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Abstract

The paper proposes how to use static analysis to extract an abstract model of
a system. The method uses techniques of program slicing to examine syntax
of a system modeled as a set of timed automata with discrete data, a common
input formalism of model checkers dealing with time. The method is property
driven. The abstraction is exact with respect to all properties expressed in the
temporal logic CTL X*.
Keywords: timed systems, timed automata, static analysis, program slicing

Streszczenie

Plastrowanie automatów czasowych z danymi dyskretnymi.

Praca przedstawia zastosowanie analizy statycznej do uzyskania abstrakcyjnego
modelu systemu. Proponowana metoda jest oparta na technice plastrowania
programów. Analizie podlega system przedstawiony jako zbiór automatów cza-
sowych rozszerzonych o dane dyskretne, który to formalizm jest stosowany przez
weryfikatory modelowe dla systemów czasowych. W przedstawionej metodzie
abstrakcja systemu zachowuje prawdziwość formu l logiki temporalnej CTL X* i
jest uzależniona od weryfikowanej w lasności.
S lowa kluczowe: systemy czasowe, automaty czasowe, analiza statyczna, plas-
trowanie programów
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1 Introduction

In recent years many verification methods of time-dependent, concurrent sys-
tems have been presented. One of the most important due to its practical
applicability seems to be model checking. Essentially, the method determines
whether a temporal formula stating a property of a system is valid on a model
representing its all possible executions. This technique has the advantage of
being automatic but suffers from the state explosion problem, i.e the number
of states in the whole state space of a system can be enormous. During the
last two decades many methods have been suggested to reduce the state space
that need to be considered in the verification process [24]. One of the solutions
to cope with the problem is to construct an abstract model of the system [10].
Model checking using abstractions does not explore the concrete state space,
but an abstract one, which is potentially smaller.

To extract an abstract model of a system we propose to use static analysis,
namely a technique called program slicing [25]. The method (see [22] for a sur-
vey) consists in pointing the so-called slicing criterion, which identifies program
points of interest and then tracing an items of code on which it depends. We
present a slicing algorithm for a system composed of a set of timed automata
with discrete data. The method is property driven since a slicing criterion is
derived from atomic propositions of a formula in question. An abstractions is
exact with respect to all properties expressed in the temporal logic CTL X* [9],
which means that the abstract system satisfies a given property if and only if
the concrete one does. We show that a certain relation between the original and
the sliced product of timed automata with discrete data is a visible bisimulation
[12]. The correctness of the method follows from [12] stating that two struc-
tures are equivalent w.r.t. CTL X* formulas if there exists a visible bisimulation
between the states of those structures.

Related works. Time automata [2] are finite state Büchi automata ex-
tended with real-valued variables modeling clocks. Time safely automata [15]
are time automata specifying progress properties using local invariants instead
of Büchi accepting conditions. Timed automata with discrete data are timed
safety automata enriched by additional integer variables (not clocks), that can
be updated in transitions and referenced in enabling conditions. The formalism
is an input of model checkers dealing with time such as UppAal [21] or recent
version of Verics [20]. The definition of timed automata with discrete data used
in UppAal is slightly different than ours. We point out the details in the paper.

Program slicing as an abstraction method has been successfully applied in
the context of model checking of untimed systems. Millett and Teitelbaum
[19] study slicing of Promela, the input language of SPIN model checker [16].
They obtain the so called imprecise slice and they do not formalize their slicing
methods. Hatcliff et al. [14] present a formal study of slicing sequential programs
preserving LTL and extend their techniques to multi-threaded Java programs
[13]. Slicing is also present in the IF project [7] concerning timed systems,
however, it is defined for its untimed subset only [6].
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The closest related work on using static analysis in timed system verification
concerns the concept of influence information [8]. The technique can be under-
stood as slicing I/O Timed Components, timed safely automata extended with
interfaces. The approach does not use the notion of a slicing criterion, instead it
preserves the branching structure of a transition system up to the propositional
assignment given over the external observer. Another related methods are the
active-clock reduction technique [11] and more general relevant guard abstrac-
tion [4] for timed safety automata. Since they focus on clocks reduction they
are orthogonal to ours and can be combined with it.

Our first attempt of using slicing in context of timed systems concerns re-
duction of intermediate language of Verics [17]. The formalism is a specification
language with no explicit clock variables, but restricting the time of transitions
executions by means of delays.

Structure of the paper. In Section 2 we present an example of a time
dependent system and give an informal introduction to our method. Section
3 contains the definition of the syntax and operational semantics of timed au-
tomata with discrete data. Section 4 provides a detailed description of the slicing
technique and its application to a system composed of a set of automata1. The
last section shortly concludes the paper. The proof of the correctness of our
approach can be found in the appendix.

