Fundamenta Informaticae XX (2007) 1-21
10S Press

Path Compression in Timed Automatd

Agata Janowska
Institute of Informatics, Warsaw University, Banacha 2,07 Warsaw, Poland
email: janowska@mimuw.edu.pl

Wojciech Penczek
Institute of Computer Science, PAS, Ordona 21, 01-237 WaiRaland
Institute of Informatics, Podlasie Academy, 3 Maja 54, 08 SiedIce, Poland

email: penczek@ipipan.waw.pl

1.

Many verification methods of time-critical systems haverbdefined over the last ten years. Model
checking seems to be one of the most important methods du® poaictical applications. Essentially,
the method consists in determining whether a temporal farexpressing a property of a system is
valid on its model (the state space) representing all thsiplesexecutions. Model checking has an
advantage of being automatic but suffers from the so-callett explosion problenie., the number of
states in the model of a system can grow exponentially in ittee &f the system [24]. Many methods
have been recently suggested to reduce state spaces tltahaidered in the verification process (e.qg.

Abstract. The paper presents a method of abstraction for timed syst@im®xtract an abstract

model of a timed system we propose to use static analysisglyaamtechnique called path com-
pression. The idea behind the path compression consigleiitifying a path (or a set of paths) on
which a process executes a sequence of transitions thattdofluence a property being verified,

and replacing this path with a single transition. The metisqufoperty driven since it depends on
a formula in question. The abstraction is exact with respeall the properties expressible in the
temporal logicCTL* .

Introduction

[4, 9, 10, 21]).

In this paper we deal with abstract models for timed autoriiats] enriched with additional integer
variables. Such automata are a common input formalism ofeinclieckers for timed systems (e.g.

*The work is partly supported by the Polish grant No. 3T11Q&11

UppAal [22]* and HyTech [14]). To extract an abstract model of a system npgse to use a static
analysis, namely a technique callpdth compressianThe idea behind it consists in identifying a path
(or a set of paths) on which an automaton executes a sequén@nsitions that do not influence a
property being verified, and replacing this path with a srtghnsition. The path compression has the
similar effect to partial order reductions of excluding sopossible interleavings, but in our approach
several steps can be replaced by a single one, which pariat ceductions do not do.

Our method is property driven since it depends on a formulguiestion. An abstraction iexact
with respect to all the properties expressible in the temipogic CTL* y. which means that a given
property holds in the abstract model if and only if it holdghe concrete one. To this aim we show that
the original and the reduced model are in a stuttering biksitiwn relation [7].

Path compression as an abstraction method is known for adtsystems. In [26] a method called
path reductionis used to reduce state spaces by compressing computatios qgfgparallel while pro-
grams. The authors of [18] use the concepiath slicingto reduce control flow automata. The technique
determines which subset of transitions along a given patbrwe particular location is relevant to reach-
ability of the location at the path. We present the path ca@sgion technique for timed systems modeled
in Intermediate Language of the verification tool ierin [17].

The closest to our work is [6], which deals with static anislys verification of timed systems con-
cerning the concept dhfluence information The technique can be understood as slicing 1/0O Timed
Components, i.e., timed automata extended with interfales approach preserves the branching struc-
ture of a transition system up to the propositional assigrnirgesen over the external observer. Other
related methods include thactive-clock reductiortechnique [12] and a more generalevant guard
abstraction[2]. Both the above works focus on reduction of the numbedadls and clock constraints.
Statical analysis of control structure of timed automatase used in [20] to minimize the total number
of states to be saved during reachability analysis. In [B&]itlea of cumulation of transition delays —
similar to ours — is used to reduce timed Petri nets.

Our first attempt of using static analysis for timed auton@iacerns the slicing technique [16].
In short, the method gbrogram slicing[25] consists in pointing the so-callegicing criterion, which
identifies program points of interest and then tracing itefmsode on which it depends. The technique
allows to eliminate data irrelevant to the property in gigest In the approach presented in [16] a path
compression is also possible, but only for paths along wttieitime cannot elapse. The current paper
presents a general method for compressing timed and ungiag. It is worth pointing out that the
best results are achieved by combining slicing and path cessfon.

The rest of the paper is structured as follows. Section 2lsettee formalism of timed automata.
In Section 3 we present a motivating example of a timed systathgive an informal overview of
our method. Section 4 introduces the path compression itredrfor a network of timed automata.
Experimental results are given in Section 5. The last sedmrtly concludes the paper.

2. Model and its semantics

In this section we introduce timed automata extended wittgier variables. To this aim, we first define
arithmetic and boolean expressions, as well as clock Gintdr

The definition of timed automata used in UppAal [5] is slighdlfferent than ours, but this is insignificant to our method

Variables. LetV be afinite set of integer variables. The gatpr (V') of all thearithmetic expressions
overV is defined by the following grammar:

expr :==m |y | expr @ expr|— expr | (expr)

wherem € Z,y € V, and® € {—,+,*, /}.? The set®(V) of all the boolean expressionsver V' is
defined inductively as follows:

¢ == true| expr ~ expr| ¢ N ¢ oV ¢ |0 (¢)

whereexpr € Exzpr(V) and~ € {=,#,<,>,<,>}. The setAct(V) of all the actionsoverV is
defined as follows:
an=¢l|ly:=expr|a;a

wheres denotes an empty sequenges V', andexzpr € Expr (V).
Clocks. Let X be afinite set of real variables, callelbcks The set?(X) of all theclock constraints
over X is defined by the following grammar (we deal with diagonakfautomata):
Y u=true|lx~clY ANy
wherez € X, c € IN, and~ € {<, <,=,>,>}.
Definition 2.1. (Syntax).A timed automators a tuple7A = (£, Q,¢",V, X, T, T), where

e X is afinite set ofabels

Q is a finite set ofocations

¢° is theinitial location,

V is a finite set of integer variables,

X is a finite set of clocks,

e TCQxYxdV)xWU(X) x {true, false} x Act(V) x 2% x @ is atransition relation and
e 7:(@Q — V(X)is aninvariant function.

An elementt = (q,1, ¢,v,u,,Y,q") of T denotes a transition from the locatigrto the locationy/,
wherel is the label of transitiort, ¢ andi define the enabling conditions (the guard and the clock
constraint) fort, o is the action to be executet, is the set of clocks to reset (reset set), and the
urgency attribute — when it is set, the transitiomas to be executed as soon as it is enabiésidnabled

if the automaton is in the locatiopnand the guare evaluates terue). We assume that clock constraints
of urgent transitions are equal teue®. The invariant function assigns to each locatiog Q a clock
constraint defining the condition under which the automatam stay ing. We write source(t), label(t),
guard(t), delay(t), urgency(t), action(t), reset@ndtarget(t)for ¢, I, ¢, ¥, u, o, Y, andq/, respectively.
Several examples of timed automata are presented in Fign S8ction 3.

2By / we denote integer division ar@ denotes the set of integer numbehé,— the set of natural numbers, aiRl, — the
set of non-negative real numbers.
3The assumption is necessary to keep the clock constrairgsemtable by convex zones (see [5] for details).

