
Translation of Intermediate Language
to Timed Automata with Discrete Data?

Agata Janowska1, Pawe l Janowski1, and Dobies law Wróblewski2

1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
2 Institute of Computer Science, Polish Academy of Science, Ordona 21, 01-237 Warsaw, Poland

{janowska,janowski}@mimuw.edu.pl, wrobldob@ipipan.waw.pl

Abstract. The aim of this work is to describe the translation from Intermediate
Language, one of the input formalisms of the model checking platform VerICS, to
timed automata with discrete data and to compare it with the translation to classical
timed automata. The paper presents syntax and semantics of both formalisms, the
translation rules as well as a simple example.

1 Introduction

A few years ago the first release of the model checking verification platform VerICS [5]
was developed. The tool was designed to accept a number of input formalisms which are
translated to the common format called the Intermediate Language. Then, for the verification
purposes, a system represented as an Intermediate Language program is further translated
to either a set of timed automata, each of which represents a component of the system, or to
a global (product) timed automaton. The automata obtained in this way are passed to the
verification modules. As the VerICS is a subject of the dynamic development in its recent
version a new formalism was added, namely timed automata with discrete data, which are
timed automata enriched with additional integer variables. Such automata are a common
input formalism of other popular model checkers for timed systems (e.g. UppAal [8] and
HyTech [7]). In order to introduce timed automata with discrete data to VerICS the new
translation from the Intermediate Language is needed and this is a subject of this paper.
We would like also to present a comparison with the previous translation. To this end, a
few cases described in Intermediate Language is verified via translations to classical timed
automata and to extended ones.

The paper is organized as follows. In Section 2 we introduce preliminary notions. Section
3 and 4 contain the syntax and semantics of Intermediate Language and extended timed
automata, respectively. Section 5 describes the translation rules between these formalisms.
In Section 6 experimental results are presented. The last section shortly concludes the paper.

2 Preliminaries

Variables and buffers. Let V be a finite set of integer variables, and B be a finite set
of buffers. A buffer is a possibly empty sequence of integer values. Let size : B → IN be
? The authors acknowledge a partial support from the Polish grant No. 3T11C01128.

the function that assigns the maximal size (the maximal number of elements) with each
buffer. The set Exp(V) of all the arithmetic expressions over V is defined by the following
grammar:

exp ::= m | y | exp ⊕ exp | − exp | (exp)

where m ∈ ZZ, y ∈ V, and ⊕ ∈ {−,+, ∗, /}.3 The set BExp(V,B) of all the boolean expres-
sions over V and B is defined inductively as follows:

bexp ::= true | exp ∼ exp | empty(b) | bexp and bexp | bexp or bexp | not bexp | (bexp)

where exp ∈ Exp(V), b ∈ B, and ∼ ∈ {=, 6=, <,>,≤,≥}. The set BExp(V) is defined in
the same fashion (without expressions of the form empty(b)). The set Act(V,B) of all the
actions over V and B is defined as follows:

act ::= ε | y := exp | get(b, y) | put(b, exp) | act; act

where ε denotes an empty sequence, y ∈ V , b ∈ B and exp ∈ Exp(V). The set Act(V) of all
the actions over V is defined in the similar way (without operations get and put).

Variable and Buffer Valuation. Let ZZ∗ be a set of all the sequences of integer values.
An empty sequence is denoted by ε. We use Ω to denote ZZ ∪ ZZ∗. A variable and buffer
valuation is a total mapping v : V ∪ B → Ω such that v(V) ⊆ ZZ and v(B) ⊆ ZZ∗. We
extend this mapping to expressions in the usual way. A valuation v0 such that v0(b) = ε
for all b ∈ B (all buffers are empty) is called an initial valuation. Satisfiability of a boolean
expression β ∈ BExp(V,B) by a valuation v (we write v |= β) is defined inductively as
follows: v |= true, v |= e1 ∼ e2 iff v(e1) ∼ v(e2), v |= empty(b) iff v(b) = ε, v |= g1 and g2 iff
v |= g1 and v |= g2, v |= g1 or g2 iff v |= g1 or v |= g2, and v |= not g iff v 6|= g.