2 Example

As the example we present a version of the well known alternating bit protocol
([3]) that provides reliable communication over a network service that some-
times looses messages. This simple protocol uses a one-bit sequence number
(which alternates between 0 and 1) in each message and an acknowledgment
to determine whether the message must be retransmitted. The system consists
of three automata running in parallel, Sender, Receiver and Faulty Buffer, as
shown in Fig. 1.

The task of Sender is to transmit portions of data, which represents some
computations performed in real systems. In our example they are succeeding
numbers modulo N . Sender sends each portion accompanied with the bit to
Faulty Buffer. Then it waits for an acknowledgment. If the value of the ac-
knowledgment is the same as the value of the bit, then the message is treated as
delivered and the value of the bit flips. Otherwise the message is retransmitted.
The message is also retransmitted, if no acknowledgment comes within T units
of time (the timeout is modeled by the clock x). Receiver waits until it gets the
message from Faulty Buffer, then it acknowledges receipt of the message and
compares its sequence number with the bit value. If they are equal, it changes
the value of the bit and accepts the message. Otherwise it waits for another
message. Faulty Buffer accepts a message from Sender or an acknowledgment

1In the rest of the paper by automata we always mean time automata with discrete data.
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Figure 1: Alternating Bit Protocol

from Receiver and forwards it respectively or looses it. The clock y is used to
model transmission delays, which are between d and D units of time.

Before we show in details how to reduce the protocol using techniques of
program slicing, we would like to introduce some intuitions of key notions and
sketch our method.

Synchronization. Transitions with a common label are executed syn-
chronously and an order of variables updating is determined by additional marks
! (first) and ? (next). For example, Sender’s transition with label send data! is
performed together with Faulty Buffer’s transition with label send data?.

Property. For the alternating bit protocol we want to verify the formula ϕ =
AG(Sender.s init⇒ (s bit = r bit)) stating that when Sender is in its location
s init (at the beginning and always when it accepts an acknowledgment), values
of Sender’s bit and Receiver’s bit are equal. The important point to note here
is that the truthfulness of the formula does not depend on values of variables
s data, b data and r data.

Sketch of the method. Computing the slice of a system requires a few steps.
First, given properties to be verified, a slicing criterion is extracted. Next, the
slicing algorithm traces dependencies between items transitively, starting with
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the slicing criterion. Finally, the slice of the system is constructed with relevant
fragments of the system structure.

Slicing criterion. A slicing criterion is composed of two sets. The first
one contains all operations defining observable variables and the second one
contains the observable locations and their immediate predecessors (to ensure
that an observable location would not be identified with non-observable one).
For the alternating bit protocol and the formula ϕ a slicing criterion is the pair
of sets A0 = {s bit = 1 − s bit; , r bit = 1 − r bit; } and R0 = {s init, s check}.

Dependencies. In the slicing literature there are two basic notions of de-
pendence: data dependence and control dependence. Intuitively, an item of
a program data depends on another item, if the latter one can influence the
value of some variable used at the first one. For example Sender’s operation
(s ack = s bit) is data dependent on Faulty Buffer’s operation s ack := b ack;.
For control dependence, an item control depends on a conditional, if the con-
ditional may affect execution of the item. We say that a location q is control
dependent on a location q′, if the reachability of the location q depends on a
decision made in the location q′, namely it depends on enabling conditions of
transitions going out of location q′. For example Sender’s location s init is con-
trol dependent on its location s check and on operations (s ack = s bit) and
¬(s ack = s bit), because there is a cycle from the location s check in which
the location s init is not contained.

For timed automata with discrete data we consider two additional kinds of
dependencies: clock and time dependencies. Clock dependence is an analogue
of data dependence for clocks instead of data variables. The idea of time de-
pendence is as follows: a location q is time dependent on another location q′

from which it is reachable, if in the location q′ time can elapse. For example all
Sender’s locations are time dependent on its locations s wait and s send and
there is no more time dependencies for Sender.

