Communication Method for Reliable Multiagent Systems

Piotr Roliński, Jacek Wytrębowicz

Institute of Computer Science, Warsaw University of Technology

Abstract

The paper focuses on the communication inside a redundant multiagent system. We assume existence of one or several mirror agents for the selected principal ones. Our communication method supports an ordinary message exchange between agents and additionally, allows the communication with mirror agents. The communication process is explained briefly. We propose an extension for JADE (Java Agent DEvelopment Framework). JADE is an FIPA-compliant agent building platform for construction of interacting agents and multiagent systems. However, our extension can be applied also to any other agent development environment.
Keywords: multiagent systems, agent technology, agent communication, fault tolerance, error recovery

1. Introduction

The agent technology is a rapidly increasing area of research. The word “agent” has become very popular among artificial intelligence (AI) and computer science communities ([5], [7]). The reason behind this popularity comes from the advantages that agent programming paradigm provide. Multiagent systems offer a way for construction of decentralised, emergent, concurrent and fault-tolerant architectures. An agent is an entity, which has attributes of intelligence, autonomy and perception. It perceives the environment it is situated in. Basing on observations, it is capable of selecting correct actions that will lead to accomplishment of its goals. The agent can react to changes in this environment and can adjust its own behaviour. Therefore, the agent should be naturally resistant or tolerant to failures. Nevertheless, the current research on multiagent systems concentrates on creation of agents, on their interactions with environment and with themselves. The fault tolerance aspect is disputed only in the terms what agents can provide, not how to make an agent tolerant to failures. This paper addresses the later problem.

The underlying concept of the method presented here is very simple and basic. Let’s assume that a given multiagent system is dispatched over the unreliable environment, i.e., the one that can cause a failure of an agent. Each agent in this system has some concrete role and performs some tasks on behalf of its developer. The architecture or internal model of the agent(s) is not important to us - we are not interested how a given agent perceives, behaves and executes its actions (i.e., whether is it a Belief-Desire-Intention agent or purely reactive one or else). However, being a part of a group, the agent communicates with others in order to achieve some common goals. The communication takes place by a message exchange. Because of an unreliable environment any agent can fail and quit its execution (for example, when the host system on which a given agent is executed goes down). As a result, this agent stops sending messages and does not respond to any communication attempts. In such a case, if the agent was involved in some global multiagent system task, this task cannot be completed.
Now, the idea is to make this particular system redundant i.e., develop multiple copies of each agent present in the system. These copies (mirrors) will be able to perform the same tasks as an original agent. They will be placed on the independent hosts to ensure the fault tolerance. The mirror agents can exist in the system from the beginning (from start-up time) or be created in the moment of failure of the principal one. When the malfunction of a given agent would happen, other agents will start to cooperate and communicate with this agent’s mirror. The redirection of communication and/or task execution may force the restart of the multiagent system (the calculations have to be repeated), or just may cause the rollback to some previous state of the system (when agents in the system support such an operation). In order to provide the described mechanism we have to do two things:
· to offer the method for the detection of damaged/unresponding agents,
· to give the means for the restart/rollback operation.

We assume that communication between agents happens either through peer-to-peer message exchange or through broadcasting. We do not discuss any special topology of connections – the assumption is that every agent can send a message to others. However, the communication between agents and mirrors is restricted – only the original agent can confer with its mirrors during normal execution of tasks. Of course, in case of failure of the original agent, other agents can (and should) contact its mirror. The last assumption considers the visibility of agents – we assume that every agent knows others identifiers (or names) and also mirror agents identifiers. Our method is implemented with use of JADE (Java Agent DEvelopment Framework) that is an FIPA-compliant agent building platform (see [2], [3] and also [4]). However, the method is platform-independent and can be applied to any other agent development environment.
2. Concept

[image: image1.wmf]Agent 2

Mirror agent 2

Mirror agent 2

Heartbeat

No heartbeat

Heartbeats

Heartbeat

No heartbeat

Agent 3

Mirror agent 3

Mirror agent 3

Agent 1

Mirror agent 1

Mirror agent 1

We assume that communication in the multiagent system happens through an asynchronous message exchange i.e., via reliable datagrams. The multiagent system consists of various principal agents. Each principal agent has several mirror agents (copies of the principal one) dispersed to different hosts. Two protocols are proposed here – one for replacement of a failed principal agent with its mirror, second for a mirror checkpoint update. We describe only main protocol scenarios here - to show the most important properties of these protocols. First protocol takes into consideration the principal agents; the other refers to the single principal agent and its group of mirrors.
Figure 1: A multiagent system. Agent1 has supposedly malfunctioned.