Variable Valuation. We define avariable valuatiorto be a total mapping : V' — Z. We extend this
mapping to expressions in the usual way. Satisfiability oda@ldan expression € (V') by a valuation
v (we writev |= ¢) is defined as followsy = true, v = e; ~ ey iff v(er) ~ v(e2), v = g1 A gs iff
vEgandv = g, v E g1 Vg iff v |E g orv | go, andv = —giff v £ g. Let« be an action,
that is a sequence of assignments. «By) we denote the valuation after execution of an actioon a
valuationv. We definev(«) to be the valuation’ defined inductively as follows:

o if a =¢,thenv =,
o if & = (y:=expr), thend/(y) = v(expr) andv’(z) = v(z) for z € V '\ {y},
o if & = ay;a9, thenv’ =v"(az), wherev” = v(ay).

Clock Valuation. A clock valuations a total mapping : X — IR.. Satisfiability of a clock constraint
1 € ¥(X) by a given clock valuationm (denoted as |~ v) is defined inductively as follows: |= true,

TEx~ciff 7(z) ~c, 7 =1 Ao iff 7 = 4p1 andT = s

Foré € R, 7+ denotes the clock valuatiari such that’(z) = 7(z)+4 for all z € X. Moreover,
by resety (1) we denote the clock valuatior! such thatr’(z) = 0 for x € Y and7/(z) = 7(x) for
r € X \ Y. Finally, by we denote thénitial clock valuation such that’(z) = 0 for all x € X.

Definition 2.2. (Semantics). Semanticof a timed automatofA = ($4,Q,q°, V, X, T,7) for the
initial valuationv? : V' — Z is a labeled transition systegh= (S, s°, %, —), where:

e S={(¢,v,7) |ge QrveZVInT e R/XIAT = T(q)} is the set obtates
o s = (¢ % 7%) € Sis theinitial state,
e ¥ =Y, UIR, isthe set of labels,

e — C S5 x X x Sisthe smallest transition relation defined by the followrntgs:

- (q,v,7) LN (¢',v', ") iff there exists a transition = (q,1, ¢, v, u,«, Y,q") € T such that
vE ¢, T EY,V =v(a), T =resety(7), andr’ = Z(q)

- (q,v,7) LN (q,v,7+0)iff 6 € Ry, 7+ 0 = Z(q), and for all transitions = (¢, 1, ¢, ¢, u,
a,Y,q) €T, u= falseorv {= ¢.

Initially, all the variables have their initial values seidgall the clocks are set th At a states = (¢, v, 7)
the system can either:

e execute an enabled transitiorand move to the stat€ = (¢’,v’,7’), whereq’ is the target of,
the variable valuation is changed according to the actiarao the clocks from the reset settof
are set ta, or

e let time § pass and move to the staig v, 7 + ¢), as long as no urgent transition is enabled and
T + ¢ satisfiesZ(q).

Runs. For(q,v,7) € S, let(q,v,7)+ ¢ denote(q, v, 7 + J). An s—run of 7A is a sequence of states:
s0 8 51 B sy B3 ..., wheresy = s € S anda; € I' UIR, for eachi > 0. A run is calledprogressive
(or divergeny iff Z{z’elN |aieRy } i is infinite. TA is progressivef all its s°-runs are progressive.

Parallel Composition. We assume that a system to be verified is described as a sébofata running
parallel. Automata communicate with each other via shasebles. We assunmaulti-synchronization
which requires that the transitions with a shared label haviee executed synchronously by all the
automata containing this label.

Let{7A;,...TA,} be a set of timed automata alf/) = {1 < i < n |l € %, } denote the set of
the numbers of the automata containing the ldb@&y { a; };cz we denote the sequence of the actions
a;j, wherej € Z C {1,...,n}, such that the actions are arranged according to the nuaherider of
their indices. We assume additionally that synchronoussitians do not update shafedariables.

Definition 2.3. (Parallel Composition). Let 74; = (%;,Qi, ¢, Vi, Xi, Ei, T;) fori = 1,2,...,n be
timed automata such tha; N X; = () for all i # j. A parallel composition of the above automata

(denoted ag A, || TAz || ... || TA,) is the timed automatofA = (%, Q, ¢°,V, X, E,T), where:
o X = U?:l i,
o Q = H:’Lzl Qi!

o "= (g,)

V= U?:1 Vi,

X = U:'L:lXi’

((Q17 cee 7QTL)7 l7 /\iGE(l) (bia /\iEE(l) wia \/iGE(l) Uq, { a; }iGE(l)7 UiGE(l) }/7;7 (q/IJ v 7q1/’L)) €k iff for
alli € %(1), (gi, li, #i, ¥i, wis a3, Yy, q;) € Ej, and forallj € {1,...,n}\ ¥(0), ¢; = g5,

® Z(q1,- -+ qn) = N2y Zi(qi)-

Model. LetS = (5,5, %, —) be the labeled transition system of the parallel compasitibthe
automataZ Ay, ...,7TA,. Thepropositional variablesPV are of the form:p; , for somel < i < n,
whereq € Q; andp,, ~ ,, Whereej,es € Expr(V), and~ is a relational operator. In order to reason
about systems represented as a set of automata we deffabelmg functiony : S — 2PV, For
s = ((q1s---,qn),v,7) € S, V(s) is defined as followspe, ~., € V(s) iff v = e1 ~ ez and
piq € V(s) iff ¢; = ¢. Themodelfor the set of automatéZA;, ..., TA,} is the pairM = (S, V).

Let PV, C PV be the set of propositional variables used in the formulawe call a location
q € (); observablgfor) if it appears in some proposition &tV,,, i.e.,p; , € PV,.

“These variables are used by more than one process.

3. Motivating example

As the example we present a system that exploits the well kiischer’'s mutual exclusion protoc{8]

to ensure mutual exclusion. The system consists pfocesses using the same shared resource. Each
of the processes is modeled as a timed automaton shown inlFighe global variableZ is used to
schedule an access to the resource. The shared resourpeeserdged by another global varialite
Besides competing for the resource the processes canmpestone local actions. For the sake of clarity,
we skip the labels of the transitions since all of them aralldce., non synchronous). The urgency
attribute is not set for any transition.

Zxi
=0
k=m "€ | x;> d
Z:=i; Z=i
X;:=0 Y:=i; —
% _/ _/
x;<=D waiting, critical,
trying, -
. Z=0
= INC; !
y;i:=0 i X;:=0

Figure 1. The-th automaton of Fischer’'s mutual exclusion protocol

Before we show in detail how to reduce a system using the tgabrof path compression, we give
some intuition and sketch our method. The method is progliten, i.e., it depends on a property to
be verified. The property can be expressed by an additionaldtiautomaton or by a temporal formula.
For the system presented we verify the formula: EF(\/ISi < jgn(pi,crm-mh A Dj.critical;)) SAYING that
eventually the mutual exclusion property is violated. Tin@drtant point to note here is that the validity
of the formula in the model does not depend on values of thahlasY andk;.