Let α ∈ Act(V,B) be an action. By v(α) we denote the valuation after execution of the
action α on the valuation v. We define v(α) to be the valuation v′ defined inductively as
follows (by u.w we denote the concatenation of the value u and the sequence of values w,
similarly for w.u):

– if α = ε, then v′ = v,
– if α = (y := exp), then v′(y) = v(exp) and v′(z) = v(z) for z ∈ (V ∪B) \ {y},
– if α = get(b, y) and v(b) = u.w, then v′(b) = w, v′(y) = u, and v′(z) = v(z) for
z ∈ (V ∪B) \ {b, y} (the first element of b is removed and its value is assigned to y),

– if α = put(b, exp), v(b) = w, and v(exp) = u, then v′(b) = w.u and v′(z) = v(z) for
z ∈ (V ∪B) \ {b} (the value of the expression exp is appended to the end of b),

– if α = α1;α2, then v′ = v′′(α2), where v′′ = v(α1).

There is the runtime error in case of putting en element to a full buffer as well as getting
an element out of an empty buffer.

Clocks. Let X be a finite set of real variables, called clocks. The set Ψ(X) of all the
clock constraints over X is defined by the following grammar (we deal with diagonal-free
automata):

constr ::= true | x ∼ c | constr and constr
where x ∈ X, c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}.
3 By / we denote integer division and ZZ denotes the set of integer numbers, IN — the set of natural

numbers, and IR+ — the set of non-negative real numbers.

Clock Valuation. A clock valuation is a total mapping τ : X → IR+. Satisfiability of
a clock constraint ψ ∈ Ψ(X) by a given clock valuation τ (denoted as τ |= ψ) is defined
inductively as follows: τ |= true, τ |= x ∼ c iff τ(x) ∼ c, τ |= ψ1 and ψ2 iff τ |= ψ1 and
τ |= ψ2. For δ ∈ IR+, τ + δ denotes the clock valuation τ ′ such that τ ′(x) = τ(x) + δ for
all x ∈ X. Moreover, by τ [Y := 0] we denote the clock valuation τ ′ such that τ ′(x) = 0 for
x ∈ Y and τ ′(x) = τ(x) for x ∈ X \ Y . Finally, by τ0 we denote the initial clock valuation
such that τ0(x) = 0 for all x ∈ X.

3 Intermediate Language

In Intermediate Language (IL for short) a system is described as a set of processes running
parallel and communicating with each other via variables (shared memory) or buffers (mes-
sage passing mechanism). A process is described by terms of states and transitions. There
is no explicit time variables in the language, but the time of transition execution can be
restricted.

Definition 1. (IL Syntax). A program is a tuple P = (VP , B, {Pi | 1 ≤ i ≤ n}),
where VP is a set of variables, B is a set of buffers, n ∈ IN, and a process Pi is a tuple
(idi, Qi, q

0
i , Γi, Ti), where idi is the process name, Qi is a set of control states, q0i ∈ Qi

is the initial control state, Γi is a set of labels, and Ti is a set of transitions of the form
(q, g, d, u, l, a, q′), where:

– q ∈ Qi is called the source,
– q′ ∈ Qi is called the target,
– g ∈ BExp(VP , B) is called the guard,
– d ∈ {(d1, d2), (d1, d2], (d1,∞), [d1, d2), [d1, d2], [d1,∞) | d1, d2 ∈ IN} is called the allowed

delay,
– u ∈ {true, false} is called the urgency attribute,
– l ∈ Γi is called the label, and
– a ∈ Act(VP , B) is called the action.

Let t = (q, g, d, u, l, a, q′). If the allowed delay d is of the form (d1, d2], then the transition
t must be executed strictly after d1 and before d2 time units since the process has reached
the location q (similarly for other forms of allowed delays). The urgency attribute u says
whether the transition has the priority over time progress. When the urgency attribute is
equal to true the transition t has to be executed as soon as it becomes enabled. We work
under the assumption that for an urgent transition t the delay allowed should be equal to
[0,∞). Notice, that the label l can be either local or synchronous. A local label is unique in a
program and a synchronous one is shared among some processes. It is assumed that buffers
and shared variables (used or defined by more than one process) are not defined by actions
of synchronous transitions.

Let T =
⋃n

i=1 Ti, Q =
⋃n

i=1Qi and Γ =
⋃n

i=1 Γi. We use out(q) to denote the set of
transitions {t ∈ T | source(t) = q}. By bufs(a) ⊆ B we denote the set of buffers that occur
in the action a.

Example. The program presented in Fig. 1 is composed of two processes: producer and
consumer communicating via the buffer buf. The variables p and c represent portions of
data. The transition labels are omitted. The producer produces a portion of data (it randomly
assigns 0 or 1 to p) which takes from 1 to 2 units of time and passes to the state transmit.
Next, if the buffer is not full, then producer places the portion to the buffer and comes back
to the state produce. The consumer waits until the buffer buf is not empty, takes a portion
of data from the buffer, and consumes it. The transition from the state consume to the state
request can last an arbitrary amount of time. Note, that a transition marked as urgent must
be executed as soon as it becomes enabled.

