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Abstract. The paper presents a method of abstraction for timed systems. To extract an abstract
model of a timed system we propose to use static analysis, namely a technique called path com-
pression. The idea behind the path compression consists in identifying a path (or a set of paths) on
which a process executes a sequence of transitions that do not influence a property being verified,
and replacing this path with a single transition. The methodis property driven since it depends on
a formula in question. The abstraction is exact with respectto all the properties expressible in the
temporal logicCTL∗

−X.

1. Introduction

Many verification methods of time-critical systems have been defined over the last ten years. Model
checking seems to be one of the most important methods due to its practical applications. Essentially,
the method consists in determining whether a temporal formula expressing a property of a system is
valid on its model (the state space) representing all the possible executions. Model checking has an
advantage of being automatic but suffers from the so-calledstate explosion problem, i.e., the number of
states in the model of a system can grow exponentially in the size of the system [24]. Many methods
have been recently suggested to reduce state spaces that areconsidered in the verification process (e.g.
[4, 9, 10, 21]).

In this paper we deal with abstract models for timed automata[1, 15] enriched with additional integer
variables. Such automata are a common input formalism of model checkers for timed systems (e.g.
∗The work is partly supported by the Polish grant No. 3T11C01128.



UppAal [22]1 and HyTech [14]). To extract an abstract model of a system we propose to use a static
analysis, namely a technique calledpath compression. The idea behind it consists in identifying a path
(or a set of paths) on which an automaton executes a sequence of transitions that do not influence a
property being verified, and replacing this path with a single transition. The path compression has the
similar effect to partial order reductions of excluding some possible interleavings, but in our approach
several steps can be replaced by a single one, which partial order reductions do not do.

Our method is property driven since it depends on a formula inquestion. An abstraction isexact
with respect to all the properties expressible in the temporal logic CTL∗

−X. which means that a given
property holds in the abstract model if and only if it holds inthe concrete one. To this aim we show that
the original and the reduced model are in a stuttering bisimulation relation [7].

Path compression as an abstraction method is known for untimed systems. In [26] a method called
path reductionis used to reduce state spaces by compressing computation paths of parallel while pro-
grams. The authors of [18] use the concept ofpath slicingto reduce control flow automata. The technique
determines which subset of transitions along a given path tosome particular location is relevant to reach-
ability of the location at the path. We present the path compression technique for timed systems modeled
in Intermediate Language of the verification tool VerICS in [17].

The closest to our work is [6], which deals with static analysis in verification of timed systems con-
cerning the concept ofinfluence information. The technique can be understood as slicing I/O Timed
Components, i.e., timed automata extended with interfaces. The approach preserves the branching struc-
ture of a transition system up to the propositional assignment given over the external observer. Other
related methods include theactive-clock reductiontechnique [12] and a more generalrelevant guard
abstraction[2]. Both the above works focus on reduction of the number of clocks and clock constraints.
Statical analysis of control structure of timed automata isalso used in [20] to minimize the total number
of states to be saved during reachability analysis. In [27] the idea of cumulation of transition delays –
similar to ours – is used to reduce timed Petri nets.

Our first attempt of using static analysis for timed automataconcerns the slicing technique [16].
In short, the method ofprogram slicing[25] consists in pointing the so-calledslicing criterion, which
identifies program points of interest and then tracing itemsof code on which it depends. The technique
allows to eliminate data irrelevant to the property in question. In the approach presented in [16] a path
compression is also possible, but only for paths along whichthe time cannot elapse. The current paper
presents a general method for compressing timed and untimedpaths. It is worth pointing out that the
best results are achieved by combining slicing and path compression.

The rest of the paper is structured as follows. Section 2 recalls the formalism of timed automata.
In Section 3 we present a motivating example of a timed systemand give an informal overview of
our method. Section 4 introduces the path compression technique for a network of timed automata.
Experimental results are given in Section 5. The last section shortly concludes the paper.

2. Model and its semantics

In this section we introduce timed automata extended with integer variables. To this aim, we first define
arithmetic and boolean expressions, as well as clock constraints.

1The definition of timed automata used in UppAal [5] is slightly different than ours, but this is insignificant to our method.



Variables. LetV be a finite set of integer variables. The setExpr(V ) of all thearithmetic expressions
overV is defined by the following grammar:

expr ::= m | y | expr ⊕ expr | − expr | (expr)

wherem ∈ ZZ, y ∈ V, and⊕ ∈ {−,+, ∗, /}.2 The setΦ(V ) of all the boolean expressionsoverV is
defined inductively as follows:

φ ::= true | expr ∼ expr | φ ∧ φ | φ ∨ φ | ¬φ | (φ)

whereexpr ∈ Expr(V ) and∼ ∈ {=, 6=, <,>,≤,≥}. The setAct(V ) of all the actionsover V is
defined as follows:

α ::= ε | y := expr | α;α

whereε denotes an empty sequence,y ∈ V , andexpr ∈ Expr(V ).

Clocks. LetX be a finite set of real variables, calledclocks. The setΨ(X) of all theclock constraints
overX is defined by the following grammar (we deal with diagonal-free automata):

ψ ::= true | x ∼ c | ψ ∧ ψ

wherex ∈ X, c ∈ IN, and∼ ∈ {≤, <,=, >,≥}.

Definition 2.1. (Syntax).A timed automatonis a tupleTA = (Σ, Q, q0, V,X, T,I), where

• Σ is a finite set oflabels,

• Q is a finite set oflocations,

• q0 is theinitial location,

• V is a finite set of integer variables,

• X is a finite set of clocks,

• T ⊆ Q× Σ × Φ(V ) × Ψ(X) × {true, false} ×Act(V ) × 2X ×Q is atransition relation, and

• I : Q −→ Ψ(X) is aninvariant function.

An elementt = (q, l, φ, ψ, u, α, Y, q′) of T denotes a transition from the locationq to the locationq′,
wherel is the label of transitiont, φ andψ define the enabling conditions (the guard and the clock
constraint) fort, α is the action to be executed,Y is the set of clocks to reset (reset set), andu is the
urgency attribute – when it is set, the transitiont has to be executed as soon as it is enabled (t is enabled
if the automaton is in the locationq and the guardφ evaluates totrue). We assume that clock constraints
of urgent transitions are equal totrue3. The invariant function assigns to each locationq ∈ Q a clock
constraint defining the condition under which the automatoncan stay inq. We writesource(t), label(t),
guard(t), delay(t), urgency(t), action(t), reset(t), andtarget(t) for q, l, φ, ψ, u, α, Y , andq′, respectively.
Several examples of timed automata are presented in Fig. 1-3in Section 3.

2By / we denote integer division andZZ denotes the set of integer numbers,IN — the set of natural numbers, andIR+ — the
set of non-negative real numbers.
3The assumption is necessary to keep the clock constraint representable by convex zones (see [5] for details).



