
a non-rational curve) and ϕ : S 99K S′ is a birational map such that g′ = ϕgϕ−1 ∈ Aut(S′), the image of Γ is a
curve Γ′ that is also pointwise fixed by g′. The fact that Γ has genus > 0 is important because it implies that Γ
is not contracted by ϕ. Moreover, ϕ restricts to a birational map Γ 99K Γ′, which is necessarily an isomorphism
because both curves are smooth.

This is an important tool to decide when two elements are conjugate.

Example 11.1. Let Γ ⊂ P2 be a smooth cubic curve given by F (x, y, z) = 0. Let SF ⊂ P3 be the smooth cubic
surface given by w3 = F (x, y, z) and let GF ⊂ Aut(SF ) be the cyclic group of order 3 given by {(w : x : y : z) 7→
(ωw : x : y : z) | ω3 = 1}. The curve of SF of equation w = 0, F (x, y, z) is pointwise fixed by GF .

Taking all different cubic curves yields infinitely many conjugacy classes of subgroups of order 3 of Bir(P2). In
fact, the conjugacy classes in this family are parametrised by the isomorphism classes of the curves.

Exercise 7. Let α ∈ k∗ be a k-th root of unity for some integer k ≥ 2. Let g, h ∈ Aut(P2) be given by g : (x : y :
z) 7→ (x : αy : α2z) and h : (x : y : z) 7→ (x : αy : z). Prove that g, h are conjugate in Bir(P2). Compare the fixed
locus of g and h when k ≥ 3.

Proposition 11.2 ([Ba-Be00], [dFe04], [Be-Bl04]). Let G1, G2 ⊂ Bir(P2) be two subgroups of prime order p. The
groups G1, G2 are conjugated in Bir(P2) if and only if one of the following occur:

(1) Both G1 and G2 pointwise fix the the same irreducible curve of positive geometric genus;
(2) There is not irreducible curve of positive genus fixed by G1 or G2 (in which case both are conjugate to
{(x : y : z) 7→ (αx : y : z) | αp = 1})

This result has being generalised in [Bla11, Theorem 1] to any cyclic group of finite order. The conjugacy classes
are given by the curves of positive genus pointwise fixed by the non-trivial elements of the group and by the action
of the group on these curves.

11.2. G-elementary links. Another important tool is provided by the study of G-elementary links, which are
generalisations of the links we described before.

We deal with two sets of G-surfaces:

(D) A pair (G,S), where S is a smooth projective rational surface, G ⊂ Aut(S) is a finite group such that
Pic(S)G has rank 1.

(C) A triple (G,S, π), where S is a smooth projective rational surface, (S, π) is a conic bundle and G ⊂ Aut(S, π)
is such that Pic(S)G has rank 2.

Remark 11.3. 1) If (G,S) is a minimal pair, then either (G,S) is in (D) or (G,S, π) is in (D) for some conic
bundle structure (S, π) on S (Proposition 8.5).

2) The two sets (D) and (C) correspond to distinct pairs (G,S) because of the assertion on the rank of the
invariant part of the Picard group.

3) If (G,S) is a pair in (D), then S is a del Pezzo surface (take the orbit of a curve and intersect it with
the canonical divisor, you find a positive number) and the pair (G,S) is minimal (we cannot contract anything
G-equivariantly otherwise the invariant Picard group would have a rank which decrease: impossible).

4) If (G,S, π) is a triplet in (C), then it is possible that (G,S) is not minimal: take for example S = F1, π = π1

and any finite group G ⊂ Aut(F1). We have then enlarged the set of minimal pairs.
5) If (G,S, π) is a triplet in (C), it is possible that S is a del Pezzo surface (see Example 11.6 below).

We can define as before four types or elementary links. All such links are birational maps ϕ : (G,S) 99K (G,S′)
of pairs (i.e. a G-equivariant birational map S 99K S′):
G-links of type I: we have (G,S) ∈ (D), (G′, S′, π′) ∈ (C) and the map ϕ is the blow-up of one orbit of points

of S under the action of G.
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G-links of type II: the map ϕ decomposes as ϕ = (η′) ◦ (η)−1, where

Z
π′

  @
@@

@@
@@

π

����
��

��
�

S ϕ
//_______ S′

is a minimal resolution of ϕ and where η and η′ are blow-ups of a G-orbit (of points of S and S′ respectively).
Moreover, either (G,S) ∈ (D), (G′, S′) ∈ (D) or (G,S, π) ∈ (C), (G′, S′, π) ∈ (C). In this latter case, we moreover
ask that there exist an automorphism α of P1 such that πη = απ′η′ (this means that ϕ sends a general fibre of π
onto a general fibre of π′).
G-links of type III: as in the case without group, these are inverse of links of type I: we have (G,S, π) ∈ (C),

(G′, S′) ∈ (D) and the map ϕ is a birational morphism which is the blow-up of one orbit of points of S′ under the
action of G.
G-links of type IV: we have (G,S, π) ∈ (C), (G′, S′, π′) ∈ (C) and the map ϕ is an isomorphism S → S′ which

is not compatible with π and π′ (we take another conic bundle structure on the same surface).

Remark 11.4. 1) If we take G to be the identity, all G-elementary links above are the classical elementary links
defined before.

2) In the case where G is the identity, a link of type II cannot go from D to D because only (G,P2) belongs to
D. But with a non-trivial G, such a link exists (see Example 11.5 below).

Example 11.5. Let G be the group with 2 elements, which acts on P2 via (x : y : z) 7→ (x : z : y) and acts on
P1×P1 via ((a : b), (c : d)) 7→ ((c : d), (a : b)). Both pairs (G,P2) and (G,P1×P1) belong to (D). The birational map
ϕ : P2 99K P1 × P1 given by (x : y : z) 99K ((x : y), (x : z)) is a G-link of type II: it decomposes as ϕ = (η′) ◦ (η)−1,
where η : Z → P2 is the blow-up of the two points (0 : 0 : 1), (0 : 1 : 0) and η′ : Z → P1 × P1 is the blow-up of the
fixed point ((0 : 1), (0 : 1)).

Example 11.6. Let G ⊂ Aut(P2) be a finite group admitting an orbit consisting of 4 points such that no 3 are
collinear. The blow-up η : S → P2 of the four points yields a link of type I given by η−1. The triplet (G,S, π) where
the conic bundle π : S → P1 a morphism with fibres being the strict transform of the conic through the four points
is in C. In this case, S is the del Pezzo surface of degree 5.

The following result

Proposition 11.7 ([Cor95]). (see also [Isk96, Theorem 2.5]) For i = 1, 2, let (G,Si) be a pair such that either
(G,Si) ∈ (D) or (G,Si, πi) ∈ C for some conic bundle πi on Si. Any birational map (G,S1) 99K (G,S2) decomposes
into G-elementary links of type I, II, III, IV.

A precise combinatorial description of the possible G-links is given in [Isk96, Theorem 2.6] (whose statement
takes 7 pages): The values of (KS)2, (KS′)

2 and the size of the G-orbit involved in each links are given. The same
kind of result can be found in [Do-Iz09, Propositions 7.13, 7.14,7.15].

In particular, we have the following:

Proposition 11.8. ([Do-Iz09, Corollary 7.11]) Let (G,S) ∈ (D) be such that every G-orbit on S consists of at
least (KS)2 points. Then the pair (G,S) is supperrigid: every birational map (G,S) 99K (G′, S′), where (G′, S′) is
another pair in (D) or (C), is an isomorphism.

Let (G,S, π) ∈ (C) be such that (KS)2 < 0. Then (G,S) is supperrigid.
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