Slicing algorithm. Based on the dependence notions the slicing algorithm
is developed to construct the sets of relevant operations, locations and labels.
Intuitively, relevant elements are those that have impact on a property of in-
terest. The algorithm starts with a slicing criterion and successively marks as
relevant new items, if any other relevant items depend on them. The reduced
system is composed exclusively of relevant parts of the original one. The slice
of the alternating bit protocol constructed according to the slicing algorithm is
shown in Fig. 2. Comparing to the original, the location s produce disappears
in the reduced protocol, because it appears to be non-relevant as no location
depends on it. There are no variables s data, r data and b data as they do not
occur in any of relevant operations.
Experimental results. Verifying that the protocol satisfies the formula ϕ can
be done by one of the model checkers mentioned earlier. To this end constants
d, D, T and N must be instantiated with concrete values. We compare some
aspects of the original and the sliced protocol and focus on discrete parts of
states of the transition systems being verified (that is the set of current locations
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Figure 2: Sliced Alternating Bit Protocol

of the automata and a variables valuation) as our reduction method concerns
mainly these parts. For example, in case of the original protocol we obtain 97
various discrete configurations for N = 1, but 361 configurations for N = 10
and 3331 configurations for N = 100. The sliced protocol, which is insensitive
to the value N, in all cases has 93 configurations.

3 Timed automata with discrete data

3.1 Syntax

Variables. Let V be a finite set of integer variables. The set of arithmetic
expressions over V is defined by the following grammar:

expr := m | y | expr ⊕ expr | − expr | (expr)

where m ∈ ZZ, y ∈ V and ⊕ ∈ {−,+, ∗, /,%}2. By Expr(V ) we denote the set
of all arithmetic expressions. The set of boolean expressions over V is defined
inductively as follows:

φ := true | expr ∼ expr | φ ∧ φ | φ ∨ φ | ¬φ | (φ)

2By / we denote integer division and by % – modulo operation and ZZ denotes the set of
integer numbers, IN — the set of natural numbers and IR+ — the set of non-negative real
numbers.
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where expr ∈ Expr(V ) and ∼ ∈ {=, 6=, <,>,≤,≥}. The set of all boolean
expressions is denoted by Φ(V ). The set of actions over V is defined as follows:

α := ε | y := expr; | α α

where ε denotes an empty sequence, y ∈ V and expr ∈ Expr(V ). The set of all
actions is denoted by Act(V ).

Clocks. Let X be a finite set of real variables, called clocks. The set of clock
constraints over X is defined by the following grammar:

ψ := true | x ∼ c | x1 − x2 ∼ c | ψ ∧ ψ

where x, x1, x2 ∈ X, c ∈ IN and ∼ ∈ {≤, <,=, >,≥}. By Ψ(X) we denote the
set of all clock constraints. Moreover, let X∗ be the set X ∪ x0, where x0 is a
clock whose value is always 0 (its value does not increase with time as values
of the other clocks). Then, an assignment is a function ̺ : X → X∗. Asg(X)
denotes the set of all assignments over X .

Definition 1 (Syntax) A timed automaton with discrete data is a tuple TA =
(Σ, Q, q0, V,X, T, I), where

• Σ is a finite set of labels,

• Q is a finite set of locations,

• q0 is an initial location,

• V is a finite set of integer variables,

• X is a finite set of clocks,

• T ⊆ Q× Σ × Φ(V ) × Ψ(X) × {true, false} × Act(V ) × Asg(X) ×Q is a
transition relation,

• I : Q −→ Ψ(X) is an invariant function.

Each element t = (q, l, φ, ψ, u, α, ̺, q′) of T denotes a transition from the location
q to the location q′, where l is the label of transition t, φ and ψ define enabling
conditions for t, u is the urgency attribute – when it is set, the transition t
has to be executed as soon as it is enabled (we assume that clock constraints
of urgent transitions are equal true3), α is the action to be executed and ̺ is
the clocks assignment. The invariant function assigns to each location q ∈ Q a
clock constraint defining the condition under which an automaton can stay in
q. We write source(t), label(t), guard(t), delay(t), urgency(t), action(t), asgn(t)
and target(t) for q, l, φ, ψ, u, α, ̺ and q′, respectively.

In our example in Section 2, for the sake of clarity, we skip labels of local (non
synchronous) transitions and clock assignments of the form x = x. We assume

3The assumption is necessary to keep the clock constraint representable by convex zones,
(see [5] for details).
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that all transitions are urgent except those having clock constraints different
from true.

The definition of automata used as an input of UppAal [5] is slightly dif-
ferent than ours. Instead of urgent transitions, it introduces urgent labels of
synchronous transitions. Our approach is a little bit more general as it al-
lows any transition to be urgent, not necessary synchronous one. Also, UppAal
supports so-called committed locations. In such locations time cannot elapse.
We model such a behavior by setting as urgent all transitions going out of the
location.