Variable Valuation. We define avariable valuationto be a total mappingv : V → ZZ. We extend this
mapping to expressions in the usual way. Satisfiability of a boolean expressionφ ∈ Φ(V ) by a valuation
v (we writev |= φ) is defined as follows:v |= true, v |= e1 ∼ e2 iff v(e1) ∼ v(e2), v |= g1 ∧ g2 iff
v |= g1 andv |= g2, v |= g1 ∨ g2 iff v |= g1 or v |= g2, andv |= ¬g iff v 6|= g. Let α be an action,
that is a sequence of assignments. Byv(α) we denote the valuation after execution of an actionα on a
valuationv. We definev(α) to be the valuationv′ defined inductively as follows:

• if α = ε, thenv′ = v,

• if α = (y := expr), thenv′(y) = v(expr) andv′(z) = v(z) for z ∈ V \ {y},

• if α = α1;α2, thenv′ = v′′(α2), wherev′′ = v(α1).

Clock Valuation. A clock valuationis a total mappingτ : X → IR+. Satisfiability of a clock constraint
ψ ∈ Ψ(X) by a given clock valuationτ (denoted asτ |= ψ) is defined inductively as follows:τ |= true,
τ |= x ∼ c iff τ(x) ∼ c, τ |= ψ1 ∧ ψ2 iff τ |= ψ1 andτ |= ψ2.

Forδ ∈ IR+, τ+δ denotes the clock valuationτ ′ such thatτ ′(x) = τ(x)+δ for all x ∈ X. Moreover,
by resetY (τ) we denote the clock valuationτ ′ such thatτ ′(x) = 0 for x ∈ Y andτ ′(x) = τ(x) for
x ∈ X \ Y . Finally, byτ0 we denote theinitial clock valuation such thatτ0(x) = 0 for all x ∈ X.

Definition 2.2. (Semantics).Semanticsof a timed automatonTA = (ΣA, Q, q
0, V,X, T,I) for the

initial valuationv0 : V → ZZ is a labeled transition systemS = (S, s0,Σ,−→), where:

• S = {(q, v, τ) | q ∈ Q ∧ v ∈ ZZ
|V |∧ τ ∈ IR+

|X|∧ τ |= I(q)} is the set ofstates,

• s0 = (q0, v0, τ0) ∈ S is theinitial state,

• Σ = ΣA ∪ IR+ is the set of labels,

• −→ ⊆ S × Σ × S is the smallest transition relation defined by the followingrules:

– (q, v, τ)
l

−→ (q′, v′, τ ′) iff there exists a transitiont = (q, l, φ, ψ, u, α, Y, q′) ∈ T such that
v |= φ, τ |= ψ, v′ = v(α), τ ′ = resetY (τ), andτ ′ |= I(q′)

– (q, v, τ)
δ

−→ (q, v, τ + δ) iff δ ∈ IR+, τ + δ |= I(q), and for all transitionst = (q, l, φ, ψ, u,
α, Y, q′) ∈ T , u = false or v 6|= φ.

Initially, all the variables have their initial values set and all the clocks are set to0. At a states = (q, v, τ)
the system can either:

• execute an enabled transitiont and move to the states′ = (q′, v′, τ ′), whereq′ is the target oft,
the variable valuation is changed according to the action oft and the clocks from the reset set oft
are set to0, or

• let time δ pass and move to the state(q, v, τ + δ), as long as no urgent transition is enabled and
τ + δ satisfiesI(q).



Runs. For (q, v, τ) ∈ S, let (q, v, τ) + δ denote(q, v, τ + δ). An s−run of TA is a sequence of states:
s0

a0→ s1
a1→ s2

a2→ . . ., wheres0 = s ∈ S andai ∈ Γ ∪ IR+ for eachi ≥ 0. A run is calledprogressive
(or divergent) iff

∑
{i∈IN | ai∈IR+} ai is infinite. TA is progressiveif all its s0-runs are progressive.

Parallel Composition. We assume that a system to be verified is described as a set of automata running
parallel. Automata communicate with each other via shared variables. We assumemulti-synchronization
which requires that the transitions with a shared label haveto be executed synchronously by all the
automata containing this label.

Let {TA1, . . . TAn} be a set of timed automata andΣ(l) = { 1 ≤ i ≤ n | l ∈ Σi } denote the set of
the numbers of the automata containing the labell. By { aj }j∈Z we denote the sequence of the actions
aj, wherej ∈ Z ⊆ {1, . . . , n}, such that the actions are arranged according to the numerical order of
their indices. We assume additionally that synchronous transitions do not update shared4 variables.

Definition 2.3. (Parallel Composition). Let TAi = (Σi, Qi, q
0
i , Vi, Xi, Ei,Ii) for i = 1, 2, . . . , n be

timed automata such thatXi ∩ Xj = ∅ for all i 6= j. A parallel composition of the above automata
(denoted asTA1 ‖ TA2 ‖ . . . ‖ TAn) is the timed automatonTA = (Σ, Q, q0, V,X,E,I), where:

• Σ =
⋃n

i=1 Σi,

• Q =
∏n

i=1Qi,

• q0 = (q01 , . . . , q
0
n),

• V =
⋃n

i=1 Vi,

• X =
⋃n

i=1Xi,

• ((q1, . . . , qn), l,
∧

i∈Σ(l) φi,
∧

i∈Σ(l) ψi,
∨

i∈Σ(l) ui, { ai }i∈Σ(l),
⋃

i∈Σ(l) Yi, (q
′
1, . . . , q

′
n))∈ E iff for

all i ∈ Σ(l), (qi, li, φi, ψi, ui, ai, Yi, q
′
i) ∈ Ei, and for allj ∈ {1, . . . , n} \ Σ(l), q′j = qj,

• I(q1, . . . , qn) =
∧n

i=1 Ii(qi).

Model. Let S = (S, s0,Σ,−→) be the labeled transition system of the parallel composition of the
automataTA1, . . . ,TAn. Thepropositional variablesPV are of the form:pi.q for some1 ≤ i ≤ n,
whereq ∈ Qi andpe1 ∼ e2, wheree1, e2 ∈ Expr(V ), and∼ is a relational operator. In order to reason
about systems represented as a set of automata we define alabeling function V : S → 2PV . For
s = ((q1, . . . , qn), v, τ) ∈ S, V(s) is defined as follows:pe1 ∼ e2 ∈ V(s) iff v |= e1 ∼ e2 and
pi.q ∈ V(s) iff qi = q. Themodelfor the set of automata{TA1, . . . ,TAn} is the pairM = (S,V).

Let PV ϕ ⊆ PV be the set of propositional variables used in the formulaϕ. We call a location
q ∈ Qi observable(for ϕ) if it appears in some proposition ofPVϕ, i.e.,pi.q ∈ PVϕ.