Fig. 1. Producer–Consumer example in Intermediate Language.

Delay valuation. We define a delay valuation to be a total mapping µ : Q → IR+ which
associates a non-negative real number with each location. For δ ∈ IR+, µ + δ denotes the
delay valuation µ′, such that µ′(q) = µ(q) + δ for all q ∈ Q. By µ0 we denote the initial
delay valuation such that µ0(q) = 0 for all q ∈ Q. For Y ⊆ Q, µ[Y := 0] denotes the delay
valuation µ′, such that µ′(q) = 0 for q ∈ Y and µ′(q) = µ(q) for q ∈ Q \ Y .

Semantics. A state of a program is a tuple of the form (q1, . . . , qn, v, µ), where qi ∈
Qi for 1 ≤ i ≤ n, v ∈ ΩVP∪B , and µ ∈ IR+

Q. For a transition ti ∈ Ti and a state
s = (q1, . . . , qn, v, µ) we define: enabled(ti, s) , (source(ti) = qi) ∧ v |= guard(ti), and
fireable(ti, s) , enabled(ti, s) ∧ µ(source(ti)) ∈ delay(ti).

Processes execute transitions with shared labels synchronously. Local transitions are
interleaved. It is required that the transitions with a shared label have to be executed by all
the processes containing this label (multi-synchronization). By Γ (l) = { 1 ≤ i ≤ n | l ∈ Γi}
we denote the set of numbers of processes that contain the label l and (aj)j∈Z denotes the
sequence of the actions aj , where j ∈ Z ⊆ {1, . . . , n}, such that the actions are arranged
according to the numerical order of their indeces.

Definition 2. (IL Semantics). The semantics of a program P = (VP , B, {Pi |1 ≤ i ≤ n})
with Pi = (idi, Qi, q

0
i , Γi, Ti) for an initial valuation v0 : VP ∪B → Ω is a labeled transition

system SP = (SP , s
0
P , ΛP ,−→P) such that:

– SP = Q1 × . . .×Qn ×ΩVP∪B × IR+
Q is the set of states,

– s0P = (q01 , . . . , q
0
n, v

0, µ0) ∈ SP is the initial state,
– ΛP =

⋃n
i=1 Γi ∪ IR+

– −→P⊆ SP × ΛP × SP is the smallest transition relation defined as follows:

• let s = (q1, . . . , qn, v, µ) and s′ = (q′1, . . . , q
′
n, v

′, µ′), s l−→P s′ iff there exists a set
T ′ = {ti | i ∈ Γ (l)} ⊆ T such that fireable(ti, s), l = label(ti), q′i = target(ti), for
all ti ∈ T ′, v′ = α(v, (action(ti))i∈Γ (l)), µ′ = µ[{q′i}i∈Γ (l) := 0] and q′j = qj for all
j ∈ {1, . . . , n} \ Γ (l),

• let s = (q1, . . . , qn, v, µ) and s′ = (q1, . . . , qn, v, µ+δ), for δ ∈ IR+ s
δ−→P s′ iff δ > 0

and ¬enabled(t, s) ∨ (¬urgent(t, s) ∧ ¬(fireable(t, s) ∧ ¬fireable(t, s′))) holds for
all t ∈ T or δ = 0.

Initially, all the buffers are empty and all the variables have some initial values. At a state
s = (q1, . . . , qn, v, µ) the system can: either execute a local fireable transition or a set of syn-
chronous fireable transitions (the delay values of location of processes performing transitions
are reset to zero), or let time δ pass and move to the state (q1, . . . , qn, v, µ+ δ), unless there
is an enabled transition with the urgency attribute set or the time passage would make any
fireable transition not fireable.

For (q1, . . . , qn, v, µ) ∈ SP , let (q1, . . . , qn, v, µ)+δ denote (q1, . . . , qn, v, µ+δ). An s−run
of P is an finite sequence: s0

δ0−→P s0 + δ0
l0−→P s1

δ1−→P s1 + δ1
l1−→P . . ., where s0 = s ∈ S,

li ∈ Γ , and δi ∈ IR+ for each i ≥ 0. For simplicity in our work we consider only infinite
sequences since the finite ones correspond to erroneous situations.

4 Timed Automata

Timed automata with discrete data (TADD for short) are timed automata [2] enriched with
additional integer variables.