3.2 Semantics

This section shows how to associate a labeled transition system with a timed
automaton with discrete data.
Variables Valuation. We define a variables valuation to be a total mapping
v : V → ZZ. We extend this mapping to expressions in the usual way. Satisfi-
ability of a boolean expression φ ∈ Φ(V ) by a valuation v (denoted as v |= φ)
is defined as follows: v |= true, v |= e1 ∼ e2 iff v(e1) ∼ v(e2), v |= g1 ∧ g2 iff
v |= g1 and v |= g2, v |= g1 ∨ g2 iff v |= g1 or v |= g2, v |= ¬g iff v 6|= g. Let v(α)
denote a valuation v′ defined inductively as follows:

• for α = ε, v′ = v,

• for α = (y := expr; ), for all z ∈ V , if z = y, then v′(z) = v(expr),
otherwise v′(z) = v(z),

• for α = α1 α2, v′ = (v(α1))(α2).

Clock Valuation. A clock valuation is a total mapping τ : X → IR+.
Satisfiability of a clock constraint ψ ∈ Ψ(X) by a clock valuation τ (denoted
as τ |= ψ) is defined inductively as follows: τ |= true, τ |= x ∼ c iff τ(x) ∼ c,
τ |= x1 − x2 ∼ c iff τ(x1) − τ(x2) ∼ c, τ |= ψ1 ∧ ψ2 iff τ |= ψ1 and τ |= ψ2.
For δ ∈ IR+, τ + δ denotes a clock valuation τ ′ such that for all x ∈ X, τ ′(x) =
τ(x) + δ. Moreover, by τ(̺) we denote a clock valuation τ ′ such that for all
x ∈ X , if ̺(x) ∈ X , then τ ′(x) = τ(̺(x)), otherwise τ ′(x) = 0. Finally, by τ0

we denote the initial clock valuation such that for all x ∈ X , τ0(x) = 0.

Definition 2 (Semantics) Semantics of a timed automaton with discrete data
TA = (ΣA, Q, q

0, V,X, T, I) for an initial valuation v0 : V → ZZ is a labeled
transition system S = (S, s0,Σ,−→), where:

• S = {(q, v, τ) | q ∈ Q ∧ v ∈ ZZ
|V |∧ τ ∈ IR+

|X|∧ τ |= I(q)} is the set of
states,

• s0 = (q0, v0, τ0) ∈ S is the initial state,

• Σ = ΣA ∪ IR+ is the set of labels,
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• −→ ⊆ S×Σ×S is the smallest transition relation defined by the following
rules:

– (q, v, τ)
l

−→ (q′, v′, τ ′) iff there exists a transition t = (q, l, φ, ψ, u, α,
̺, q′) ∈ T such that v |= φ, τ |= ψ, v′ = v(α) and τ ′ = τ(̺) |= I(q′),

– (q, v, τ)
δ

−→ (q, v, τ + δ) iff τ + δ |= I(q) and for all transitions
t = (q, l, φ, ψ, u, α, ̺, q′) ∈ T , u = false or v 6|= φ.

Initially, all variables have theirs initial values and all clocks are set to 0. Being
in a state s = (q, v, τ) the system can:

• either execute an enabled transition t and move to the state (q′, v′, τ ′),
where q′ is the target of t, the variables valuation is changed according
to the action of t and the clocks valuation is changed according to the
assignment of t,

• or let time δ pass and move to the state (q, v, τ + δ), as long as no urgent
transition is enabled and τ + δ satisfy I(q).

Runs. For (q, v, τ) ∈ S, let (q, v, τ) + δ denote (q, v, τ + δ). An s−run π of

TA is a sequence of states: s0
δ0→ s0 + δ0

a0→ s1
δ1→ s1 + δ1

a1→ s2
a0→ . . ., where

s0 = s ∈ S, ai ∈ Σ and δi ∈ IR+ for each i ≥ 0. A run π is called progressive
iff

∑
i∈IN δi is unbounded. TA is progressive if all its runs are progressive. For

simplicity in our work we consider only progressive automata. The method of
checking progressiveness for timed automata ([23]) can be use also for timed
automata with discrete data.

Parallel Composition. We assume that a system to be verified is described
as a set of automata running parallel. Automata communicate with each other
via shared variables and perform transitions with shared labels synchronously.
There are various definitions of parallel composition. We choose the one de-
termining multi-synchronization which requires that transitions with a shared
label have to be executed synchronously by all automata containing this label.
To obtain clear semantics of variables updating it is necessary to fix the order of
actions in case of synchronous transitions. The transition whose action should
be taken first is marked with ! and it is called an output transition. Transitions
whose actions should be taken next are marked with ? and they are called input
transitions. We assume additionally that input transitions do not update shared
variables.

Let TA1, . . .TAn be a set of timed automata with discrete data and let
Σ(l) = { 1 ≤ i ≤ n | l ∈ Σi } denote a set of numbers of automata containing the

label l. Let also Σ̃i =
⋃

l∈Σi
{l!, l?, l} and for l̃ ∈ Σ̃i let l̃ ≃ l, iff l̃ ∈ {l!, l?, l}.