4These variables are used by more than one process.



3. Motivating example

As the example we present a system that exploits the well known Fischer’s mutual exclusion protocol[3]
to ensure mutual exclusion. The system consists ofn processes using the same shared resource. Each
of the processes is modeled as a timed automaton shown in Fig.1. The global variableZ is used to
schedule an access to the resource. The shared resource is represented by another global variableY .
Besides competing for the resource the processes can perform some local actions. For the sake of clarity,
we skip the labels of the transitions since all of them are local (i.e., non synchronous). The urgency
attribute is not set for any transition.
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Figure 1. Thei-th automaton of Fischer’s mutual exclusion protocol

Before we show in detail how to reduce a system using the technique of path compression, we give
some intuition and sketch our method. The method is propertydriven, i.e., it depends on a property to
be verified. The property can be expressed by an additional timed automaton or by a temporal formula.
For the system presented we verify the formulaϕ = EF (

∨
1≤i<j≤n(pi.criticali ∧ pj.criticalj)) saying that

eventually the mutual exclusion property is violated. The important point to note here is that the validity
of the formula in the model does not depend on values of the variablesY andki.

Sketch of the method. The first step is to use a slicing algorithm to obtain a set of therelevantvariables,
i.e., the variables that can influence a property in question. The slicing algorithm for timed automata with
integer variables was defined in [16], so now we present its main ideas only. All the operations (i.e., the
enabling conditions and the operations executed in the transitions) on irrelevant variables are removed.
After completing the slicing, the path compression algorithm is executed.

Based on the notions of data, control and time dependence, the slicing algorithm is developed to
construct the sets of therelevantoperations, locations, and labels. Intuitively, therelevantelements
are these that have an impact on a property of interest. The algorithm starts with a slicing criterion (a
set of operations defining observable variables and a set of observable locations) which is derived from
propositional variables of a formula in question and successively marks as relevant a new item if any
other relevant item depends on it. The system reduced is composed exclusively of the relevant parts of
the original one.

The slice of our example constructed according to the slicing algorithm, for the slicing criterion
defined as the set of locationscriticali for 1 ≤ i ≤ n, is shown in Fig. 2. Comparing to the original one,
the variablesY andki have been removed and so have been operations on them as they are irrelevant to
the mutual exclusion property.
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Figure 2. Automaton of Fig. 1 after slicing

Path compression. The idea behind the path compression consists in replacing apath (or a set of
paths) with a single transition. Such a path which can be replaced, calledcompressible, must satisfy
certain conditions. First of all, all the locations on the path are not observable. Secondly, the path cannot
contain a cycle, which means that none of its locations occurs twice. Next, all the transitions of the path
except for the last one have local labels, empty actions, andguards equal totrue. Finally, all the clocks
are reset immediately before they are used (in an invariant or in a transition enabling condition) and,
dually, all the clock resets are immediately consumed, thatis each clock which is reset at a transition
going to some locationq on the path is newly reset before it is used at any location different thatq (in its
invariant or in a enabling condition of one of its outgoing transitions).

If there are many compressible paths between a pair of locations, then all of them can be replaced by
one transition provided that the last transitions of the paths are equal or at least: reset the same clocks,
have the same enabling conditions, perform the same operations on variables, and either have the same
labels, or all their labels are local.

In our example we have two compressible paths that fulfill allof the above conditions:initi →
reseti → idlei → tryingi andiniti → inci → idlei → tryingi. Both of them can be replaced by the
transitioniniti → tryingi as shown in Fig. 3.
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Figure 3. Automaton of Fig. 2 after path compression

It is easy to notice that the exact time of executing the transitions of the compressible paths is not



important since the automaton can stay at the locationidlei for an arbitrary amount of time. But, in
general, this does not need to be the case. In our approach, ifthe time of a path traversal is finite, we
replace the path with a transition of a finite execution time.In the rest of the paper we present our method
in detail.

4. Path compression

In model checking applications we typically check whether agiven temporal logic formulaϕ holds in a
systemP. What we would like to do is to generate a reduced systemP ′ such thatϕ holds inP ′ if and
only if it holds inP. It is clear thatP ′ needs to preserve behavior of these parts ofP only which can
influence the validity of the formulaϕ.

As before letTA be a timed automaton, whereQ andT are the sets of its locations and transitions,
respectively. Forq ∈ Q let out(q) ⊆ T be the set of its outgoing transitions andin(q) ⊆ T be the set of
its incoming transitions. A locationq ∈ Q is called anending location, if out(q) = ∅.

Paths. A path in the automatonTA from a locationq′ ∈ Q to a locationq′′ ∈ Q is a sequence of
locations and transitions of the formq1t2q2 . . . tmqm such thatq1 = q′, qm = q′′, m ≥ 2, qj ∈ Q,
andtj ∈ out(qj−1) ∩ in(qj) for all 1 < j ≤ m. We say that a pathq1t2q2 . . . tmqm contains(or goes
through) a locationq if qj = q for some1 ≤ j ≤ m (similarly for transitions). A path contains acycle
if it contains one of its locations twice, i.e.,qi = qj for some1 ≤ i < j ≤ m. We call a pathmaximal
if it contains an ending location or a cycle. A path issimpleif it does not contain a cycle. ByΠ(q′, q′′)
we denote a set of all simple paths from the locationq′ to the locationq′′. By locs(Π(q′, q′′)) ⊆ Q and
trans(Π(q′, q′′)) ⊆ T we denote the set of all the locations and the set of all the transitions contained in
the paths ofΠ(q′, q′′), respectively.

Domination and post-domination. We say that a locationq ∈ Q dominatesa locationq′ ∈ Q if every
simple path from the initial locationq0 to q′ goes throughq. Also, a locationq′ post-dominatesa location
q if every maximal path fromq goes throughq′. Notice that the above definitions are not symmetrical
due to possibly missing an ending location. In the process inFig. 1 the locationiniti dominates the
location reseti, but the locationreseti does not dominate the locationidlei. Also the locationidlei
post-dominates the locationreseti, but the locationreseti does not post-dominate the locationiniti.

Reaching definitions for clocks. For a clock constraintψ ∈ Ψ(X), let use(ψ) ⊆ X be the set of
clocks that appear inψ. The set of clocksusedat a locationq ∈ Q is defined as follows:use(q) =
use(I(q)) ∪

⋃
t∈out(q) use(delay(t)).

We say thatreset(t) of a transitiont ∈ T affectsthe clocks from the setuse(q) at q ∈ Q if there
exists a clockx ∈ X such thatx ∈ reset(t) ∩ use(q) and eithertarget(t) = q, or there exists a path
π from target(t) to q such thatx /∈ reset(t′) for any transitiont′ contained inπ. We say that the
clock resetreset(t) of a transitiont ∈ T is locally consumedif it does not affectuse(q) at any location
q ∈ Q \ {target(t)}. Moreover, a clockx ∈ use(q) is locally usedat a locationq ∈ Q if x ∈ reset(t)
for all t ∈ in(q). In the example in Fig. 1 the clock reset of each transition affects only the clock used
at its target, this means that each clock reset is locally consumed. Also, clocks are locally used at each
location.