2.1. Replacement protocol

After the system start-up, all of the principal agents start counting down the heartbeat time clocks. When the given time expires, agents broadcast heartbeat messages to inform that they are still alive and working, and, afterwards, they reset their clocks. Agents gather other’s heartbeat messages for a certain time period – defined by heartbeat gathering timeouts. The values of these timeouts are specific and individually chosen for each agent. If some heartbeat message doesn’t arrive on time, the receiving agents suspect that the sender agent is damaged. However, agents are not yet certain about this fact. In a hypothetical situation the heartbeat message could simply get lost in the network, but the sender is still alive. Therefore, the first agent, that detects a lack of the heartbeat message, executes a restricted confirmation procedure. We will call such an agent - the performer. For example (see figure 1 on previous page), we have a multiagent system composed of three agents (agent1, agent2, and agent3). Each of them have two mirror agents placed somewhere else in the network. The agent1 stops sending the heartbeat messages (supposedly due to malfunction). The agent3 detects this occurrence first – it has a smaller value of the heartbeat gathering timeout. However, agent3 is not sure, if agent1 has really been damaged or if the message just hadn’t arrive. Thus, the agent3 becomes the performer and asks other agents (in this case agent2) to confirm the malfunction.

[image: image2.wmf]Mirror

agent 3 (1)

Agent 1

Agent 2

Agent 3

Mirror

agent 3 (2)

(no response)

update confirmed

mirror failed (2)

checkpoint update

checkpoint update

mirror failed (2)

Figure 2: a) Message exchange when agent1 is damaged; b) Message exchange when agent1 is not damaged, but its heartbeat message does not reach agent3.

Figure 2 shows two message exchange scenarios of our protocol. The right side (figure 2b) depicts the case in which agent1 has not malfunctioned, but its heartbeat message does not arrive to agent3. Agent3, being the performer, starts the restricted confirmation procedure by broadcasting an “ask about failure” message. Only randomly selected, active (i.e., not damaged) agents answer to this message (in this case agent2). Other agents listen to it and wait for the overall result of the confirmation. The confirmation procedure is restricted to only randomly selected agents to make the protocol more efficient and to ensure that the only one agent will carry out the operation as the performer. In this situation, agent3 receives two reply messages: disagreement from agent2, which is an empty “failure confirmed” message (i.e., not containing any agent identifier) and a “not damaged” message from agent1. Therefore, agent3 cancels the replacement procedure with a broadcast of a “replacement cancelled” message. On the left side of the diagram (figure 2a), agent1 becomes damaged. Both agents, agent2 and agent3, had not received the heartbeat message from agent1. Therefore, agent2 confirms the failure to agent3 with the “failure confirmed” message containing the agent1 identifier. Agent3 is free to start the replacement procedure.

Note that the majority of the “failure confirmed” messages of one type or arrival of the “not damaged” message determine the performer’s reaction, whether to replace the malfunctioning agent or not. The above procedures are not bounded to a detection of a single unresponding agent. Any number of damaged agents can be discovered in a single step (i.e., all the agents which heartbeat messages did not arrive) and their failure confirmed or not. Note also that all of the messages sent inside the multiagent system are marked with time. Therefore, agents do not analyse messages older than a specified time/date. What more, agents do not wait for response messages infinitely. The response timeout specifies the time of wait for an acknowledgement. When the agent receives no single response, nor any heartbeat message from others, it believes it has been separated from the system. In this situation, this agent may rightfully expect that it will be replaced with its mirror agent, so it performs a shutdown operation. The agent ceases all its activities and destroys itself, or enters into a wait state (to be waked up later).