Sketch of the method. The first step is to use a slicing algorithm to obtain a setefd¢tevantvariables,
i.e., the variables that can influence a property in quesiitie slicing algorithm for timed automata with
integer variables was defined in [16], so how we present iis idaas only. All the operations (i.e., the
enabling conditions and the operations executed in theitrans) on irrelevant variables are removed.
After completing the slicing, the path compression aldonitis executed.

Based on the notions of data, control and time dependenesslitting algorithm is developed to
construct the sets of thelevantoperations, locations, and labels. Intuitively, tledevantelements
are these that have an impact on a property of interest. Tueithim starts with a slicing criterion (a
set of operations defining observable variables and a sdisgreable locations) which is derived from
propositional variables of a formula in question and susigey marks as relevant a new item if any
other relevant item depends on it. The system reduced is @sedpexclusively of the relevant parts of
the original one.

The slice of our example constructed according to the giclgorithm, for the slicing criterion
defined as the set of locationsitical; for 1 < i < n, is shown in Fig. 2. Comparing to the original one,
the variables” andk; have been removed and so have been operations on them asdleglavant to
the mutual exclusion property.

X;:=0
x;>d
Z:=i; =j
X;:=0 —~
N N N
x;<=D waiting, critical;
trying 7-20:
X;:=0

Figure 2. Automaton of Fig. 1 after slicing

Path compression. The idea behind the path compression consists in replacipgtta (or a set of
paths) with a single transition. Such a path which can beaoggl, calleccompressible must satisfy
certain conditions. First of all, all the locations on thétpare not observable. Secondly, the path cannot
contain a cycle, which means that none of its locations actwice. Next, all the transitions of the path
except for the last one have local labels, empty actionsgaadds equal torue. Finally, all the clocks
are reset immediately before they are used (in an invariaim a transition enabling condition) and,
dually, all the clock resets are immediately consumed, ihatch clock which is reset at a transition
going to some location on the path is newly reset before it is used at any locatidereift thaty (in its
invariant or in a enabling condition of one of its outgoingrsitions).

If there are many compressible paths between a pair of mtstthen all of them can be replaced by
one transition provided that the last transitions of thdnpaire equal or at least: reset the same clocks,
have the same enabling conditions, perform the same opesatin variables, and either have the same
labels, or all their labels are local.

In our example we have two compressible paths that fulfilodithe above conditionsinit; —
reset; — idle; — trying; andinit; — inc; — idle; — trying;. Both of them can be replaced by the
transitioninit; — trying; as shown in Fig. 3.

Z=|
i-=0
x;>d
Z=0 Z:=i; =j
=0 X;:=0 —~
% N N
init; xj<=D waiting, critical;
tryingi 7-20:
X;:=0

Figure 3. Automaton of Fig. 2 after path compression

It is easy to notice that the exact time of executing the ttians of the compressible paths is not

important since the automaton can stay at the locatidey for an arbitrary amount of time. But, in
general, this does not need to be the case. In our approatig time of a path traversal is finite, we
replace the path with a transition of a finite execution titnghe rest of the paper we present our method
in detail.

4. Path compression

In model checking applications we typically check whethgiven temporal logic formulg holds in a
systemP. What we would like to do is to generate a reduced sys&much thaty holds in7’ if and
only if it holds inP. It is clear thatP’ needs to preserve behavior of these part® anly which can
influence the validity of the formula.

As before let7A be a timed automaton, whe€gandT" are the sets of its locations and transitions,
respectively. Fog € Q letout(q) C T be the set of its outgoing transitions aindq) C T be the set of
its incoming transitions. A locatiog € @ is called arending locationif out(q) = 0.

Paths. A pathin the automator? A from a locationg’ € Q to a locationg” € @) is a sequence of
locations and transitions of the formtags . . . tgm Such thatyy = ¢/, ¢ = ¢, m > 2, ¢; € Q,
andt; € out(gj—1) Nin(g;) forall 1 < j < m. We say that a pathyt2qs . . . t,gy, CcONtains(or goes
through a locationg if ¢; = ¢ for somel < j < m (similarly for transitions). A path containscycle
if it contains one of its locations twice, i.ey = ¢; for somel < i < j < m. We call a pattmaximal
if it contains an ending location or a cycle. A pathsimpleif it does not contain a cycle. BM (¢, ¢")
we denote a set of all simple paths from the locatjoto the location;”. By locs(I1(¢’, ¢")) € @ and
trans(Il(¢’,q")) C T we denote the set of all the locations and the set of all thesitians contained in
the paths of1(¢/, ¢"), respectively.

Domination and post-domination. We say that a location € Q dominatesa locationg’ € Q if every
simple path from the initial locatiog® to ¢’ goes througly. Also, a location;’ post-dominatesa location

q if every maximal path frongy goes throughy’. Notice that the above definitions are not symmetrical
due to possibly missing an ending location. In the procedsign 1 the locationinit; dominates the
location reset;, but the locationreset; does not dominate the locatiadle;. Also the locationidle;
post-dominates the locatiomset;, but the locationreset; does not post-dominate the locationt,.

Reaching definitions for clocks. For a clock constrainty € ¥(X), letuse(y)) C X be the set of
clocks that appear ig. The set of clocksisedat a locationg € @ is defined as followsuse(q) =
use(Z(q)) U Useour(q) use(delay(t)).

We say thatreset(t) of a transitiont € T affectsthe clocks from the setse(q) atq € Q if there
exists a clocke € X such thatr € reset(t) Nuse(q) and eithertarget(t) = g, or there exists a path
7 from target(t) to ¢ such thatr ¢ reset(t') for any transitiont’ contained inr. We say that the
clock resetreset(t) of a transitiont € T is locally consumedf it does not affectuse(q) at any location
q € Q\ {target(t)}. Moreover, a clock: € use(q) is locally usedat a locationy € Q if x € reset(t)
for all ¢t € in(q). In the example in Fig. 1 the clock reset of each transitidacés only the clock used
at its target, this means that each clock reset is locallgwmed. Also, clocks are locally used at each
location.

Path delays. Let be atime constraint of the foray < z A x < d»,° whered;, d> € IN. We define
the lower and upper bound of (denoted agb(v)) andub(v)) as followsib(y)) = d; andub(v)) = da.
We assume thdb(v)) = 0 for ¢ of the formz < do, and dually,ub(v)) = oo for ¢ of the formd; < z.
Obviously,lb(y) = 0 andub(y)) = oo for ¢ equal totrue.

For a pathr = qit2q2 . . . t;mqm, Where all the clocks used gf for all 1 < j < m are locally used
and the time constraints of for 1 < j < m include only one clock, we can defingnimal and maximal
delay on the patlas follows:

m

min_delay(m) = Zlb(delay(tj)), maz_delay(m) = Zmin(ub(delay(tj)),ub(I(qj_l)))G.
j=2 j=2

In our example in Fig. 1 we havenin_delay(init; — reset; — idle;) = 0, andmaz_delay(init; —
reset; — idle;) = D.