Path delays. Letψ be a time constraint of the formd1 ≤ x ∧ x ≤ d2,5 whered1, d2 ∈ IN. We define
the lower and upper bound ofψ (denoted aslb(ψ) andub(ψ)) as followslb(ψ) = d1 andub(ψ) = d2.
We assume thatlb(ψ) = 0 for ψ of the formx ≤ d2, and dually,ub(ψ) = ∞ for ψ of the formd1 ≤ x.
Obviously,lb(ψ) = 0 andub(ψ) = ∞ for ψ equal totrue.

For a pathπ = q1t2q2 . . . tmqm, where all the clocks used atqj for all 1 ≤ j < m are locally used
and the time constraints oftj for 1 < j ≤ m include only one clock, we can defineminimal and maximal
delay on the pathas follows:

min delay(π) =

m∑

j=2

lb(delay(tj)), max delay(π) =

m∑

j=2

min(ub(delay(tj)), ub(I(qj−1)))
6.

In our example in Fig. 1 we have:min delay(initi → reseti → idlei) = 0, andmax delay(initi →
reseti → idlei) = D.

Definition 4.1. (Compressible paths).Let q′, q′′ ∈ Q of TA. We call a non-empty set of pathsΠ(q′, q′′)
compressibleiff the following conditions are satisfied:

1. for each locationq ∈ locs(Π(q′, q′′)) \ {q′′}:

(a) q is not observable andq 6= q0 unlessq = q′,

(b) q′ dominatesq andq′′ post-dominatesq,

(c) source(t) ∈ locs(Π(q′, q′′)) \ {q′′} for each transitiont ∈ in(q) with q 6= q′,

(d) |use(q)| ≤ 1 and ifuse(q) 6= ∅, then the clock of use(q) is locally used,

2. for each transitiont ∈ trans(Π(q′, q′′)) \ in(q′′):

(a) label(t) is local (non-synchronous),

(b) guard(t) is equal totrue,

(c) reset(t) uses only one clock and this clock is locally consumed,

(d) action(t) is equal toǫ,

3. for each two transitionst, t′ ∈ in(q′′):

(a) label(t) = label(t′) or label(t) andlabel(t′) are local,

(b) guard(t) = guard(t′),

(c) reset(t) = reset(t′),

(d) action(t) = action(t′),

(e) urgent(t) = urgent(t′) = false,

5For sake of simplicity we only deal with not strict inequalities here.
6We defined + ∞ = ∞ and∞ + d = ∞ for an arbitraryd.



4. for eachd ∈ IR+ such that

minπ∈Π(q′,q′′)(min delay(π)) ≤ d ≤ maxπ∈Π(q′,q′′)(max delay(π))7

there exists a pathπ ∈ Π(q′, q′′) such thatmin delay(π) ≤ d ≤ max delay(π).

We call q′ (q′′) the first (last, resp.) location ofΠ. For two sets of compressible pathsΠ andΠ′, we
say thatΠ ⊆c Π′ if locs(Π) ⊆ locs(Π′) andtrans(Π) ⊆ trans(Π′). A setΠ of compressible paths is
maximal(mcps, for short) ifΠ 6⊆c Π′ for any other setΠ′ 6= Π of compressible paths.

Note that we do not require a transitiont ∈ trans(Π(q′, q′′)), which does not enter the locationq′′, to
have the urgency attribute equal tofalse. Sinceguard(t) is equal totrue, it follows that the transition
t has to be executed as soon as the automaton enters the source location oft. Therefore, in such a case
urgent(t) = true is equivalent tolb(delay(t)) = ub(delay(t) = 0. The last condition of the above
definition is necessary to keep a time constraint for a transition, which will replace a compressible path
set, representable by a clock constraint of the form as defined in Section 2.

Lemma 4.1. For two different mcpsΠ1 = Π(q′1, q
′′
1 ) andΠ2 = Π(q′2, q

′′
2 ) for someq′1, q

′′
1 , q

′
2, q

′′
2 ∈ Q,

(locs(Π1) \ {q
′
1, q

′′
1}) ∩ (locs(Π2) \ {q

′
2, q

′′
2}) = ∅.

Proof:
Conversely, suppose that there existsq ∈ (locs(Π1) \ {q

′
1, q

′′
1}) ∩ (locs(Π2) \ {q

′
2, q

′′
2}). Since by Def.

4.1.1(b)q′1 andq′2 dominateq, it follows that each path fromq0 to q passes through bothq′1 and q′2.
Without loss of generality we can assume that a path fromq′1 to q containsq′2. SinceΠ2 contains all
the paths fromq′2 to q′′2 and by Def. 4.1.1(c) all the locations from which there are transitions toq are
contained inΠ2, it follows that all the paths fromq′1 to q go throughq′2. Let us consider the path set
Π′ = Π(q′1, q

′′
2 ). Since all the paths fromq′1 to q′2 are compressible andΠ2 is a mcps, it follows easily

that the conditions of Def. 4.1 are satisfied forΠ′. Therefore,Π′ is a compressible path set containing
Π2, which contradicts maximality ofΠ2. ⊓⊔

Reduced Timed Automaton. We show how to construct a transitiont that will replace a maximal
compressible set of pathΠ(q′, q′′) in the reduced timed automaton. Letx ∈ X be a clock (denoted as
clock(Π(q′, q′′))) chosen in the following way. If there is a clock used at some locationq ∈ Q, which
is not included in any maximal compressible path set and it isreset on each path fromq′′ to q, then let
x be such a clock. Otherwise, letx be an arbitrary clock used at some locationq ∈ locs(Π(q′, q′′)). If
there is no such clock, then no clock is needed for the transition t (thenclock(Π(q′, q′′)) is undefined).
Clearly, in case of many maximal compressible path sets we minimize the number of clocks by choosing
the same clock for as many compressible path sets as possible.

Definition 4.2. (Reduced Timed Automaton).The reduced timed automaton is obtained from the orig-
inal one, where each maximal compressible set of pathsΠ(q′, q′′) is replaced by a fresh transitiont. Let
t′ be an arbitrary transition enteringq′′ andx = clock(Π(q′, q′′)). We definet as follows:

• source(t) = q′,

7A maximal value exists since there is a finite number of finite paths.



• target(t) = q′′,

• label(t) = label(t′),

• guard(t) = guard(t′),

• delay(t) = minπ∈Π(q′,q′′) (min delay(π)) ≤ x8 ∧ x ≤ maxπ∈Π(q′,q′′) (max delay(π))9,

• urgency(t) = false,

• action(t) = action(t′),

• reset(t) = reset(t′).