By { aj }j∈Y we denote a sequence (superposition) of actions aj for j ∈ Y ⊆
{1, . . . , n}.

Definition 3 (Parallel Composition). Let TAi = (Σ̃i, Qi, q
0
i , Vi, Xi, Ei, Ii)

for i = 1, 2, . . . , n be a set of timed automata with discrete data such that Xi ∩
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Xj = ∅ for all i 6= j. A parallel composition of n automata TAi (denoted
as TA1 ‖ TA2 ‖ . . . ‖ TAn) is a timed automaton with discrete data TA =
(Σ, Q, q0, V,X,E, I), where:

• Σ =
⋃n

i=1 Σi,

• Q =
∏n

i=1Qi,

• q0 = (q01 , . . . , q
0
n),

• V =
⋃n

i=1 Vi,

• X =
⋃n

i=1Xi,

• transition relation E is defined as follows:
((q1, . . . , qn), l, φ, ψ, u, a, ρ, (q′1, . . . , q

′
n)) ∈ E iff

– for all i ∈ Σ(l) there exists (qi, li, φi, ψi, ui, ai, ρi, q
′
i) ∈ Ei such

that there exists j ∈ Σ(l) for which lj = l! and lj = l? for all
i ∈ Σ(l) \ {j} and φ =

∧
i∈Σ(l) φi, ψ =

∧
i∈Σ(l) ψi, u =

∨
i∈Σ(l) ui,

a = aj{ ai }i∈Σ(l)\{j}, ρ =
⋃

i∈Σ(l) ρi and for all i ∈ {1, . . . , n} \ Σ(l),

q′i = qi, or

– for all i ∈ Σ(l) there exists (qi, li, φi, ψi, ui, ai, ρi, q
′
i) ∈ Ei, such

that li = l and φ =
∧

i∈Σ(l) φi, ψ =
∧

i∈Σ(l) ψi, u =
∨

i∈Σ(l) ui,

a = { ai }i∈Σ(l), ρ =
⋃

i∈Σ(l) ρi and for all i ∈ {1, . . . , n} \ Σ(l),

q′i = qi,

• I(q1, . . . , qn) =
∧m

i=1 Ii(qi).

Model. Let S = (S, s0,Σ,−→) be the labeled transition system of the
parallel composition of a set of automata TA1, . . . , TAn. An atomic proposition
is of the form: TAi.q for some 1 ≤ i ≤ n, where q ∈ Qi or e1 ∼ e2, where
e1, e2 ∈ Expr(V ) and ∼ is a relational operator. We denote the set of all atomic
propositions by P . In order to reason about systems represented as a set of
automata we define a labeling function V : S → 2P . For s = (q1, . . . , qn, v, τ) ∈
S, V(s) is defined as follows: e1 ∼ e2 ∈ V(s) iff v |= e1 ∼ e2 and
TAi.q ∈ V(s) iff qi = q. A model is a pair M = (S,V).

4 Slicing

In model checking applications typically we check if a given temporal logic
formula ϕ is satisfied for a system P . We would like for a sliced system P ′ that
we produce to satisfy formula ϕ if and only if the system P does. But the sliced
system needs only to preserve behavior of those parts of the system which can
influence the truth of the formula ϕ.
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4.1 Preliminaries

As before let TA1, . . . , TAn be a set of timed automata with discrete data, where
Qi and Ti are the set of locations and the of set transitions of the i-th automaton,
respectively. We use Q for

⋃n
i=1Qi, Σ =

⋃n
i=1 Σi and T for

⋃n
i=1 Ti, to shorten

the notation. For q ∈ Q let out(q) = {t ∈ T | q = source(t)} be the set of
outgoing transitions and in(q) = {t ∈ T | q = target(t)} be the set of incoming
transitions. A location q ∈ Q is called an ending location, if out(q) = ∅.

Paths. A path in the automaton TAi from a location q1 ∈ Qi to a location
qm ∈ Qi is a sequence of locations and transitions of the form q1t2q2 . . . tmqm
such that m ≥ 2, qj ∈ Qi and tj ∈ out(qj−1) ∩ in(qj) for all j = 2, . . . ,m.
We say that a path q1t2q2 . . . tmqm contains (or goes through) a location q, if
there exists j = 1, . . . ,m such that q = qj (similarly for transitions). A path
q1t2q2 . . . tmqm is a cycle, if q1 = qm. A cycle is called a loop, if m = 2. We say
that a path contains a cycle if it contains one of its locations twice. We call a
path maximal if it contains an ending location or a cycle. Finally, we call the
location q′ ∈ Qi reachable from the location q ∈ Qi (we write q =⇒ q′), if there
exists a path from q to q′. We assume that each location of an automaton is
reachable from its initial location.