Definition 4.1. (Compressible paths)Letq’, ¢ € Q of TA. We call a non-empty set of pathK¢’, ¢”)
compressibleff the following conditions are satisfied:

1. for each locatiory € locs(I1(¢', ¢")) \ {¢"}:

(a) ¢ is not observable angl# ¢° unlessg = ¢/,

(b) ¢’ dominates; andq” post-dominateg,

(c) source(t) € locs(Il(q',¢")) \ {¢"} for each transitiont € in(q) with ¢ # ¢/,
(d) |use(q)| < 1 and ifuse(q) # 0, then the clock of use(q) is locally used,

2. for each transition € trans(Il(¢’,¢")) \ in(¢"):

(@) label(t) is local (non-synchronous),
(b) guard(t) is equal totrue,
(c) reset(t) uses only one clock and this clock is locally consumed,

(d) action(t) is equal toe,
3. for each two transitiong ¢’ € in(q"):

(@) label(t) = label(t") or label(t) andlabel(t’) are local,
(b) guard(t) = guard(t’),

(c) reset(t) = reset(t’),

(d) action(t) = action(t’),

(€) urgent(t) = urgent(t') = false,

SFor sake of simplicity we only deal with not strict inequiit here.
SWe defined 4+ co = oo andoo + d = oo for an arbitraryd.

4. for eachd € IR4 such that

MiNrer(q q) (Min_delay(m)) < d < maxﬂen(q,7q”)(maw_delay(ﬂ))7

there exists a path € II(¢', ¢”) such thatnin_delay(7) < d < max_delay(r).

We call ¢’ (¢") thefirst (last, resp.) location ofl. For two sets of compressible pathisandIl’, we
say thatll C. I’ if locs(IT) C locs(I") andtrans(Il) C trans(I’). A setll of compressible paths is
maximal(mcps for short) ifIT . II’ for any other sefl’ # IT of compressible paths.

Note that we do not require a transitiore trans(Il(¢’,¢")), which does not enter the locatiafi, to
have the urgency attribute equal false. Sinceguard(t) is equal totrue, it follows that the transition

t has to be executed as soon as the automaton enters the smaten of;. Therefore, in such a case
urgent(t) = true is equivalent tdb(delay(t)) = ub(delay(t) = 0. The last condition of the above
definition is necessary to keep a time constraint for a tt@nsiwhich will replace a compressible path
set, representable by a clock constraint of the form as dkfin8ection 2.

Lemma 4.1. For two different mcpdl; = I1(q}, ¢{) andIly = I(q}, ¢4) for somegq}, ¢, ¢4, ¢4 € Q,
(locs(II) \ {q1, ai'}) N (locs(Ilz) \ {g3, 45}) = 0.

Proof:

Conversely, suppose that there exigts (locs(I11) \ {q},q{}) N (locs(Il2) \ {¢5, ¢5}). Since by Def.
4.1.1(b) ¢, and ¢, dominateq, it follows that each path from® to ¢ passes through botf{ and g.
Without loss of generality we can assume that a path fgoro ¢ containsg,. Sincell, contains all
the paths fromy, to ¢4 and by Def. 4.1.1(c) all the locations from which there aemsitions tog are
contained inlly, it follows that all the paths from} to ¢ go throughg),. Let us consider the path set
II' = 11(¢}, ¢4). Since all the paths frong, to ¢4 are compressible arid, is a mcps, it follows easily
that the conditions of Def. 4.1 are satisfied it Therefore,II’ is a compressible path set containing
II,, which contradicts maximality dff,. O

Reduced Timed Automaton. We show how to construct a transitiarthat will replace a maximal
compressible set of paffi(¢’, ¢”) in the reduced timed automaton. Letc X be a clock (denoted as
clock(I1(¢', q"))) chosen in the following way. If there is a clock used at soomationg € @, which

is not included in any maximal compressible path set andriéset on each path frogt' to ¢, then let
x be such a clock. Otherwise, letbe an arbitrary clock used at some locatipg locs(T1(¢’, ¢")). If
there is no such clock, then no clock is needed for the tiansit(thenclock(I1(q’, ¢")) is undefined).
Clearly, in case of many maximal compressible path sets wmamize the number of clocks by choosing
the same clock for as many compressible path sets as possible

Definition 4.2. (Reduced Timed Automaton).The reduced timed automaton is obtained from the orig-
inal one, where each maximal compressible set of gdtls ¢”) is replaced by a fresh transitienLet
t' be an arbitrary transition entering andz = clock(I1(¢’, ¢")). We definet as follows:

e source(t) = ¢,

A maximal value exists since there is a finite number of finithp.

o target(t) = q",

o label(t) = label(t'),

o guard(t) = guard(t'),

o delay(t) = mincr(y g (min-delay(m)) < BBAz < MaTreli(q!,q") (maz_delay(m))®,
e urgency(t) = false,

e action(t) = action(t'),

e reset(t) = reset(t).

Letd = maa:,ren(q,,q,,)(quelocs({ﬂ})\{q,,}ub(I(qj))). If d # oo, then the invarianf (¢') is redefined
to z < d, otherwise it is redefined to-ue. The reset set for each transitioh € in(q’) is redefined to
reset(t") U {x}.

By Def. 4.1.3(a), for the guard of the transitibmve can choose the guard of an arbitrargnteringq”
since the guards of all the transitions enterifigare equal. Similarly we choose the label, the reset set,
and the action of (Def. 4.1.3(b)-(d)).

Complexity. In short, to find a mcps in a process we first mark the locatiatisfging the condition
1(a) of Def. 4.1 and the transitions satisfying the condi®oof Def. 4.1. Then, the rest of the conditions
is checked for each pair of locatiogsand¢”, such that all the locations frodecs(I1(¢',¢")) \ {¢"}
and all the transitions frortrans(I1(¢’,¢")) \ in(q") are marked. The algorithm starts with the largest
possible set of paths. If some condition of Def. 4.1 is nosfiatl, then a path set for another pair of
locations is checked.

The number of the pairs of locatiorig’, ¢”) is bounded byQ|?. The test of the condition 1 of Def.
4.1 is performed for each location of the path set in tieQ| + |7'|) (for 1 (b)) or inO(1) (for 1
(a, c-d)). The next two conditions are checked in ti@@7’|). The test of the last condition requires
O(|Q| + |T|) time as it is based on the shortest path search algorithncimtia graphs [8]. Thus, the
path reduction time is polynomial in the size of an automatbat is in the number of its locations and
transitions.

Correctness. We say that a location € @ is reducibleto a locationy’ if there exists a locatiop” € Q
such thaflI(¢’, ¢”) is a maximal compressible path set and locs(I1(q’, ¢")) \ {¢"}. For eachy € Q
we definered(q) as follows: if there exists the locati@n such thay is reducible tay/, thenred(q) = ¢/,
otherwisered(q) = q. Note that a consequence of Lemma 4.1 is that for a locattbere is at most one
locationg’ to whichg is reducible.