Let d = maxπ∈Π(q′,q′′)(
∑

qj∈locs({π})\{q′′} ub(I(qj))). If d 6= ∞, then the invariantI(q′) is redefined
to x ≤ d, otherwise it is redefined totrue. The reset set for each transitiont′′ ∈ in(q′) is redefined to
reset(t′′) ∪ {x}.

By Def. 4.1.3(a), for the guard of the transitiont we can choose the guard of an arbitraryt′ enteringq′′

since the guards of all the transitions enteringq′′ are equal. Similarly we choose the label, the reset set,
and the action oft (Def. 4.1.3(b)-(d)).

Complexity. In short, to find a mcps in a process we first mark the locations satisfying the condition
1(a) of Def. 4.1 and the transitions satisfying the condition 2 of Def. 4.1. Then, the rest of the conditions
is checked for each pair of locationsq′ andq′′, such that all the locations fromlocs(Π(q′, q′′)) \ {q′′}
and all the transitions fromtrans(Π(q′, q′′)) \ in(q′′) are marked. The algorithm starts with the largest
possible set of paths. If some condition of Def. 4.1 is not satisfied, then a path set for another pair of
locations is checked.

The number of the pairs of locations(q′, q′′) is bounded by|Q|2. The test of the condition 1 of Def.
4.1 is performed for each location of the path set in timeO(|Q| + |T |) (for 1 (b)) or inO(1) (for 1
(a, c-d)). The next two conditions are checked in timeO(|T |). The test of the last condition requires
O(|Q| + |T |) time as it is based on the shortest path search algorithm for acyclic graphs [8]. Thus, the
path reduction time is polynomial in the size of an automaton, that is in the number of its locations and
transitions.

Correctness. We say that a locationq ∈ Q is reducibleto a locationq′ if there exists a locationq′′ ∈ Q
such thatΠ(q′, q′′) is a maximal compressible path set andq ∈ locs(Π(q′, q′′)) \ {q′′}. For eachq ∈ Q
we definered(q) as follows: if there exists the locationq′ such thatq is reducible toq′, thenred(q) = q′,
otherwisered(q) = q. Note that a consequence of Lemma 4.1 is that for a locationq there is at most one
locationq′ to whichq is reducible.

Let TA′ be the reduced timed automaton obtained fromTA according to Def. 4.2. Consider the
clock renamingΓ such that for allq ∈ Q, whereq is the first location of some mcps, replaces in both
the automata the clock used atq by the same fresh clock in all the constraints appearing in the invariant
of q and in the enabling conditions of the transitions going out of q as well as in the reset sets of the

8We skip the constraint ifminπ∈Π(q′,q′′) (min delay(π)) = 0.
9We skip the constraint ifmaxπ∈Π(q′,q′′) (max delay(π)) = ∞.



transitions enteringq.10 Denote byΓ(TA) andΓ(TA′) the timed automata obtained by applying this
renaming toTA andTA′, resp. Since by Def. 4.1.1(d) the clock used atq is locally used and by Def.
4.1.2(c) it is locally consumed, it follows that the transition systems forΓ(TA) (Γ(TA′)) andTA (TA′,
resp.) are isomorphic.

Let S = (S, s0,Σ,−→) be the transition system forΓ(TA1) ‖ . . . ‖ Γ(TAn) andS ′ = (S′, s0
′
,Σ′,

−→′) be the transition system forΓ(TA′
1) ‖ . . . ‖ Γ(TA′

n) with respect to the set of propositional
variablesPVϕ. The labeling functionsV : S → 2PVϕ andV ′ : S′ → 2PVϕ are defined as in Section 2.

Let M = (S,V) andM ′ = (S ′,V ′). Our aim is to show thatM andM ′ are stuttering bisimilar
according to the following definition.

Definition 4.3. (Stuttering bisimulation [7]). A relation∼=b⊆ S×S′ is a stuttering simulation between
M andM ′ if the following conditions hold:

1. s0 ∼=b s
0′ and

2. if s ∼=b s
′, thenV(s) = V ′(s′) and for every maximal pathσ of M that starts ats, there is a

maximal pathσ′ in M ′ that starts ats′, a partitionB1, B2, . . . of σ, and a partitionB′
1, B

′
2, . . . of

σ′ such that for eachj ≥ 1, Bj, andB′
j are nonempty and finite, and every state inBj is related

by ∼=b to every state inB′
j.

A relation∼=b is a stuttering bisimulation if both∼=b and∼=T
b (the transpose of∼=b) are stuttering simula-

tions.

Definition 4.4. Let ∼= ⊆ S × S′ be the relation s.t. for eachs = ((q1, . . . , qn), v, τ) ∈ S, and each
s′ = ((q′1, . . . , q

′
n), v′, τ ′) ∈ S′ we have,s ∼= s′ iff the following conditions hold:

1. q′i = red(qi) for each1 ≤ i ≤ n,

2. v′ = v, and

3. τ ′(x) = τ(x) for eachx ∈ use(q) for eachq ∈
⋃n

i=1Qi s.t. red(q) = q.

Lemma 4.2. The relation∼= ⊆ S × S′ is a stuttering bisimulation between the two modelsM = (S,V)
andM ′ = (S ′,V ′).

The proof of Lemma 4.2 can be found the appendix. The following theorem is a consequence of Lemma
4.2.

Theorem 4.1. A CTL X* formula ϕ holds in the states0 of the modelM = (S,V) iff it holds in the
states0′ in the model of its reductM ′ = (S ′,V ′) with respect to the set of propositionsPVϕ.

Proof:
By induction on the structure ofϕ. ⊓⊔

10If use(q) = ∅ in TA, then the fresh clock is added to the reset sets of the transitions enteringq in TA.



n = 2 n = 4 n = 8

bmc minisat bmc minisat bmc minisat

sec MB sec MB sec MB sec MB sec MB sec MB

O 1.14 9.6 0.47 9.5 4.61 28.2 4.22 26.5 26.62 128.6 117.83 122.9

S 1.06 9.1 0.29 8.6 4.41 26.6 5.59 24.3 25.43 123.8 106.89 114.6

S+AC 0.73 6.9 0.13 7.3 2.99 18.0 6.75 6.7 16.74 77.5 67.58 72.1

S+PC 0.20 4.1 0.03 4.6 0.40 5.3 0.14 5.6 0.87 7.8 0.76 8.5

Figure 4. Experimental results for the example of Section 3 forD = 2 andd = 1

5. Experimental results

We present experimental results obtained with the verification tool VerICS [13], on the machine equipped
with the processor Intel Pentium 4 – 3 GHz, 2 GB of main memory,and the Linux Red Hat operating
system. We compare amounts of time and memory consumed by thetranslation of a network of timed
automata and a given reachability property to a propositional formula (by the bounded model checking
module [23] of VerICS) and satisfiability verification of the formula by MiniSat.