Reducible control flow. We say that a location q1 ∈ Qi dominates a location
q2 ∈ Qi, if every path from the initial location q0i to q2 goes through q1. Also,
a location q1 post-dominates a location q2, if every maximal path from q2 goes
through q1.

Various definitions of a reducible flow graph are known. We adopt the one
given in [1]. We say also that an automaton has a reducible control flow, if its
transitions can be divided into two disjoint groups: one forms an acyclic graph
and the other consists of transitions whose sources dominate their targets. Such
an automaton has an important property that each cycle can be entered through
exactly one location. In our work we consider only automata with reducible
control flow. This is a secondary simplification since non-reducible control flows
rarely occur in practice.

Operations. An atomic assignment of the form y := e, where y ∈ V and
e ∈ Expr(V ) and a boolean expression which is a guard of a transition are
called operations. We use opers(action(t)) to denote the set of operations of
the action of the transition t and opers(t) for opers(action(t)) ∪ {guard(t)}.
Ops(V ) =

⋃
t∈T opers(t) denotes the set of all operations of a set of automata.

For a location q ∈ Q, guards(q) =
⋃

t∈out(q) guard(t) denotes the set of guards
of all transitions going out of q.

Used and define variables. Let vars(a) ⊆ V be the set of variables which
occur in the operation a ∈ Ops(V ) and vars(e) ⊆ V be the set of variables
which appear in the expression e ∈ Expr(V ). For an operation a ∈ Ops(V ),
def(a) ⊆ V is the set of defined variables, where def(a) = {y} for a = (y := e)
and def(a) = ∅ for a ∈ Φ(V ). Also, use(a) ⊆ V is the set of used variables,
defined as vars(e) for a = (y := e) and vars(a) for a ∈ Φ(V ).

12



Reaching definitions. Let v ∈ V , t1 ∈ Ti, t2 ∈ Tj , where i, j = 1, . . . , n.
We say that the definition of v in an operation a1 ∈ opers(t1) is reaching for
an operation a2 ∈ opers(t2), if v ∈ def(a2) ∩ use(a1) and one of the following
holds:

• t1 = t2 and a2 is followed4 by a1 and v /∈ def(a3) for any operation
a3 ∈ opers(t1) between a2 and a1,

• v /∈ def(a) for any a ∈ opers(t2) following a2 and v /∈ def(a) for any
a ∈ opers(t1) preceding a1 and target(t2) = source(t1) or there exists
a path from the location target(t2) to the location source(t1) such that
v /∈ def(a) for any a ∈ opers(t) for any t contained in the path,

• i 6= j.

Used and defined clocks. For an assignment ̺ ∈ Asg(X), def(ρ) = {x ∈
X | ρ(x) 6= x} is the set of defined clocks and use(̺) = {x ∈ X | ∃y ∈ X x 6=
y ∧ ρ(y) = x} is the set of used clocks. For a clock constraint ψ ∈ Ψ(X), let
use(ψ) ⊆ X be the set of clocks which appear in ψ. Finally, we define clocks(q)
as use(I(q)) ∪

⋃
t∈out(q) use(delay(t)).

4.2 Slicing algorithm

In this part we define the slicing criterion, the dependence relations as well as
the slicing algorithm introduced informally in Section 2.

Let Pϕ ⊆ P be the set of atomic propositions of a formula ϕ. Let locs(Pϕ)
denote the set of observable locations, i.e., locations which appear in propo-
sitions of Pϕ. Let also vars(Pϕ) denote the set of observable variables, i.e.,
variables which appear in propositions of Pϕ. A slicing criterion for a set of
automata is defined by the set of propositions Pϕ.

Definition 4 (Slicing criterion) The slicing criterion for a set of timed au-
tomata with discrete data TA1, . . . , TAn with respect to a set Pϕ of atomic
propositions is a pair (R0, A0), where:

R0 = locs(Pϕ) ∪ {q ∈ Q | ∃t∈out(q) target(t) ∈ locs(Pϕ)}
A0 = {a ∈ Ops(V ) | def(a) ∩ vars(Pϕ) 6= ∅}

Definition 5 (Data dependence) An operation a1 ∈ Ops(V ) is data depen-

dent on an operation a2 ∈ Ops(V ) (we write a1
dd
−→ a2), if there is a variable

v ∈ V such that the definition of v at a2 is reaching for a1.