Let 7A' be the reduced timed automaton obtained frdrh according to Def. 4.2. Consider the
clock renamingl’ such that for ally € @, whereq is the first location of some mcps, replaces in both
the automata the clock usedg@hy the same fresh clock in all the constraints appearingenrtariant
of ¢ and in the enabling conditions of the transitions going dug as well as in the reset sets of the

8We skip the constraint ifnincri(yr 41y (min_delay(r)) = 0.
We skip the constraint ifnaz e (q g7y (maz_delay(r)) = oo.

transitions entering.'® Denote byl'(74) andT'(7A’) the timed automata obtained by applying this
renaming toZ7A and7A’, resp. Since by Def. 4.1.1(d) the clock used; @ locally used and by Def.
4.1.2(c) it is locally consumed, it follows that the traiwit systems foi(7A) (I'(7A")) and7TA (TA',
resp.) are isomorphic.

LetS = (S, s, %, —) be the transition system f&(7A,) || ... || ['(TA,) andS’ = (', sV, ¥,
—') be the transition system fdr(7A4}) || ... || T(7A!) with respect to the set of propositional
variablesPV,,. The labeling functiony’ : S — 2FV¢ and)’ : 8" — 2PV are defined as in Section 2.

Let M = (S8,V)and M’ = (§',V'). Our aim is to show thal/ and M’ are stuttering bisimilar
according to the following definition.

Definition 4.3. (Stuttering bisimulation [7]). A relation=,C S x S’ is a stuttering simulation between
M and M’ if the following conditions hold:

1. sV =, s9" and

2. if s =, ¢/, thenV(s) = V'(s’) and for every maximal path of M that starts as, there is a
maximal patho’ in M’ that starts at’, a partitionB;, B, ... of o, and a partitionB], Bj, . . . of
o’ such that for each > 1, B;, andB§ are nonempty and finite, and every statd3inis related
by =, to every state in3’.

A relation=, is a stuttering bisimulation if botk, and={ (the transpose c¥;) are stuttering simula-
tions.

Definition 4.4. Let = C S x S’ be the relation s.t. for each= ((¢1,...,¢s),v,7) € S, and each
s =dqy,...,q,),v,7") € S"we haves = ¢ iff the following conditions hold:

1. ¢, = red(q;) foreachl <i <n,
2. v =wv, and

3. 7'(x) = 7(x) for eachz € use(q) for eachg € |J!" ; Q; s.t.red(q) = ¢.

Lemma 4.2. The relation= C S x S’ is a stuttering bisimulation between the two models= (S, V)
andM' = (S, V).

The proof of Lemma 4.2 can be found the appendix. The follgwimeorem is a consequence of Lemma
4.2.

Theorem 4.1. A CTL x* formula ¢ holds in the state® of the modelM = (S, V) iff it holds in the
states”’ in the model of its reducd/’ = (S’, V") with respect to the set of propositiofd/, .

Proof:
By induction on the structure @f. O

01 use(q) = @ in TA, then the fresh clock is added to the reset sets of the tiamsigntering; in 7A.

n=2 n=4 n=2~8
bmc minisat bmc minisat bmc minisat
sec | MB sec | MB sec MB sec MB sec MB sec MB
(@) 1.14 9.6 | 0.47 95 | 461 | 28.2 | 422 | 265 | 26.62 | 128.6 | 117.83 | 122.9
S 1.06 9.1 | 0.29 86 | 441 | 266 | 559 | 243 | 2543 | 123.8 | 106.89 | 114.6
S+AC | 0.73 6.9 | 0.13 7.3 | 299 | 18.0 | 6.75 6.7 | 16.74 77.5 67.58 72.1
S+PC | 0.20 4.1 | 0.03 4.6 | 0.40 53 | 0.14 5.6 0.87 7.8 0.76 8.5

Figure 4. Experimental results for the example of Sectioordf = 2 andd = 1

5. Experimental results

We present experimental results obtained with the ven@ingbol Verncs [13], on the machine equipped
with the processor Intel Pentium 4 — 3 GHz, 2 GB of main memany the Linux Red Hat operating
system. We compare amounts of time and memory consumed hgatisation of a network of timed

automata and a given reachability property to a propostif@rmula (by the bounded model checking
module [23] of Vercs) and satisfiability verification of the formula by MiniSat.

Let us first consider the example presented in Sect. 3. We tiaseked whether the formula
defined in Sect. 3 holds for four systems: original (O, Fig, sliced (S, Fig. 2), sliced and reduced
according to the path compression technique (S+PC, Figar),sliced and reduced according to the
active clock reduction (S+AC) [12]. The experiments haverbgerformed for various numbers of
processesn() and values of parametef3 andd. The preservation of mutual exclusion is ensured for
D < d. The results are presented in Fig. 4.

To validate the technique we performed experiments witk sagdies known from the literature. In
Fig. 5 the selected results are presentedvfanufacturing Plan{11] andController Area Network19].

For theManufacturing Plantwe check if the fall of any box is not possible {s the number of boxes
on the conveyor belt). In case Gontroller Area Networkve follow strictly the description of [19] and
verify whether the request of the second application (wiibrjty lower than the first one) is always
accepted is the number of periodic application and — sporadic ones). In all the cases presented,
properties being verified are violated, that is erroneoesagos’ are found and the length of the shortest
counterexample (depth) is shown.

6. Conclusions

In the paper, a method of abstraction exploiting staticcstmes of timed automata has been presented.
The experiments confirm that our method leads to significadtictions in the time and the memory
consumed by the verification tool. The most important adagatof our approach is that it can be used
prior to any existing tools analyzing timed automata inoigdsymbolic ones. It is also orthogonal to
other abstraction methods and can be combined with thenekd gimore powerful tool in terms of state
space reduction.

bmc minisat

example parameters | version | depth sec MB sec MB
Manufacturing Plant n=2 (0] 20 3.88 20.6 2.20 18.9
PC 16 2.81 16.2 0.84 14.4
n=3 (0] 22 5.85 28.5 6.92 24.4
PC 18 4.00 21.2 2.31 19.8
n=4 (0] 24 7.83 35.5 71.96 50.5
PC 20 5.27 27.5 14.22 27.6
Controller Area Network | n=2,m =0 (0] 40 23.70 90.8 44.67 85.7
PC 36 17.65 71.2 21.60 61.2
n=2m=1 (0] 40 28.32 | 106.0 | 117.21 | 103.1
PC 36 20.81 80.0 78.02 80.5
n=3m=1 (0] 40 33.20 | 121.3 | 566.89 | 189.5
PC 36 25.49 96.5 | 274.14 | 127.0

Figure 5. Selected experimental results

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]
[9]

R Alur and D Dill. Automata for modelling real-time syste. InProc. of the Int. Colloquium on Automata,
Languages and Programming (ICALP’'9@plume 443 olLNCS pages 322—-335. Springer-Verlag, 1990.