Let us first consider the example presented in Sect. 3. We havechecked whether the formulaϕ
defined in Sect. 3 holds for four systems: original (O, Fig. 1), sliced (S, Fig. 2), sliced and reduced
according to the path compression technique (S+PC, Fig. 3),and sliced and reduced according to the
active clock reduction (S+AC) [12]. The experiments have been performed for various numbers of
processes (n) and values of parametersD andd. The preservation of mutual exclusion is ensured for
D < d. The results are presented in Fig. 4.

To validate the technique we performed experiments with case studies known from the literature. In
Fig. 5 the selected results are presented forManufacturing Plant[11] andController Area Network[19].
For theManufacturing Plantwe check if the fall of any box is not possible (n is the number of boxes
on the conveyor belt). In case ofController Area Networkwe follow strictly the description of [19] and
verify whether the request of the second application (with priority lower than the first one) is always
accepted (n is the number of periodic application andm — sporadic ones). In all the cases presented,
properties being verified are violated, that is erroneous scenarios’ are found and the length of the shortest
counterexample (depth) is shown.

6. Conclusions

In the paper, a method of abstraction exploiting static structures of timed automata has been presented.
The experiments confirm that our method leads to significant reductions in the time and the memory
consumed by the verification tool. The most important advantage of our approach is that it can be used
prior to any existing tools analyzing timed automata including symbolic ones. It is also orthogonal to
other abstraction methods and can be combined with them to yield a more powerful tool in terms of state
space reduction.



bmc minisat

example parameters version depth sec MB sec MB

Manufacturing Plant n = 2 O 20 3.88 20.6 2.20 18.9

PC 16 2.81 16.2 0.84 14.4

n = 3 O 22 5.85 28.5 6.92 24.4

PC 18 4.00 21.2 2.31 19.8

n = 4 O 24 7.83 35.5 71.96 50.5

PC 20 5.27 27.5 14.22 27.6

Controller Area Network n = 2,m = 0 O 40 23.70 90.8 44.67 85.7

PC 36 17.65 71.2 21.60 61.2

n = 2,m = 1 O 40 28.32 106.0 117.21 103.1

PC 36 20.81 80.0 78.02 80.5

n = 3,m = 1 O 40 33.20 121.3 566.89 189.5

PC 36 25.49 96.5 274.14 127.0

Figure 5. Selected experimental results
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7. Appendix

For sake of clarity we give a proof for a single time automatonfirst. Then we present the main result,
that is a proof for a set of timed automata.

Let S = (S, s0,Σ,−→) be the labeled transition system for a timed automatonTA = (Σ, Q, q0,
V,X, T,I) andS ′ = (S′, s0

′
,Σ′,−→′) be the labeled transition system for the reduced timed automaton

TA′ = (Σ′, Q′, q0
′
, V ′,X ′, T ′,I ′), which is constructed forTA according to Def. 4.2 with respect to

the set of propositional variablesPVϕ. The labeling functionsV : S → 2PVϕ andV ′ : S′ → 2PVϕ are
defined as in Section 2.

Let us introduce a few notions, here. We say that a transitiont ∈ T and a transitiont′ ∈ T ′

correspondto each other iffguard(t′) = guard(t), action(t′) = action(t), label(t′) = label(t)
provided |Σ(label(t))| > 1, delay(t′) = delay(t), urgency(t′) = urgency(t), and target(t′) =
target(t).

A transitiont ∈ T with a labell ∈ Σ is enabledat a states = (q, v, τ) (we writeenabled(t, s)) if
source(t) = q andv |= guard(t). A transitiont ∈ T is fireableat a states (we writefireable(t, s)) if
enabled(t, s) andτ |= delay(t).

Proof of Lemma 4.2 for a single timed automaton

We show that the relation∼= satisfies the conditions of Def. 4.3. Lets0 = (q0, v0, τ0) ands′l =

(q0
′
, v0′, τ0′). It is easy to check thats0 ∼= s0

′ sinceq0′ = q0, v0′ = v0, andτ0(x) = 0 for all x ∈ X
andτ0′(x) = 0 for all x ∈ X ′. We proceed to prove thatV(s) = V ′(s′) for s = (q, v, τ) ∈ S and
s′ = (q′, v′, τ ′) ∈ S′, wheres ∼= s′. By Def. 4.4.2v′ = v, hencepe1 ∼ e2 ∈ V(s) iff pe1 ∼ e2 ∈ V ′(s′) for
e1, e2 ∈ Φ(V ). It remains to show thatpr ∈ V(s) iff pr ∈ V ′(s′) for r ∈ Q. By Def.4.4.1q′ = red(q).
There are two cases: eitherred(q) = q, or red(q) 6= q. If red(q) = q, thenq = r implies q′ = r
andq 6= r implies q′ 6= r. Otherwise, by Def. 4.1.1(a) neitherq nor red(q) is observable. Clearlyr is
observable, soq 6= r andq′ = red(q) 6= r. By the above we see thatq = r iff q′ = r, which completes
the proof ofV(s) = V ′(s′).

( ⇒ ) Let σ be a maximal path ofM starting ats. We proceed to show how to construct a maximal
pathσ′ starting ats′, a partitionB1, B2, . . . of σ and a partitionB′

1, B
′
2, . . . of σ′ as required in Item 2

of Def. 4.3. The construction is inductive. We assume that wehave already constructed a finite prefix of

σ: s1
a1−→ s2

a2−→ · · ·
ak−1
−→ sk and a finite prefix ofσ′: s′1

a′

1−→ s′2
a′

2−→ · · ·
a′

l−1
−→ s′l, whereai ∈ Σ ∪ IR+,

s1 = s, s′1 = s′, andsk
∼= s′l

11 and that we have built partitions ofσ andσ′ into corresponding stuttering
blocks. Let us assume thatsk belongs to the blockBm ands′l belongs to the corresponding blockB′

m.

Let sk
ak−→ sk+1. There are two cases. Eithersk+1 belongs to the new blockBm+1, or sk+1 belongs to

the same block assk, namelyBm (see Fig. 6).

The main idea of the construction is as follows. The statesk+1 belongs to the same block assk, iff
the transition labeled withak is contained in some mpcs and does not enter its last location. In all the
other cases (other action transitions and time transitions) sk+1 belongs to the new block. The proof falls
into two parts.

11Let sk = (qk, vk, τk) ands′l = (q′l, v
′

l, τ
′

l ) for arbitraryk, l ∈ IN.