Definition 6 (Control dependence) For two locations q1, q2 of the same pro-
cess Qi, where 1 ≤ i ≤ n, we say that q1 is control dependent on q2 (we write

q1
cd
−→ q2), if the location q2 is not post-dominated by q1 and there is a path π

from q2 to q1 such that each location contained in π different from q2 is post-
dominated by q1.

4Actions are sequences of operations, so the terms: “follow” and “between” are well defined.
Clearly, the action of a transition follows its guard.
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Definition 7 (Clock dependence) A location q1 ∈ Qi is clock dependent

on a location q2 ∈ Qi, for 1 ≤ i ≤ n, (we write q1
xd
−→ q2), if there exists

a clock x ∈ X and a transition t ∈ out(q2) such that x ∈ def(asgn(t)) ∩
clocks(q1) and target(t) = q1 or there exists a path π from target(t) to q1 such
that asgn(t′)(x) = x for all transitions t′ contained in π.

Definition 8 (Time dependence) For two locations q1, q2 of the same process

Qi, where 1 ≤ i ≤ n, we say that q1 is time dependent on q2 (we write q1
td
−→

q2), if q1 is reachable from q2 and the following holds:

(∃t∈out(q2) (urgency(t) 6= true ∨ Σ(label(t)) > 1)
∨ (

∨
t∈out(q2) guard(t)) 6= true ∨ I(q2) 6= true )

∧
(
I(q2) = true ∨ ∀x∈use(I(q2)) (I(q2) 6⇒ (x = 0) ∨ ∃t∈in(q2)asgn(t)(x) 6= x0))

)

The definition of time dependence uses a safe syntactic approximation of its
semantic intuition. If given conditions are violated, then in location q2 time
cannot elapse. Two cases are considered. In the first one, all transitions going
out of q2 are urgent and always one of them is enabled. To check the last
condition some heuristic are necessary. We use simple comparison of strings to
check, whether guards are of the form b and ¬b. In the second case the location
invariant contains a constraint of the form x = 0, where x ∈ X and assignments
of all incoming transitions contain setting x to x0.

We define the dependence relation
d

−→ on locations of an automaton to be the

union of previously defined relations:
cd
−→,

xd
−→ and

td
−→. The set Aϕ ⊆ Ops(V )

of relevant operations and set Rϕ ⊆ Q of relevant locations with respect to the
set Pϕ of atomic propositions are defined in terms of the transitive closure of
the dependence relations by the algorithm shown in Fig. 3. The algorithm
describes also how operations, locations and labels depend on each other. The
set of relevant labels is denoted by L.

The construction of the setsR andA starts with the slicing criterion (R0, A0).
Then, in each step we add to the set A the guards of the transitions going out
of locations: on which depend the locations from R or having an outgoing tran-
sition with an operation from A in its action. Then, the transitive closure of the
data dependence relation is computed. To the set R are added locations with
at least one outgoing transition: executing an operation from A, guarded by an
operation from A or having a label from L. Next, the transitive closure of the
dependence relation on the set of locations obtained so far is computed. The set
L is augmented by the synchronizing labels of transitions going out of locations
from R. The loop ends when no new location, operation nor label is added. By
QR we denote the set of locations from which there is a path to some location
contained in R. Finally, the set of relevant locations Qϕ is composed of the set
R and the locations from Q \QR, which have immediate predecessors in QR.

Let us present how Algorithm 1 works for our example. At the beginning
R = {s init, s check}, A = {s bit = 1 − s bit; , r bit = 1 − r bit; } and L = ∅.
According to the line 5 of the algorithm to the set A are added the operations
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Slicing algorithm.

1. A := A0; R := R0; L := ∅;
2. A′ := ∅; R′ := ∅; L′ := ∅;
3. while A 6= A′ ∨R 6= R′ ∨ L 6= L′ do
4. A′ := A; R′ := R; L′ := L;

5. A′′ := A ∪ {guards(q) | ∃q′∈R q′(
d

−→)∗q
∨ ∃t∈out(q) opers(t) ∩A 6= ∅};

6. A := A′′ ∪ {a ∈ Ops(V ) | ∃a′∈A′′ a′ (
dd
−→)∗ a};

7. R′′ := R ∪ {q ∈ Q | ∃t∈out(q) opers(t) ∩ A 6= ∅
∨ ∃l∈L label(t) ≃ l};

8. R := R′′ ∪ {q ∈ Q | ∃q′∈R′′ q′ (
d

−→)∗ q};
9. L := L′ ∪ {l ∈ Σ | |Σ(l)| > 1 ∧ ∃q∈R ∃t∈out(q) label(t) ≃ l};
10. od
11. QR := {q ∈ Q | ∃q′∈R q =⇒ q′};
12. Qϕ := R ∪ {q ∈ Q \QR | ∃t∈in(q) source(t) ∈ QR};
13. Aϕ := A;

Figure 3: Algorithm of computing relevant locations and operations.