G. Behrmann, P. Bouyer, E. Fleury, and K. Larsen. Statiard analysis in timed automata verification. In
Proc. of the 9th Int. Conf. on Tools and Algorithms for the §tauction and Analysis of Systems (TACAS/03)
volume 2619 oLNCS pages 254-277. Springer-Verlag, 2003.

G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaln Formal Methods for the Design of
Real-Time Systems (SFM-RT'0¥dlume 3185 o£ NCS pages 200-236. Springer-Verlag, 2004.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partidesreductions for timed systems. Pnoc. of the 9th
Int. Conf. on Concurrency Theory (CONCUR’'98plume 1466 of. NCS pages 485-500. Springer-Verlag,
1998.

J. Bengtsson and W. Yi. Timed automata: Semantics, @lgos and tools. Iiecture Notes on Concurrency
and Petri Netsvolume 3098 of NCS Springer-Verlag, 2004.

V. Braberman, D. Garbervetsky, and A. Olivero. Impraythe verification of timed systems using influence
information. InProc. of Int. Conf. on Tools and Algorithms for the Constimietand Analysis of Systems
(TACAS’02)volume 2280 of NCS pages 21-36. Springer-Verlag, 2002.

M. C. Browne, E. Clarke, and O. Grumberg. Characterifinige Kripke structures in propositional temporal
logic. Theoretical Computer Sciencg9(1/2):115-131, 1988.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémroduction to AlgorithmsMIT Press, 2001.

D. Dams, O. Grumberg, and R. Gerth. Abstract interpretadf reactive systems: Abstractions preserving
ACTL*, ECTL* and CTL*. In Proc. of the IFIP Working Conference on Programming Consgeptethods
and Calculi (PROCOMET'94Elsevier, 1994.

[10] C. Daws and S. Tripakis. Model checking of real-timeatebility properties using abstractions.Rroc. of
the 4th Int. Conf. on Tools and Algorithms for the Constrmuttnd Analysis of Systems (TACAS,9®)ume
1384 ofLNCS pages 313-329. Springer-Verlag, 1998.

[11] C. Daws and S. Yovine. Two examples of verification of timate timed automata with kronos. Rroc. of
the 16th IEEE Real-Time Systems Symposium (RTSp&¥9s 66—75, 1995.

[12] C. Daws and S. Yovine. Reducing the number of clock Vdes of timed automata. IRroc. of the IEEE
Real-Time Systems Symposium (RTSS{8jes 73—81. IEEE Computer Society, 1996.

[13] P. Dembinski, A. Janowska, P. Janowski, W. PenczelR@rola, M. Szreter, B. Wozna, and A. Zbrzezny.
Verics: A tool for verifying timed automata and Estelle specifioas. InProc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Syst€m&CAS’'03) volume 2619 ofLNCS pages
278-283. Springer-Verlag, 2003.

[14] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A mod#lecker for hybrid systemdnternational
Journal on Software Tools for Technology Transfgd—2):110-122, 1997.

[15] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. r8fpolic model checking for real-time systenisfor-
mation and Computatigri11(2):193-244,1994.

[16] A. Janowska and P. Janowski. Slicing timed automath disicrete dataFundamenta Informatica&2(1-
3):181-195, 2006.

[17] A. Janowska and W. Penczek. Static path compressioimiadt systems. IriProc. of the Int. Workshop
on Concurrency, Specification and Programming (CS&P,80Jume 206(3) oinformatik-Berichte pages
340-351. Humboldt University, 2006.

[18] R. Jhala and R. Majumdar. Path slicing.Rroceedings of the ACM SIGPLAN conference on Programming
language design and implementation (PLDI'0pages 38—47, 2005.

[19] J. Krakora and Z. Hanzalek. Timed automata approaciCAN verification. In11th IFAC Symposium on
Information Control Problems in Manufacturinglsevier, 2004.

[20] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Effiterification of real-time systems: Compact data
structures and state-space reduction.Piac. of the 18th IEEE Real-Time System Symposium (RT$S'97)
pages 14-24. IEEE Computer Society, 1997.

[21] K. L. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.

[22] P. Pettersson and K. G. LarsenpikhAL2K. Bulletin of the European Association for Theoretical Cotepu
Science70:40-44, February 2000.

[23] A. Potrola and A. Zbrzezny. Sat-based reachabilitgating for timed automata with discrete data Piroc.
of the Int. Workshop on Concurency, Specification and Prognéng (CSP’06)volume 206(2) ofnformatik
Berichte pages 207-218. Humboldt University, 2006.

[24] A. Valmari. The state explosion problem. llecture Notes on Petri Nets |: Basic Models. Advances ini Petr
Nets volume 1491 of NCS Springer-Verlag, 1998.

[25] M. Weiser. Program slicingEEE Trans. on Software EndL0(4), 1984.

[26] K. Yorav and O. Grumberg. Static analysis for stateegpeeductions preserving temporal logidsorm.
Methods Syst. De25(1):67-96, 2004.

[27] H. Zheng, E. Mercer, and C. Myers. Modular verificatidrimed circuits using automatic abstractidBEE
Trans. on CAD of Integrated Circuits and Syste@(9):1138-1153, 2003.

7. Appendix

For sake of clarity we give a proof for a single time automdicst. Then we present the main result,
that is a proof for a set of timed automata.

LetS = (S,s", %, —) be the labeled transition system for a timed automafadn= (%, Q, ¢°,
V,X,T,7)andS’ = (5, s", %', —') be the labeled transition system for the reduced timed aattum
TA = (¥,Q,¢", V', X', T',T'), which is constructed fof A according to Def. 4.2 with respect to
the set of propositional variablgdV,,. The labeling functiond’ : S — 2PVe and)’ : S" — 2PVe are
defined as in Section 2.

Let us introduce a few notions, here. We say that a transitieh 7' and a transitiont’ € T”
correspondto each other iffguard(t’) = guard(t), action(t’) = action(t), label(t') = label(t)
provided |X(label(t))| > 1, delay(t') = delay(t), urgency(t') = wurgency(t), andtarget(t') =
target(t).

A transitiont € T with a labell € ¥ is enabledat a states = (¢, v, 7) (we write enabled(t, s)) if
source(t) = g andv |= guard(t). A transitiont € T is fireableat a states (we write fireable(t, s)) if
enabled(t, s) andr |= delay(t).

Proof of Lemma 4.2 for a single timed automaton

We show that the relatiof? satisfies the conditions of Def. 4.3. L&t = (¢°,+%,7°) ands| =
(¢, v, 7%). Itis easy to check that’ = s* sinceq?’ = ¢°, v*’ = 49, and70(z) = O forall z € X
and7%'(z) = 0 forall z € X’. We proceed to prove that(s) = V'(s') for s = (¢,v,7) € S and
s'=(¢,v',7") € S',wheres = §'. By Def. 4.4.20' = v, hencep, ~ ¢, € V() iff pe, ~ ¢, € V'(s') for
e1,e2 € ®(V). It remains to show thai, € V(s) iff p, € V/(s') forr € Q. By Def.4.4.1¢' = red(q).
There are two cases: eithetd(q) = g, or red(q) # q. If red(q) = ¢, thenqg = r impliesq’ = r
andq # r implies¢’ # r. Otherwise, by Def. 4.1.1(a) neithgmor red(q) is observable. Clearly is
observable, sq # r andq’ = red(q) # r. By the above we see that= r iff ¢ = r, which completes
the proof ofV(s) = V'(s').