In the first step of the replacement procedure (see figure 2a), the performer (agent3) sends a shutdown message to the damaged agent (agent1). The performer carries out this operation to ensure that the damaged agent will cease its functioning and will not work in parallel with an activated mirror agent. This is a redundant mechanism to improve the reliability of the system. Next, the performer executes the main replacement step. We have to consider two cases here: either a mirror agent exists from the beginning in the multiagent system, or it is created on the spot. In the first case, the replacement is simple: the performer sends the activate message to the mirror (mirror agent1 from the figure 2a). The mirror becomes active and starts to accept all messages issued to the original agent. The second case requires a special construction of the whole system. The multiagent system (in the worst situation, every agent) has to hold some information about agent templates (like classes in object-oriented languages). The mirror is instantiated from such a template (object instantiation). In our implementation of the protocol, we take into consideration the first case.

In a result of the activation operation, the mirror agent is present in the system and sends back an “activation confirmed” message to the performer. The lack of such a message means that the mirror is also damaged. In such a situation the performer repeats the replacement procedure until an active mirror agent comes to live or the system runs out of mirror agents, which means a general failure or a reduced functionality of the system. When all issued mirrors are active (or damaged) the performer broadcasts a rollback message. After receiving such a message, all agents including recently activated mirrors make a rollback, i.e., they return to a previously stored point of operation - they recreate their own states according to the states saved at the checkpoint. If agents do not support checkpointing, they restart their activities as at the start-up time.

2.2. Mirror checkpoint update protocol

This protocol relates to the situation in which mirror agents exist in the system since beginning and the system offers the checkpointing mechanism. In such a case the mirror agent has to receive some updates about the latest checkpoint reached by its original agent. Thus, the principal agent, after the successful storing of its state, has also to bring up to date its mirror(s). Therefore, the principal agent periodically (after saving information about checkpoint) issues a “checkpoint update” message containing the necessary information for an update. Mirrors acknowledge this message by replying with the “update confirmed” message after receiving and saving the update data. Lack of confirmation from the mirror agent indicates a failure or separation from the principal agent. The original agent notifies everybody about the mirror failure [image: image3.wmf]Mirror

agent 1

Agent 1

Agent 2

Agent 3

Agent 1

Agent 2

Agent 3

heartbeat

heartbeat

(no heartbeat)

(no heartbeat)

(no heartbeat)

heartbeat

heartbeat

heartbeat

ask about failure

ask about failure

restricted confirmation

procedure

ask about failure

ask about failure

failure confirmed (agent1)

failure confirmed ()

not damaged

replacement cancelled

replacement cancelled

rollback

activation confirmed

activate

shutdown

rollback

replacement procedure

a)

b)

with a broadcast of a “mirror failed” message containing the mirror identifier.

 Figure 3: Message exchange in the mirror checkpoint update protocol.

In figure 3, agent3 performs the checkpoint update. The second mirror does not respond to the message. Thus, agent3 broadcasts a “mirror failed” message to other principal agents.

In a situation, when there are no mirror agents present in the system since the start-up time, there should be no checkpointing mechanism. In this paper, we do not discuss any method of checkpointing – we assume that the designer of the system will provide such a method. We only offer the protocol for propagation of checkpoint update data. In our implementation the rollback operation resets all agents to the initial state from start-up phase. However, we consider the enhancement of our method in future to include the checkpointing mechanism.

3. JADE

For implementation of our method we have selected the JADE (Java Agent DEvelopment Framework) platform (see [3], [4]). This platform is a software development environment that offers tools for developing multiagent systems compliant to FIPA (Foundation for Intelligent Physical Agents) standards ([2]). JADE is fully implemented in Java language, which seems to be the best language for an object-oriented programming in distributed heterogeneous environments. The language provides the advantages of architecture neutrality and portability, so it is very suitable for construction of inherently distributed, and even for mobile agents. JADE consists of Java packages for agent development as well as an [image: image4.wmf]Agent

Agent

Message Transport System

Agent

Management

System

Directory

Facilitator

Agent

Agent Platform

Host

agent platform (or runtime environment) for their execution.