Definition 3. (TADD Syntax). A timed automaton with discrete data is a tuple TA =
(Σ,L, %0, VA, X, E, I), where

– Σ is a finite set of labels,
– L is a finite set of locations,
– %0 is the initial location,
– VA is a finite set of integer variables,
– X is a finite set of clocks,
– E ⊆ L × Σ × BExp(VA) × Ψ(X) × {true, false} × Act(VA) × 2X × L is a transition

relation, and
– I : L −→ Ψ(X) is an invariant function.

An element e = (%, λ, φ, ψ, υ, α, Y, %′) of E denotes a transition from the location % to the
location %′, where λ is the label of the transition e, φ and ψ define the enabling conditions
(the guard and the clock constraint) for e, α is the action to be executed, Y is the set of
clocks to reset, and υ is the urgency attribute – when it is set, the transition t has to be
executed as soon as it is enabled (e is enabled if the automaton is in the location % and the
guard φ evaluates to true). We assume that clock constraints of urgent transitions are equal
to true. The invariant function assigns to each location % ∈ L a clock constraint defining
the condition under which the automaton can stay in %. It is assumed that there are only
upper time bounds in invariants.

Definition 4. (TADD Semantics) Semantics of a timed automaton with discrete data
TA = (Σ,L, %0, VA, X,E, I) for an initial valuation v0 : VA → ZZ is a labeled transition
system SA = (SA, s

0
A, ΛA,−→A), where:

– SA = {(%, v, τ) | % ∈ L ∧ v ∈ ZZVA∧ τ ∈ IR+
X∧ τ |= I(%)} is the set of states,

– s0A = (%0, v0, τ0) ∈ SA is the initial state,
– ΛA = Σ ∪ IR+ is the set of labels,
– −→A ⊆ SA × ΛA × SA is the smallest transition relation defined by the following rules:

• (%, v, τ) λ−→A (%′, v′, τ ′) iff there exists a transition e = (%, λ, φ, ψ, υ, α, Y, %′) ∈ E
such that v |= φ, τ |= ψ, v′ = v(α) and τ ′ = τ [Y := 0] |= I(%′),

• (%, v, τ) δ−→A (%, v, τ+δ) iff τ+δ |= I(%) and for all transitions e = (%, λ, φ, ψ, υ, α, Y,
%′) ∈ E, υ = false or v 6|= φ or τ [Y := 0] 6|= I(%′).

Initially, all variables have theirs initial values and all clocks are set to 0. Being in a state
s = (%, v, τ) the system can: either execute an enabled transition e and move to the state
s′ = (%′, v′, τ ′), where %′ is the target location of e (the variables valuation is changed
according to the action of e and the clocks included in the reset set of e are set to 0), or let
time δ pass and move to the state (%, v, τ + δ), as long as τ + δ satisfy I(%) and no urgent
transition can be executed.

For (%, v, τ) ∈ SA, let (%, v, τ) + δ denote (%, v, τ + δ). An s−run π of TA is an infinite
sequence: s0

δ0−→A s0 + δ0
λ0−→A s1

δ1−→A s1 + δ1
λ1−→A . . ., where s0 = s ∈ S, λi ∈ Σ and

δi ∈ IR+ for each i ≥ 0.

Parallel Composition. Let TA1, . . . TAn be a set of TADD and Σ(λ) = {1 ≤ i ≤ n | λ ∈
Σi} denote a set of numbers of automata containing the label λ.

In the parallel compostition of automata, transitions with a shared label are executed
synchronously by all automata containing this label. To obtain clear semantics of variables
updating it is necessary to fix the order of actions in the case of synchronous transitions.
The transition whose action should be taken first is marked with ! and it is called an output
transition. Transitions whose actions should be taken next are marked with ? and they are
called input transitions. We assume additionally that input transitions do not update shared
variables. By ε we denote an empty string which concatenated with a character λ gives λ.
Now a transition label is of the form: λ!, λ? or λ, where λ ∈

⋃n
i=1Σi.