(=) Let o be a maximal path oM starting ats. We proceed to show how to construct a maximal
pathco’ starting ats’, a partition B, Bs, ... of o and a partitionB], B), ... of ¢’ as required in Item 2
of Def. 4.3. The construction is inductive. We assume thahae already constructed a finite prefix of

ap_ . . a’ al aj_
o 51 5 sy 22 ... 250 5, and afinite prefix ob’: s —5 s — .- —— s}, wherea; € S UIR,,
s1 = s, 8§ = &', ands;, = sj1 and that we have built partitions efando” into corresponding stuttering

blocks. Let us assume that belongs to the block3,,, ands; belongs to the corresponding blogX,,.

Let s —=» sk11. There are two cases. Either,; belongs to the new block,,,+1, or s;.1 belongs to
the same block as,, namelyB,,, (see Fig. 6).

The main idea of the construction is as follows. The state belongs to the same block ag, iff
the transition labeled with; is contained in some mpcs and does not enter its last localiall the
other cases (other action transitions and time transitigns, belongs to the new block. The proof falls
into two parts.

Y etsy = (qr, vk,) ands, = (q},v],7{) for arbitraryk, I € IN.

B Bt Bin

#Hak/_/!

. : &
o: o:
3 Sk stﬂ Ski @Skﬂ
o' S 6S|‘+1 o 3
; : =)SI
= ~—
B Bine 1 By
(case 1) (case 2)

Figure6. ar € YUR,

/
1

case 1 s, belongs to the new block,, 1. We show how to select; , ; such thats; =, 57, and
sk+1 = 57, (Fig.6(case 1)). The statg, ; will belong to a new blockB;, . ;. Let us again consider two

cases:

1. a; € . Then, there are two cases (note that the situation whetgy, 1) # qr+1 belongs to
case .

(@) red(qr) = qr andred(qr+1) = qr+1. Lett be a transition such thate T and is labeled

(b)

with a;. In this case is not included in any mcps. By construction i’ (Def. 4.2) there
exists a transition’ € T' corresponding to. We show that’ is fireable ats;.

Sincet is fireable atsy, it follows thatsource(t) = qx, vi | guard(t), andr, = delay(t).
By Def. 4.4.1 we havey, = ¢;. This givessource(t') = source(t) = q, = ¢q;. Next,
guard(t') = guard(t) and by Def. 4.4.2, = v;, which givesy, |= guard(t’). Besides,
delay(t') = delay(t) and by Def.4.4.3r/(z) = 7(x) for all z € use(qx). Hencer, =
delay(t'). Thereforet’ is fireable ats).

red(qr) # qr andred(qx+1) = qr+1- In this case by Def. 4.1.1.(b) the transitione
T labeled withay is a transition entering the last location of a pattof some mcpdl,
wherered(qy) is the first location of the path. We show that a transitios 7" constructed
according to Def. 4.2 for a mcf$ is fireable ats;.

First, by Def. 4.4.1 we have, = red(q;) and by constructiorsource(t’) = red(qx),
which givessource(t') = q;. Next, by Def. 4.4.2, = v] and by constructioguard(t’) =
guard(t) (by Def. 4.1.3(b) all the guards of transitions enteringlése location of a mcps are
equal), which gives; |= guard(t’). Finally, we show that;’ |= delay(t'), wheredelay(t')

is defined according to Def. 4.2. By Def. 4.43(x) = 7i(x), whereuse(red(qx)) =
use(q)) = {z}. The clockz is not reset since the automat@m has visited the location
red(qx). Thereforery(z) reflects time of traversing the path From this it follows that
min_delay(m) < 7(z) and7i(z) < max_delay(w). On the other hand by Def. 4.2 we
know thatib(delay(t')) < min_delay(w) and maz_delay(m) < ub(delay(t’)). It gives
Ib(delay(t')) < 7'(x) and7)(z) < ub(delay(t')), which shows that;’ = delay(t).

What we have shown so far is how to choose a transifianthe systens’ such thats) — s/ ;,
whereq; is the label oft’. We need to prove tha,; = s ;.

It is easy to check that in both the above cages, = target(t) = target(t') = q;,, ast
corresponds ta’. This proves that Item 1 of the Def. 4.4 holds fgr,; ands; ;. Next, in
both the cases by Def. 4.1.3(dytion(t) = action(t'). Sincev;, = vy, it follows that after the
execution of the same sequence of operatigns = ’Uz/+1v which satisfies Item 2. Finally, in both
the cases Def. 4.1.3(c}set(t) = reset(t’). Since Item 3 is satisfied foy’ andry, after resetting
the same set of clocks it remains satisfiedﬁ’lc_y1 andyyq.

Combining these gives, 1 = s;_ ;.

2. ar € R4, which represents time progress.

In this casegy 1 = qk, Vi1 = Uk, aNd7r 1 = T + ag. Obviously,q 1" = ¢/ andv " = v/'.

. ~ ag
Furthermorer, ' = 7' + ap = 7 + a = Th1- This provess; = 87,1, Wheres; — 32471'
We need only to show that the progress of timeupfis possible at the statg. Let us consider
three cases:

(@) g is not included in any mcps or it is the last location of somesadn this caseed(q;) =
qr and by Def. 4.4.1g) = red(q;). Also, each transition € T going out ofg; has a
corresponding transitioti € 7" going out ofg;. Moreover, by construction afA’ we have
Z(qx) = I'(q;)- Since atimed transition of duratiafn is possible aty, 7, +ax = Z(qx) and
urgent(t) = false or v, = guard(t) for all t € out(qy). Finally, by Def. 4.4.3r, = 7/.
Combining these gives + a;, = Z'(q;) andurgent(t') = false or v, [= guard(t') for all
t' € out(q)), which proves our claim for this case.

(b) gy is afirst location of a path of some mcp4l. In this case alsoed(qx) = g, and by Def.
4.4.1q, = red(q;). By Def. 4.2use(q;) = use(q)) = {z} andub(Z(gr)) < ub(Z'(q))).
Next, 7x(x) + ar = Z(qx). Finally, by Def. 4.4.3r;(x) = 7/(x). Combining these gives
7/ (x) + a = Z'(q)). By constructiorurgent(t') = false for each transition’ € 7" going
out of ¢; which completes a proof for this case.