 Figure 4: Reference architecture of a FIPA Agent Platform

The agent platform is fully distributed. It can be split among several hosts (provided they can be connected via RMI). Each host launches only one Java application, executing only one Java Virtual Machine. Agents run on hosts as Java threads and live within Agent Containers that provide the runtime support to the agent execution. The JADE supports the special Remote Management Agent that offers a graphical user interface for management and control of agents existing on a given host. The agent platform is FIPA-compliant (see figure 4), therefore it includes the AMS (Agent Management System), the DF (Directory Facilitator), and the ACC (Agent Communication Channel), which are activated at the start-up phase. The Agent Management System is a special agent that provides a white page and life cycle service for registered agents, maintaining a directory of agent identifiers as well as agents’ states. The Directory Facilitator is another agent, which offers a yellow page service, i.e., has capabilities to register, to deregister and to advertise the services of the DF-registered agent to the whole community. The developer can start many DFs composed into a federation in order to implement multidomain applications.

The Agent Communication Channel (Message Transport System) is a component that controls all the message exchange within the platform and between remote platforms. The messages themselves utilise the Agent Communication Language (ACL) – the language based on speech act theory [6], similar to KQML (Knowledge Query and Manipulation Language) [1]. The language uses the concept of performatives to allow an agent to convey its beliefs, desires and intentions. Therefore, a given ACL message consists of a sender identifier, receiver identifier, a performative specifying intent, a chosen content language (for example PROLOG) and an ontology containing semantics of the expression given in the content language. The semantics can be defined in a special FIPA–designed Semantics Language (SL). JADE supports an efficient method for transportation of ACL messages inside the same agent platform - messages are transferred encoded as Java objects. When crossing platform boundaries, the message is automatically converted to/from the FIPA compliant syntax, encoding, and transport protocol. The conversion is transparent to the agent developers - they only need to deal with Java objects. The agents exchange messages according to defined interaction protocols. JADE offers a library of such ready to be used protocols based on FIPA standards.

The agent itself is a Java class. The Agent class offers some means for interaction with the agent platform as well as methods for implementation of agent’s activities. The computational model of the agent’s activities is multitask, where tasks (or behaviours) are executed concurrently. Each functionality/service provided by an agent is implemented as one or more behaviours composing a hierarchy. The agent platform schedules the agent behaviours in a non-preemptive fashion. JADE provides an FIPA-compliant naming service - at start-up agents obtain their GUID (Globally Unique Identifier) from the platform. The framework supports also the intra-platform agent mobility, including the migration of a state and a code of the agent.

The Java packages allow specifying a given agent and even whole multiagent systems from scratch by inheritance of available classes. JADE offers a multitude of packages for:

· development of agents and agent behaviours (jade.core, jade.core.behaviours),

· specification of communication language ontologies and semantics (jade.lang, jade.lang.acl, jade.lang.sl, jade.onto, jade.onto.basic),

· definition of the Agent Management entities – like AMS or DF (jade.domain),

· creation of GUI for observation of agents and agent activities (jade.gui),

· specification of interaction protocols, as well as Message Transport Protocols (jade.proto, jade.mtp),

· and finally offers some tools bundled in a special package (jade.tools) that supports the agent development process.

4. Implementation

The aim of this work was to develop a ready-to-use Java package that implements and offers redundancy mechanisms support. The package is an extension to packages offered by JADE environment. In order to enhance the reliability of developed multiagent system, the designer need only to inherit the [image: image5.wmf]safe

gui

util

SafeAgent

SafeAgentStructure

core

SafeGuiAgent

messages

SafeAgentMessages

parameters

SafeAgentParameters

SafeAgentUtil

behaviours

SafeAgentGeneralBehaviour

SafeMirrorFunctionsProtocolBehaviour

SafeReplacementPerformerProtocolBehaviour

SafeReplacementResponderProtocolBehaviour

SafeMirrorUpdatePerformerProtocolBehaviour

(various simple behaviour classes)

classes provided in the package while constructing agents.

 Figure 5: Hierarchy of class packages in our Java package.