Definition 5. (Parallel Composition of TADD). Let TA1, . . . TAn be a set of TADD,
where TAi = (Σi × {?, !, ε}, Qi, q

0
i , Vi, Xi, Ei, Ii). A parallel composition TA1 ‖ TA2 ‖ . . . ‖

TAn is the TADD TA = (Σ,L, %0, VA, X,E, I), where: Σ =
⋃n

i=1Σi, L =
∏n

i=1 Li, %0 =
(%0

1, . . . , %
0
n), VA =

⋃n
i=1 Vi, X =

⋃n
i=1Xi, I(%1, . . . , %n) =

∧m
i=1 Ii(%i), and relation E is

defined as follows: ((%1, . . . , %n), λ, φ, ψ, υ, α, Y, (%′1, . . . , %
′
n)) ∈ E iff

– there exists j ∈ Σ(λ) such that λj = λ! and for all i ∈ Σ(λ), (%i, λ, φi, ψi, υi, αi, Yi,
%′i) ∈ Ei, φ =

∧
i∈Σ(λ) φi, ψ =

∧
i∈Σ(λ) ψi, υ =

∨
i∈Σ(λ) υi, α = αj(αi)i∈Σ(λ)\{j},

Y =
⋃

i∈Σ(λ) Yi and for all i ∈ {1, . . . , n} \Σ(λ), %′i = %i,
– for all i ∈ Σ(λ) and (%i, λ, φi, ψi, υi, αi, Yi, %

′
i) ∈ Ei, where φ =

∧
i∈Σ(λ) φi, ψ =∧

i∈Σ(λ) ψi, υ =
∨

i∈Σ(λ) υi, α = (αi)i∈Σ(λ), Y =
⋃

i∈Σ(λ) Yi and for all j ∈ {1, . . . , n} \
Σ(λ), %′j = %j.

5 Translation from Intermediate Language to TADD

Since the formalisms are similar, the translation is quite natural. Only two aspects, namely
time restrictions and communication via buffers, need more attention. The main idea of the
translation is the following: for each process in the Intermediate Language program a TADD
is constructed. Each control state of the process has exactly one corresponding location in
the automaton. Two additional locations represent the case of putting an element to a full
buffer (overflow) and getting an element from empty buffer (empty). If there is a transition
from a control state q1 to a control state q2 in the process, then there is at least one transition
between corresponding locations in the automaton.

Each timed automaton for a process has one clock. The clock is reset with each transition.
The time constraint on the clock of a transition in the automaton is derived from allowed
delays of its corresponding transition in the process.

Buffers. A buffer b ∈ B is modeled by size(b) + 3 variables. Let Vb be the set {cnt b, out b,
in b, b1, . . . , bsize(b)}. The variable cnt b represents the number of elements stored in the
buffer at the moment, out b indicates its first element and in b points the place, where a
new element will be stored. Variables b1, . . . , bsize(b) model the buffer content (see Fig. 2).

Fig. 2. Implementation of a buffer.

If an action of a process transition contains one operation put(b, exp) or get(b, y), then
in the automaton there are size(b) corresponding transitions of the form depicted in Fig. 3.
For sake of clarity we present the definition of the translation for a program, where there is
at most one operation get or put on a given buffer b ∈ B in the action of each transition.

Fig. 3. Counterparts of operations put(b, e) and get(b, y) for size(b) = N .

Time constraints. We present the translation under the assumption that all transitions
that are not urgent and go out of one location have the same upper bounds of the allowed
delays. Let xi be the clock of i-th process. We define two family of functions: constri : Ti →
Ψ({xi}) and upper constri : Qi → Ψ({xi}) for 1 ≤ i ≤ n, which for each transition (and

each control state, resp.) construct the suitable clock constraints:

constri(t) =

d1 < xi ∧ xi < d2 if delay(t) = (d1, d2),
d1 < xi ∧ xi ≤ d2 if delay(t) = (d1, d2],
d1 < xi if delay(t) = (d1,∞),
d1 ≤ xi ∧ xi < d2 if delay(t) = [d1, d2),
d1 ≤ xi ∧ xi ≤ d2 if delay(t) = [d1, d2],
d1 ≤ xi if delay(t) = [d1,∞), where d1 6= 0,
true if delay(t) = [0,∞).

upper constri(q) =

xi < d2 if ∃t∈out(q) ∃d1∈IN delay(t) = (d1, d2) ∨ delay(t) = [d1, d2)
xi ≤ d2 if ∃t∈out(q) ∃d1∈IN delay(t) = (d1, d2] ∨ delay(t) = [d1, d2]
true if ∀t∈out(q) ∃d1∈IN delay(t) = (d1,∞) ∨ delay(t) = [d1,∞)

Definition 6. (The set of TADD for Intermediate Language program). For a
program P = (VP , B, {Pi | 1 ≤ i ≤ n}), where Pi = (idi, Qi, q

0
i , Γi, Ti), we define a set

TA1, . . . TAn of TADD, where TAi = (Σi, Li, %
0
i , VA, Xi, Ei, Ii) as follows:

– Σi = Γi,
– Li = Qi ∪ {overflowi, emptyi},
– %0

i = q0i ,
– VA = VP ∪

⋃
b∈B Vb

4,
– X = {xi}, if there exists a transition in the process with a delay different than [0,∞),

otherwise X = ∅,
– the relation Ei is defined as follows: for each transition t = (q, g, d, u, l, a, q′) ∈ Ti

• if bufs(a)= ∅, then there is one transition e = (%, λ, φ, ψ, υ, α, Y, %′) ∈ Ei, where
% = q, λ = l, φ = g′, where g′ is the guard g with each expression of the form
empty(b) replaced with cnt b = 0, ψ = constr(t), υ = u, α = a, Y = {xi}, %′ = q′,

• if bufs(a)= {b1, . . . , bm} 6= ∅, then there is size(b1) ∗ . . . ∗ size(bm) + m transitions
ejkj = (%, λ, φjkj , ψ, υ, αjkj , %

′
jkj

) ∈ Ei for 1 ≤ j ≤ m and 0 ≤ kj ≤ size(bj), where
∗ % = q, λ = l, ψ = constr(t), υ = u, Y = {xi},
∗ φjkj = (g′ and φ′jkj

), where g′ is the guard g, where each expression of the form
empty(b) is replaced with cnt b = 0,

∗ if the operation of the form get(bj , y) for some y ∈ VP occurs in a, then φ′j0 =
(cnt bj = 0), %′j0 = emptyi, φ′jkj

= (cnt bj > 0 and out bj = kj), and %′jkj
=

q′ for 1 ≤ kj ≤ size(bj), otherwise (put(bj , e) for some e ∈ Exp(VP) oc-
curs in a) φ′j0 = (cnt bj = size(bj)), %′j0 = overflowi, φ′jkj

= (cnt bj <

size(bj) and in bj = kj), and %′jkj
= q′ for 1 ≤ kj ≤ size(bj);

∗ αjkj = a′, where a′ is a with each operation put(bj , e) for e ∈ Exp(VP) re-
placed with the sequence of operations: bjkj := e; in bj := kj + 1; cnt bj :=
cnt bj + 1; and operation get(bj , y) replaced with the sequence of operations:
y := bjkj ; out bj := kj + 1; cnt bj := cnt bj − 1;,

– for % ∈ Li the invariant function I(%) = upper constr(q), where q is the control state
corresponding to %.

4 Some variables are not used by the automaton.

Example. For the Intermediate Language program from Sect. 3, where size(buf) = N = 2,
the set of two automata is constructed as presented in Fig. 4.

Fig. 4. Timed automata for the Producer–Consumer example.

Verification. Let SP = (SP , s
0
P , ΛP ,−→P) be the labeled transition system of a program

P = (VP , B, {Pi | 1 ≤ i ≤ n}), where Pi = (idi, Qi, q
0
i , Γi, Ti). For P we can define propo-

sitional variables of the form pi.q, where 1 ≤ i ≤ n and q ∈ Qi, pempty(b) for b ∈ B, or
pe1 ∼ e2 , where e1, e2 ∈ Exp(VP) and ∼ is a relational operator. We denote the set of all
propositional variables by PV .

In order to reason about systems represented as Intermediate Language programs we
define a labeling functions VP : SP → 2PV . For s = (q1, . . . , qn, v, µ) ∈ SP : pe1 ∼ e2 ∈
VP (s) iff v |= e1 ∼ e2, pempty(b) ∈ VP (s) iff v(b) = ε, and pi.q ∈ VP (s) iff qi = q. The model
of a program is the pair MP = (SP ,VP).

Let {TA1, . . . , TAn}, where TAi = (Σi, Li, %
0
i , VA, Xi, Ei, Ii), be a set of TADD con-

structed for the program P according to Def. 6 and SA = (SA, s
0
A, ΛA,−→A) denote the

labeled transition system of a parallel composition of the automata of this set. Notice, that
VP ⊆ VA and for each control state q ∈ Qi there exists the corresponding location l ∈ Li for
1 ≤ i ≤ n. So, for a given set of propositional variables PV we can define a labeling function
VA : SA → 2PV such that for s′ = (%i, . . . , %n, v

′, τ) ∈ SA, pe1 ∼ e2 ∈ VA(s′) iff v′ |= e1 ∼ e2,
pempty(b) ∈ VA(s′) iff v′(cnt b) = 0, and pi.q ∈ VA(s′) iff %i = %, where % is the location cor-
responding to the control state q. Let MA = (SA,VA). Our aim is to show that MP and
MA are strongly bisimilar [3].