B’m B’m+1

s
k

s
k+1

s
k

s
k+1

k
a

k
a

σ’:

σ: σ:

σ’:

BBm m+1 B

B’

m

m

s’
l+1

s’
l

l
s’
l
a’

(case 2)(case 1)

Figure 6. ak ∈ Σ ∪ IR+

case 1 sk+1 belongs to the new blockBm+1. We show how to selects′l+1 such thats′l
a′

l−→ s′l+1 and
sk+1

∼= s′l+1 (Fig.6(case 1)). The states′l+1 will belong to a new blockB′
m+1. Let us again consider two

cases:

1. ak ∈ Σ. Then, there are two cases (note that the situation wherered(qk+1) 6= qk+1 belongs to
case 2):

(a) red(qk) = qk andred(qk+1) = qk+1. Let t be a transition such thatt ∈ T and is labeled
with ak. In this caset is not included in any mcps. By construction ofTA′ (Def. 4.2) there
exists a transitiont′ ∈ T corresponding tot. We show thatt′ is fireable ats′l.

Sincet is fireable atsk, it follows thatsource(t) = qk, vk |= guard(t), andτk |= delay(t).
By Def. 4.4.1 we haveqk = q′l. This givessource(t′) = source(t) = qk = q′l. Next,
guard(t′) = guard(t) and by Def. 4.4.2vk = v′l, which givesv′l |= guard(t′). Besides,
delay(t′) = delay(t) and by Def.4.4.3τl′(x) = τk(x) for all x ∈ use(qk). Henceτl′ |=
delay(t′). Thereforet′ is fireable ats′l.

(b) red(qk) 6= qk and red(qk+1) = qk+1. In this case by Def. 4.1.1.(b) the transitiont ∈
T labeled withak is a transition entering the last location of a pathπ of some mcpsΠ,
wherered(qk) is the first location of the path. We show that a transitiont′ ∈ T constructed
according to Def. 4.2 for a mcpsΠ is fireable ats′l.

First, by Def. 4.4.1 we haveq′l = red(qk) and by constructionsource(t′) = red(qk),
which givessource(t′) = q′l. Next, by Def. 4.4.2vk = v′l and by constructionguard(t′) =
guard(t) (by Def. 4.1.3(b) all the guards of transitions entering thelast location of a mcps are
equal), which givesv′l |= guard(t′). Finally, we show thatτl′ |= delay(t′), wheredelay(t′)
is defined according to Def. 4.2. By Def. 4.4.3τl′(x) = τk(x), whereuse(red(qk)) =
use(q′l) = {x}. The clockx is not reset since the automatonTA has visited the location
red(qk). Thereforeτk(x) reflects time of traversing the pathπ. From this it follows that
min delay(π) ≤ τk(x) andτk(x) ≤ max delay(π). On the other hand by Def. 4.2 we
know that lb(delay(t′)) ≤ min delay(π) andmax delay(π) ≤ ub(delay(t′)). It gives
lb(delay(t′)) ≤ τl

′(x) andτ ′l (x) ≤ ub(delay(t′)), which shows thatτl′ |= delay(t′).



What we have shown so far is how to choose a transitiont′ in the systemS ′ such thats′l
al−→ s′l+1,

whereal is the label oft′. We need to prove thatsk+1
∼= s′l+1.

It is easy to check that in both the above casesqk+1 = target(t) = target(t′) = q′l+1 as t
corresponds tot′. This proves that Item 1 of the Def. 4.4 holds forsk+1 and s′l+1. Next, in
both the cases by Def. 4.1.3(d)action(t) = action(t′). Sincevk = v′l, it follows that after the
execution of the same sequence of operationsvk+1 = v′l+1, which satisfies Item 2. Finally, in both
the cases Def. 4.1.3(c)reset(t) = reset(t′). Since Item 3 is satisfied forτl′ andτk, after resetting
the same set of clocks it remains satisfied forτ ′l+1 andτk+1.

Combining these givessk+1
∼= s′l+1.

2. ak ∈ IR+, which represents time progress.

In this caseqk+1 = qk, vk+1 = vk, andτk+1 = τk + ak. Obviously,ql+1
′ = ql

′ andvl+1
′ = vl

′.
Furthermoreτl+1

′ = τl
′ + ak = τk + ak = τk+1. This provessk+1

∼= s′l+1, wheres′l
ak−→ s′l+1.

We need only to show that the progress of time ofak is possible at the states′l. Let us consider
three cases:

(a) qk is not included in any mcps or it is the last location of some mcps. In this casered(qk) =
qk and by Def. 4.4.1q′l = red(qk). Also, each transitiont ∈ T going out ofqk has a
corresponding transitiont′ ∈ T ′ going out ofq′l. Moreover, by construction ofTA′ we have
I(qk) = I ′(q′l). Since a timed transition of durationak is possible atsk, τk+ak |= I(qk) and
urgent(t) = false or vk 6|= guard(t) for all t ∈ out(qk). Finally, by Def. 4.4.3τk = τl

′.
Combining these givesτ ′l + ak |= I ′(q′l) andurgent(t′) = false or v′l 6|= guard(t′) for all
t′ ∈ out(q′l), which proves our claim for this case.

(b) qk is a first location of a pathπ of some mcpsΠ. In this case alsored(qk) = qk and by Def.
4.4.1q′l = red(qk). By Def. 4.2use(qk) = use(q′l) = {x} andub(I(qk)) ≤ ub(I ′(q′l)).
Next, τk(x) + ak |= I(qk). Finally, by Def. 4.4.3τk(x) = τl

′(x). Combining these gives
τ ′l (x) + ak |= I ′(q′l). By constructionurgent(t′) = false for each transitiont′ ∈ T ′ going
out of q′l which completes a proof for this case.

(c) qk is included in some mcps and is not its first location. According to Def. 4.2use(q′l) =
use(red(qk)) = {x}. As beforeτk(x) reflects time of traversing the pathπ. It follows
that τk(x) + ak ≤ max delay(π). But from definition ofmax delay, max delay(π) ≤∑

q∈locs({π})\{qm} ub(I(q)), where qm is the last location ofπ. Then, by Def. 4.2∑
q∈locs({π})\{qm} ub(I(q))) ≤ ub(I ′(q′l)). Finally, by Def. 4.4.3τk(x) = τl

′(x). Com-
bining these givesτ ′l + ak |= I ′(q′l). By constructionurgent(t′) = false for each transition
t′ ∈ T ′ going out ofq′l which completes a proof for this case.