Figure 5 shows the structure of subpackages and classes inside the package safe. The names of subpackages are given in bold, italic font; classes are denoted using italic font only. The SafeAgent class inherits all standard methods of the JADE Agent class. Therefore, it permits to add/remove behaviours of a given agent, as well as to send and receive messages. Additionally, it provides the means for a shutdown, rollback and checkpoint update operations. Since we do not offer the checkpointing mechanism, the adequate methods are left as abstract – for specification by the developer in the inheriting class. For the rollback operation, we also have taken into consideration the possibility of checkpointing. The developer can either define appropriate methods or rely on the present mechanism in which all behaviours of the agent are reset, back to the initial state. The agent’s behaviours are stored on a list-like data structure to allow a quick access (standard Agent class do not offer this feature). During the start-up phase, the SafeAgent class creates and registers an additional (to user-defined) behaviour – SafeAgentGeneralBehaviour. This behaviour gathers all the tasks referring to protocols proposed for our method. For the message exchange defined by these protocols the agent utilises a special tree-like data structure enclosed within the SafeAgentStructure class. The structure reflects the knowledge that a given agent has about other agents’ identifiers. Identifiers of a single principal agent and its mirrors are put into the list, with the first element being the principal agent identifier. Therefore, each such a group composes one list. All the lists are again put into a main list. Such an arrangement allows efficient updating of the information about available and active agents and removal of damaged agents’ identifiers. The identifier of the unresponding agent is simply removed from the head of the appropriate list and automatically replaced by an adequate identifier of the mirror agent (mirror becomes the principal agent). The class’ methods support quick extraction of identifiers of mirror agents (for the mirror checkpoint update protocol) as well as of all active agents (for the message broadcast).

 The safe.core.parameters subpackage contains the SafeAgentParameters class that is consisted of constants needed by SafeAgent and behaviour classes. These constants include the values of various timeouts defined in our protocols, as well as the initial knowledge base of an agent (i.e., identifier structure). The safe.core.messages subpackage has also a single class – SafeAgentMessages. This class gathers all the necessary factory methods for creation and reception of the messages described in our protocols. The creation methods produce the adequate ACL messages (JADE ACLMessage class). We do not create any special language or ontology for agents. We assume that every agent developed basing on SafeAgent class will understand the content of a message referring to our protocols. The reception methods offer message templates (JADE MessageTemplate class) that permit to distinguish the received message.

Finally, the safe.core.behaviours subpackage consists of behaviour classes that support the execution of our protocols. The SafeAgentGeneralBehaviour class is a cyclic Finite State Machine (FSM), which performs all of the operations by activating appropriate subbehaviours. When a given agent is a mirror agent, this main behaviour activates only the SafeMirrorFunctionsProtocolBehaviour. The subbehaviour listens to incoming messages and executes adequate tasks – the activation of the mirror agent, the update of checkpoint data (both tasks include sending confirmation messages), the rollback operation or the shutdown. In case that an agent is a principal agent, several subbehaviours are run consecutively in a loop. First, if appropriate time has passed, the main behaviour sends the heartbeat message. Next, it activates SafeReplacementPerformerProtocolBehaviour. This subbehaviour defines tasks for gathering of heartbeat messages, and performing the replacement and rollback operations. The operations start when a timeout for receiving heartbeat messages ends and the supposedly damaged agents are detected. Therefore, this subbehaviour specifies the performer part of the protocol. The responder part is defined inside the subbehaviour called SafeReplacementResponderProtocolBehaviour. This subbehaviour is responsible for receiving and responding to messages (“ask about failure”, rollback and shutdown) by running adequate tasks. It is executed after the performer one, when there is no need to start the replacement yet. Periodically, depending on the checkpointing mechanism implemented by developer, the main behaviour may activate SafeMirrorUpdatePerformerProtocolBehaviour subbehaviour. This subbehaviour executes actions corresponding to the mirror checkpoint update protocol. All of described behaviours are FSMs and utilise additional subbehaviours in appropriate states of execution. Subbehaviours are responsible for message send and receive operations. All receiving actions are not blocked and have timeouts. Therefore, if a given message does not arrive during receive action, a given subbehaviour does not wait and passes the control further. However, when a given timeout expires and the message has not arrived yet, some appropriate actions are executed.

The main behaviour performs its tasks in parallel to other user-defined behaviours. Therefore, in order to enhance the designed multiagent system with reliability features offered by our method, the developer needs only to construct an agent basing on the SafeAgent class.