For each buffer b we define the function seqb : Vb × V ZZ
A → ZZ∗, which constructs a

sequence of values that corresponds to the content of the buffer b. Let N = size(b) and Vb =
{cnt b, in b, out b, b1, . . . , bN}. If v(cnt b) = 0 then seqb(Vb, v) = ε, otherwise seqb(Vb, v) =
u1 . . . uk, where k = v(cnt b) and uj = v(b{j mod N+1}) for in b ≤ j ≤ v(in b)+v(cnt b)−1.

Definition 7. Let ∼= ⊆ SP × SA be the relation s.t. for each s = (q1, . . . , qn, v, µ) ∈ SP and
each s′ = (%1, . . . , %n, v

′, τ ′) ∈ SA we have s ∼= s′ iff the following holds:

1. qi = %i for each 1 ≤ i ≤ n,
2. v(y) = v′(y) for each y ∈ VP ⊆ VA and v(b) = seq(Vb, v

′) for each b ∈ B,
3. µ(qi) = τ(xi) for each 1 ≤ i ≤ n.

Lemma 1. The relation ∼= ⊆ SP × SA is a strong bisimulation between MP and MA.

Proof. (a sketch) Let s = (q1, . . . , qn, v, µ) ∈ SP and s′ = (%1, . . . , %n, v
′, τ ′) ∈ SA. It is easy

to check that s0P ∼= s0A
′. From Def.7.1-2 it follows that VP (s) = VA(s′) for s ∼= s′. (⇒) Let

s1 ∼= s′1 and s1
a−→P s2. We will show that there exists a state s′2 such that s′1

a−→A s′2 and
s2 ∼= s′2. Let us consider two cases. Case 1: a ∈ Γ . Let T ′ be a set of executed transitions
(with label a). For each t ∈ T ′ ∩ Ti there exists e ∈ Ei corresponding to t. From Def. 7
it follows that e can be executed (we leave the details to the reader). Clearly, after the
execution of corresponding transitions Item 1 of Def. 7 is satisfied for s2 and s′2. Next, by
Def. 6 the action of e is “equivalent” to the action of t, which means that values of variables
and contents of buffers are changed in the same way. It follows that after the execution
of the “equivalent” actions Item 2 is satisfied for s2 and s′2. During an action transition,
delays of control states which are target of transitions from the set T ′ and values of clocks
of automata performing the corresponding transitions are set to 0. The rest of delay and
clocks values stays unchanged. Thus, Item 3 is also satisfied for s2 and s′2.

Case 2: a ∈ IR+, which means that the transition represents the passage of time. It is
easy to see from the definition of time constraints that a time units can also pass for the
set of TADD. Clearly, during a timed transition, control states, locations and valuations are
not changed and all the delay values and all the clocks values are incremented by a. Hence,
all the conditions of Def. 7 are satisfied for s2 and s′2.

The proof of (⇐) can be done in the similar way.

It follows from [3] that if there exists a strong bisimulation between two models, then
these models satisfy the same CTL X* [4] formulas. Thus, a consequence of Lemma 1 is that
the model of a program satisfies an CTL X* formula if and only if the model of the set of
TADD constructed for the program satisfies the formula.

6 Experimental results

We present experimental results obtained with the verification tool VerICS on the machine
equipped with the processor Intel Pentium 3 GHz, 2 GB of main memory, and the Linux
Ubuntu 7.04 operating system. We compare amounts of time and memory consumed by
the translation of Intermediate Language program to a network of classical timed automata
[6] (TA) and to timed automata with discrete data (TADD), and then to a propositional
formula by the bounded model checking modules of VerICS for timed automata [10] and for
TADD [9] and satisfiability verification of the formula by SAT solver MiniSat.

Let us first consider the example presented in Sect. 3 (PC). We have checked whether
Consumer can be in its control state consume while count = N for various values of N
(sizes of the buffer).

To validate the technique we have also performed experiments with a case study known
from the literature. For Fischer Mutual Exclusion Protocol (FMEP) [1] shown in Fig. 5 the
following formulae have been tested (N is the number of processes).

ϕ = EF (
∨

1≤i<j≤N (pi.criticali ∧ pj.criticalj))
ψ = EF (

∨
1≤i1<...<iN−1≤N (pi.criticali ∧ ... ∧ piN−1.criticaliN−1

))

In all the cases presented, properties being verified are violated, that is erroneous scenarios
are found and the length of the shortest counterexample (depth) is shown.