(c) g is included in some mcps and is not its first location. Acaogdio Def. 4.2use(q)) =
use(red(qr)) = {x}. As beforery(z) reflects time of traversing the path It follows
that 7. () + ar < max_delay(m). But from definition ofmax_delay, maz_delay(mw) <
> getoes({r\{gm} UD(Z(q)), Where gy, is the last location ofr. Then, by Def. 4.2
> qctoes({m)\{gm} W(Z (@) < ub(Z'(q)). Finally, by Def. 4.4.3r,(z) = 7/(z). Com-
bining these gives] + a;, = Z'(q)). By constructiorurgent(t') = false for each transition
t' € T" going out ofg; which completes a proof for this case.

This completes our claim that from the staj¢he timed transition of duratiom, can be performed.

case 2 sj;41 belongs to the same block ag namelyB,,,. We show that;,; = s;. As we said before,
this situation takes place when € ¥ andred(qx+1) # qx+1- In this case by Def. 4.1.1(b-c) we know
that the transitiont € T labeled witha, is a transition of a path of some mcpgdI, which does not enter
the last location ofr. By Def. 4.4.1q; = red(qy). Itis clear thaig, andg, are contained in the same
path, thusy) = red(q;) = red(gx+1), which satisfied Item 1 of Def. 4.4 foy,; ands;. We see at once

that Iltem 2 Def. 4.4 is also satisfied, since by Def. 4.1.2(d) = v,. Finally, by the fact that Item 3 is
satisfied forr;” andr;, it follows that Item 3 remains satisfied fof and7;,;, because by Def. 4.1.2(c)
clocks, which are reset atare not included in the s&l | o, | rea(q)=q) ©5€(¢). By the above we have

~ o/
Sk+1 = 5;-

(<) Let o’ be a maximal path oM/’ starting ats’. We proceed to show how to construct a maximal
patho starting ats, a partitionBy, Bs, ... of o and a partitionB], Bj, . .. of ¢’ as required in ltem 2 of
Def. 4.3. As before, we assume that we have already constractinite prefix ofo: s; — sy —2

ap_ . . al al aj_
- =2 1, and a finite prefix ob’: s —% s — ... == s, wheres; = s, s} = s’ andsy, = s
and that we have built partitions efando’ into corresponding stuttering blocks. Let us assumedghat

belongs to the blockB,,, ands; belongs to the corresponding blo&¥,,. The proof falls into two parts.

case 1 There is an action transition on the suffix of the patrstarting at state;. By the additivity
of time all the timed transitions before the first action siéion on the suffix of>’ are equivalent to one

. . 5 . : . : N
timed transitions; — s;_ ;. If there is no timed transition before the first action titios, thend; = 0.

. 8 M .
~ T I/ H1 / / /
We show that ifsy, = s; ands; — s, | — ;.5 in M', whered; € Ry andvy;,, € X, then there

exists a path in\/ satisfying the conditions of Item 2 of Def. 4.3. Let us comsithe following cases:

3
S| 5’| S| 1 | j-1 5’|) S| j S| m-1 y| +1 S| +1
Ot s N o
5 | %
O ky ko {} >O K 2(-1) K1 O C K om :
S S S S S S S S
K Ky kz K 2(-1) k 2j-1 k 2 K 2m-1 Kom

Figure 7. 6] 0k, € Ry, 7], €5

!

1. g is not included in any mcps or it is the last location of somesadn this case fos; — s/,

Sk . .
we constructs;, —- s, such thatng 2 sp41 in the same manner as case 1.2(a)f the

. v Yk .
previous part of the proof. Then, fef Rz 8]0 W€ CONStructy, | T 5142 in the same way

as described igase 1.1(a)

2. q; is afirst location of a path of some mcHs By Def. 4.1.4 we can choose a pathe II, such
thatmin_delay(r) < 6; < max_delay(r).

Letm =qit2qs . . . tymqm, Whereq; = g.

e . . " 5 . . :
By the additivity of time the timed transitiosf -4 57,1 1S equivalent to the sequence of timed
6’ !
transitionss| —- 81, 2, s) ... = s = s, such thaw] = > j=10;, (see Fig. 7). We

choosey; such that

U

Ib(delay(t;)) < 5{j < min(ub(delay(t;)), ub(Z(source(t;))))

This is possible since

Z Ib(delay(t;)) < 5{j < Zmz’n(ub(delay(tj)),ub(I(source(tj))))
j=1 j=1

We may now construct the path, u, Sky Oz, Yoz, Skyms SUCh thatdg,. , = 51’]_ and
Oky; = label(t;) forj =1,...,m.

Each timed transitiony,; , is possible aty, ., forj =1,....,m —1, sincer(z) = Op,;_, <
ub(Z(qry;_,,)), Whereuse(qy,, ;_,,) = {z}. Fromthisty, ., (z) = delay(Z(gk,;_,,))-

It is straightforward that; is enabled at,, , for j = 1,...,m — 1, sincesource(t;) = qi,;_,

and by Def. 4.1.2(byuard(t;) = true. Also, from Def. 4.1.1(d) we have,, ,(z) = d,,_,
whereuse(qr,;_,) = {z}. By the above/b(delay(t;)) < Ok,;_, < ub(delay(t;)). Therefore
Tho;_1 (T) [delay(ty), that ist; is fireable atsy,, ;.

The proof ofsg,, = s{j forall 1 < j < m can be handled in much the same way asase
1.2(c) of the previous part. The proof ef;,, , = s;j forall 1 < j < m follows the same line of
arguments as inase 2

The proof ofsy,,, = s; = s;,, can be handled similarly tcase 1.1(b)

3. (all other cases are sub-cases of the previous two).

case 2 There is no action transition on the suffix of the pathstarting at state]. Lets; — 5],

whered; € IR, be the next transition osf. Let us consider two cases.

1. If ¢ is not included in any mcps or it is the last location of somesythen we construct, LR
sk+1 such thats; | = s;., in the same manner as éase 1.2(apf the previous part of the proof.

2. Otherwisegy, is included in some mcps. We may construct a sequence ofttoassy, , v, - - - ,
ks, COrresponding to the transitioi in the similar fashion as describedase 1

According to the construction described above each of tbekblB;, Bs, ..., By, B, ... is finite,
because there is a finite number of locations. Thus, the ttongiof Def. 4.3 are satisfied and the proof
is complete.

Proof of Lemma 4.2 for a set of timed automatathe skeleton)
The proof can be handled in much the same way as the previeuwitimthe only differences that
some transitions are executed synchronously by more theiaaiomaton.

(=) By Def 4.1.2(a) a synchronous transition is is not inclugeény mcps. In this case the proof
follows by the same method aséase 1.1(afor each automaton performing this transition. Obviously,
for a local transition the proof is the same as before. Shgjléor a timed transition the same line of
arguments is applied as agase 1.Zor all automata in the set.

U

. s v . . .
(<) Since apath; — s}, L 5], (@ part ofo’) can be interleaved with transition of other automata,
. . s v Vtp—)
we consider a possibly longer path —- s/, == ... "5 sy, such thaty,, , is the label of a

" . . i/ ; / . .
transition going from the locatiog; to g; ', where: is the number of an automaton performing the
transition. The construction follows the previous one. lEsgbsequence (for other automata) is built in
the same fashion.