5. Future work

We have described the method to increase reliability of multiagent interaction. We have shown simple protocols for replacement of damaged agents with their mirrors and have developed the Java package implementing these protocols. This package is an extension to packages offered by JADE environment. In order to enhance the reliability of developed multiagent system, the designer need only to inherit the classes provided by our package while constructing agents. However, the presented concept is very basic and bounded by several assumptions. There is much to be done yet to create a full-scale fault tolerant framework. The future research can consider different topologies of agent interconnections. The groups of agents and their mirrors can be joined in TMR (Triple Module Redundancy) structures, i.e., mirror agents are active and also perform tasks, consulting results with original agent; the output is determined by voting. The mirror agents can detect a failure of the principal one and replace it within the group. We have offered only a skeleton mechanism to support the checkpointing operation. In future work we will try to extend this mechanism to provide the checkpointing independent of the created system. The last idea is to allow agents to recreate mirror agents, so the actual number of mirrors present for a single agent will be constant. This technique will permit to avoid the general degradation of the system, when the original agent and its mirrors have been damaged. We can also push this concept further – if the template of a given agent exists in the system, an agent can repair a damaged one by regenerating it from this template – no mirror agent are needed. Our desire is to do a case study application that uses our redundancy extensions of JADE environment. The extensions are available as an open source from http://www.elka.pw.edu.pl/~rolinski/SafeAgent.html.

Bibliography

[1]. T. Finin and G. Wiederhold. An Overview of KQML: A Knowledge Query and Manipulation Language. Dept. of Computer Science, Stanford University, 1993.

[2]. FIPA 97 Specification, Version 2.0. , http: //www.fipa.org, Foundation for Intelligent Physical Agents (FIPA), 1998.

[3]. JADE Programmer’s Guide. http://sharon.cselt.it/projects/jade, CSELT S.p.A., 2000.

[4]. JADE Administrator’s Guide. http://sharon.cselt.it/projects/jade, CSELT S.p.A., 2000.

[5]. N.R. Jennings, M.J. Wooldridge (eds.). Agent Technology: Foundations, Applications and Markets. Springer, 1998.

[6]. J.R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge U. Press, 1970.

[7]. G. Weiss (ed.). Multiagent Systems. A modern Approach to Distributed Artificial Intelligence. The MIT Press, 1999.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

[image: image6.wmf]Mirror

agent 1

Agent 1

Agent 2

Agent 3

Agent 1

Agent 2

Agent 3

heartbeat

heartbeat

(no heartbeat)

(no heartbeat)

(no heartbeat)

heartbeat

heartbeat

heartbeat

ask about failure

ask about failure

restricted confirmation

procedure

ask about failure

ask about failure

failure confirmed (agent1)

failure confirmed ()

not damaged

replacement cancelled

replacement cancelled

rollback

activation confirmed

activate

shutdown

rollback

replacement procedure

a)

b)

[image: image7.wmf]Agent 2

Mirror agent 2

Mirror agent 2

Heartbeat

No heartbeat

Heartbeats

Heartbeat

No heartbeat

Agent 3

Mirror agent 3

Mirror agent 3

Agent 1

Mirror agent 1

Mirror agent 1

[image: image8.wmf]Mirror

agent 3 (1)

Agent 1

Agent 2

Agent 3

Mirror

agent 3 (2)

(no response)

update confirmed

mirror failed (2)

checkpoint update

checkpoint update

mirror failed (2)

[image: image9.wmf]safe

gui

util

SafeAgent

SafeAgentStructure

core

SafeGuiAgent

messages

SafeAgentMessages

parameters

SafeAgentParameters

SafeAgentUtil

behaviours

SafeAgentGeneralBehaviour

SafeMirrorFunctionsProtocolBehaviour

SafeReplacementPerformerProtocolBehaviour

SafeReplacementResponderProtocolBehaviour

SafeMirrorUpdatePerformerProtocolBehaviour

(various simple behaviour classes)

[image: image10.wmf]Agent

Agent

Message Transport System

Agent

Management

System

Directory

Facilitator

Agent

Agent Platform

Host

_1061017159.vsd

_1061020815.vsd

_1061023728.vsd

_1061017583.vsd

_1060693109.vsd