Fig. 5. ith process of Fischer Mutual Exclusion Protocol.

Selected results of the experiments are presented in Fig. 6.

translation bmc minisat

example parameters version depth sec MB sec MB sec MB

PC N = 1 TA 10 0.42 4.12 0.08 2.90 0.02 3.16
TADD 10 0.03 0.50 0.13 2.40 0.02 2.98

N = 2 TA 14 0.84 4.12 0.14 4.32 0.11 4.47
TADD 14 0.03 0.50 0.24 3.20 0.06 3.93

N = 4 TA 22 0.94 4.12 0.49 8.94 0.57 8.81
TADD 22 0.03 0.50 0.54 4.80 0.27 6.13

N = 6 TA 30 6.87 4.12 1.89 18.21 2.90 17.22
TADD 30 0.03 0.50 0.97 7.20 0.79 9.43

FMEP, ϕ N = 2 TA 12 0.21 4.15 0.06 2.77 0.02 2.98
TADD 12 0.03 0.50 0.04 1.80 0.01 2.12

N = 4 TA 12 1.15 4.15 0.12 3.93 0.18 4.04
TADD 12 0.03 0.50 0.10 2.10 0.07 2.55

N = 6 TA 12 73.45 4.15 0.20 5.34 0.49 5.39
TADD 12 0.03 0.50 0.16 2.50 0.03 3.00

N = 8 TA - - - - - - -
TADD 12 0.04 0.50 0.24 2.90 0.24 3.51

FMEP, ψ N = 4 TA 26 1.15 4.15 0.50 11.79 5.73 13.16
TADD 26 0.03 0.50 0.21 2.90 1.13 3.90

N = 6 TA 54 73.45 4.15 4.53 79.07 4431.45 952.84
TADD 54 0.03 0.50 0.80 6.10 1091.69 77.84

N = 8 TA - - - - - - -
TADD - 0.04 0.50 - - - -

Fig. 6. Selected experimental results.

The experiments prove that the verification of the IL code is more effective using the method
descibed in this paper in comparison with verification of the code translated into classical timed
automata.

One observation is evident. The new translation itself is instant and consumes minimal computer
resources. On the contrary, the translation to classical time automata was a slow, complicated
process. We can see that the old translation of the FMEP program for 8 processes did not succeed,

while the new translation was very fast. This follows from the fact that the structure of IL programs
and networks of TADD automata is very similar.

The other observation is that in most cases both the processes of creation and verifying the
appropriate formula take less time and memory when using the new method. Moreover, the larger
is the model, the differences are more clearly visible. Thus, the translation described in this paper
proves very useful while verifying large systems.

7 Conclusions

In the paper we have presented how to translate Intermediate Language programs to the sets of
timed automata with discrete data. We have shown that the method of verification of Interme-
diate Language programs via translation to this formalism is more efficient than verification via
translation to classical timed automata.

References

1. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implementation of three
algorithms for timing verification based on automata emptiness. In Proc. of the 13th IEEE Real-
Time Systems Symposium (RTSS’92), pages 157–166. IEEE Computer Society, 1992.

2. R Alur and D Dill. Automata for modelling real-time systems. In Proc. of the Int. Colloquium
on Automata, Languages and Programming (ICALP’90), volume 443 of LNCS, pages 322–335.
Springer-Verlag, 1990.

3. M. C. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoretical Computer Science, 59(1/2):115–131, 1988.

4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons for branching-
time temporal logic. In Proc. of Workshop on Logic of Programs, volume 131 of LNCS, pages
52–71. Springer-Verlag, 1981.

5. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pó lrola, M. Szreter, B. Woźna, and
A. Zbrzezny. VerICS: A tool for verifying Timed Automata and Estelle specifications. In Proc.
of the 9th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), volume 2619 of LNCS, pages 278–283. Springer-Verlag, 2003.

6. A. Doroś, A. Janowska, and P. Janowski. From specification languages to Timed Automata.
In Proc. of the Int. Workshop on Concurrency, Specification and Programming (CS&P’02),
volume 161(1) of Informatik-Berichte, pages 117–128. Humboldt University, 2002.

7. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems.
International Journal on Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

8. P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Association for Theoretical
Computer Science, 70:40–44, February 2000.

9. A. Pó lrola and A. Zbrzezny. Sat-based reachability checking for timed automata with discrete
data. In Proc. of the Int. Workshop on Concurency, Specification and Programming (CSP’06),
volume 206(2) of Informatik Berichte, pages 207–218. Humboldt University, 2006.

10. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for timed automata
via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