This completes our claim that from the states′l the timed transition of durationak can be performed.

case 2 sk+1 belongs to the same block assk, namelyBm. We show thatsk+1
∼= s′l. As we said before,

this situation takes place whenak ∈ Σ andred(qk+1) 6= qk+1. In this case by Def. 4.1.1(b-c) we know
that the transitiont ∈ T labeled withak is a transition of a pathπ of some mcpsΠ, which does not enter
the last location ofπ. By Def. 4.4.1q′l = red(qk). It is clear thatqk andqk+1 are contained in the same
path, thusq′l = red(qk) = red(qk+1), which satisfied Item 1 of Def. 4.4 forsk+1 ands′l. We see at once



that Item 2 Def. 4.4 is also satisfied, since by Def. 4.1.2(d)vk+1 = vk. Finally, by the fact that Item 3 is
satisfied forτl′ andτk it follows that Item 3 remains satisfied forτ ′l andτk+1, because by Def. 4.1.2(c)
clocks, which are reset att, are not included in the set

⋃
{q∈

S

Qi | red(q)=q} use(q). By the above we have
sk+1

∼= s′l.

( ⇐ ) Let σ′ be a maximal path ofM ′ starting ats′. We proceed to show how to construct a maximal
pathσ starting ats, a partitionB1, B2, . . . of σ and a partitionB′

1, B
′
2, . . . of σ′ as required in Item 2 of

Def. 4.3. As before, we assume that we have already constructed a finite prefix ofσ: s1
a1−→ s2

a2−→

· · ·
ak−1
−→ sk and a finite prefix ofσ′: s′1

a′

1−→ s′2
a′

2−→ · · ·
a′

l−1
−→ s′l, wheres1 = s, s′1 = s′ andsk

∼= s′l
and that we have built partitions ofσ andσ′ into corresponding stuttering blocks. Let us assume thatsk

belongs to the blockBm ands′l belongs to the corresponding blockB′
m. The proof falls into two parts.

case 1 There is an action transition on the suffix of the pathσ′ starting at states′l. By the additivity
of time all the timed transitions before the first action transition on the suffix ofσ′ are equivalent to one

timed transitions′l
δ′
l−→ s′l+1. If there is no timed transition before the first action transition, thenδ′l = 0.

We show that ifsk
∼= s′l ands′l

δ′
l−→ s′l+1

γ′

l+1
−→ s′l+2 in M ′, whereδ′l ∈ IR+ andγ′l+1 ∈ Σ, then there

exists a path inM satisfying the conditions of Item 2 of Def. 4.3. Let us consider the following cases:
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li
, γki

∈ Σ

1. qk is not included in any mcps or it is the last location of some mcps. In this case fors′l
δ′
l−→ s′l+1

we constructsk
δk−→ sk+1 such thats′l+1

∼= sk+1 in the same manner as incase 1.2(a)of the

previous part of the proof. Then, fors′l+1

γ′

l+1
−→ s′l+2 we constructsk+1

γk+1
−→ sk+2 in the same way

as described incase 1.1(a).

2. qk is a first location of a path of some mcpsΠ. By Def. 4.1.4 we can choose a pathπ ∈ Π, such
thatmin delay(π) ≤ δl ≤ max delay(π).

Let π =q1t2q2 . . . tmqm, whereq1 = qk.



By the additivity of time the timed transitions′l
δ′
l−→ s′l+1 is equivalent to the sequence of timed

transitionss′l
δ′
l1−→ s′l1

δ′
l2−→ s′l2 . . .

δ′
lm−→ s′lm = s′l+1, such thatδ′l =

∑m
j=1 δ

′
lj

(see Fig. 7). We
chooseδ′lj such that

lb(delay(tj)) ≤ δ′lj ≤ min(ub(delay(tj)), ub(I(source(tj))))

This is possible since

m∑

j=1

lb(delay(tj)) ≤ δ′lj ≤
m∑

j=1

min(ub(delay(tj)), ub(I(source(tj))))

We may now construct the pathsk

δk1−→ sk1

δk2−→ . . .
δk2m−→ sk2m

, such thatδk2j−1
= δ′lj and

δk2j
= label(tj) for j = 1, . . . ,m.

Each timed transitionδk2j−1
is possible atsk2(j−1)

for j = 1, . . . ,m − 1, sinceτ(x) = δk2j−1
≤

ub(I(qk2(j−1)
)), whereuse(qk2(j−1)

) = {x}. From thisτk2(j−1)
(x) |= delay(I(qk2(j−1)

)).

It is straightforward thattj is enabled atsk2j−1
for j = 1, . . . ,m − 1, sincesource(tj) = qk2j−1

and by Def. 4.1.2(b)guard(tj) = true. Also, from Def. 4.1.1(d) we haveτk2j−1
(x) = δk2j−1

whereuse(qk2j−1
) = {x}. By the above,lb(delay(tj)) ≤ δk2j−1

≤ ub(delay(tj)). Therefore
τk2j−1

(x) |= delay(tj), that istj is fireable atsk2j−1
.

The proof ofsk2j
∼= s′lj for all 1 ≤ j < m can be handled in much the same way as incase

1.2(c)of the previous part. The proof ofsk2j−1
∼= s′lj for all 1 ≤ j < m follows the same line of

arguments as incase 2.

The proof ofsk2m
∼= s′lm = s′l+1 can be handled similarly tocase 1.1(b).

3. (all other cases are sub-cases of the previous two).

case 2 There is no action transition on the suffix of the pathσ′ starting at states′l. Let s′l
δ′
l−→ s′l+1,

whereδ′l ∈ IR+, be the next transition onσ′. Let us consider two cases.

1. If qk is not included in any mcps or it is the last location of some mcps, then we constructsk
δk−→

sk+1 such thats′l+1
∼= sk+1 in the same manner as incase 1.2(a)of the previous part of the proof.

2. Otherwise,qk is included in some mcps. We may construct a sequence of transitions δk1 , γk2 , . . . ,
δk2m−1 corresponding to the transitionδ′l in the similar fashion as describe incase 1.

According to the construction described above each of the blocksB1, B2, . . . , B
′
1, B

′
2, . . . is finite,

because there is a finite number of locations. Thus, the conditions of Def. 4.3 are satisfied and the proof
is complete.

Proof of Lemma 4.2 for a set of timed automata(the skeleton)
The proof can be handled in much the same way as the previous one with the only differences that

some transitions are executed synchronously by more than one automaton.



( ⇒ ) By Def 4.1.2(a) a synchronous transition is is not includedin any mcps. In this case the proof
follows by the same method as incase 1.1(a)for each automaton performing this transition. Obviously,
for a local transition the proof is the same as before. Similarly, for a timed transition the same line of
arguments is applied as incase 1.2for all automata in the set.

(⇐ ) Since a paths′l
δ′
l−→ s′l+1

γ′

l+1
−→ s′l+2 (a part ofσ′) can be interleaved with transition of other automata,

we consider a possibly longer paths′l
δ′
l−→ s′l+1

γ′

l+1
−→ . . .

γ′

l+p−1
−→ s′l+p such thatγ′l+p−1 is the label of a

transition going from the locationqi
l

′
to qi

l+k

′
, wherei is the number of an automaton performing the

transition. The construction follows the previous one. Each subsequence (for other automata) is built in
the same fashion.