(s ack = s bit) and ¬(s ack = s bit) (as the location s init ∈ R control depends
on the location s check) and the operations (r tbit = r bit) and ¬(r tbit =
r bit), (since r bit := 1 − r bit;∈ A). Then, according to the line 6 the set A
is successively augmented by the operations on which depend the operations
included in A so far, that is s ack := b ack; (on which (s ack = s bit) depends),
r tbit := b bit; (on which (r tbit = r bit) depends), b bit := s bit; (on which
r tbit := b bit; depends) and both operations b ack := r bit;. (on which s ack :=
b ack; depends). Next, to the set R are added locations: s send, r ack, b data
and b ack as their outgoing transitions contain operations from A (line 8) and
the locations s wait, r init and b init since there are locations from R time
dependent on them (line 9). The set L is composed of all synchronizing labels
(line 10). The second iteration does not change any of the sets A, L and R, so
the loop ends. As in each automata the locations from R are reachable from
each location, the set QR = Q and the set of the relevant locations Qϕ = R.

We say that there is an invisible path from the location q1 ∈ Qi to the

location qm ∈ Qi (we write q1
inv
=⇒ qm), if there is a path q1t1q2t2 . . . qm such

that m > 2 and qj ∈ Qi \Q
ϕ
i for j = 2, . . . ,m− 1 (all locations contained in the

path except q1 and qm are not relevant).
An action reduced to relevant operations action(t)|Aϕ is defined as a1a2 . . .

ak, where for all j = 1, . . . , k, aj ∈ opers(action(t)) ∩ Aϕ and the order of
operations is the same as in action(t) (non-relevant operations are erased). We
define also a guard reduced to relevant operations guard(t)|Aϕ as guard(t), if
guard(t) ∈ Aϕ and true, otherwise.

Definition 9 (Slice) Given a set of timed automata with discrete data TAi =
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(Σi, Qi, q
0
i , Vi, Xi, Ti, Ii) for i = 1, 2, . . . , n and a valuation v0 : V → ZZ, where

V =
⋃n

i=1 Vi, a slice with respect to the set Pϕ of atomic propositions is a set

of timed automata with discrete data TA′
i = (Σ′

i, Q
′
i, q

0
i

′
, V ′

i , X
′
i, T

′
i , Ii)

′ for i =

1, 2, . . . , n and a valuation v0′ : V ′ → ZZ, where V ′ =
⋃n

i=1 V
′
i , v0′(V ′) = v0(V ′)

and for each i such that Qi ∩Qϕ 6= ∅ the following holds:

• Q′
i = Qi ∩Qϕ,

• q0i
′

=

{
q0i , if q0i ∈ Qϕ

i

q such that q0i
inv
=⇒ q, otherwise

• V ′
i = Vi ∩

⋃
a∈Aϕ vars(a)

• X ′
i = Xi ∩

⋃
q∈Qϕ clocks(q)

• T ′
i is the smallest set such that for each q ∈ Q′

i∩Q
R and for each t ∈ out(q)

there exists t′ ∈ T ′
i , where:

– source(t) = source(t′),

– label(t′) = label(t),

– guard(t′) = guard(t)|Aϕ ,

– delay(t′) = delay(t),

– urgency(t′) = urgency(t),

– action(t′) = action(t)|Aϕ ,

– asgn(t′) = asgn(t)|X′

i
,

– target(t′) =

{
target(t), if target(t) ∈ Q′

i

q such that target(t)
inv
=⇒ q, otherwise

• Σ′
i =

⋃
t′∈T ′

i
label(t′),

• I ′
i(q) =

{
I(q), if q ∈ QR

i ∩Q′
i

true, otherwise

The set of locations of each automaton of the sliced system consists of relevant
locations of the original automaton. If an automaton has no relevant locations,
it means that the whole automaton is not relevant in context of considered
properties. The set of variables of the slice consists of variables of the original
system which appear in relevant operations. Similarly for the clocks. In fact,
the only clocks that are reduced are used exclusively to ensure that time cannot
progress in some locations. For each automaton the set of transitions is com-
posed of transitions of the original automaton going out of relevant locations.
If an original transition goes to a non relevant location, then the target of its
counterpart in the slice is the relevant location to which an invisible path exits.
It can be shown that for a relevant location and each of its outgoing transitions
there exists exactly one such location (see the appendix of the paper [18] for the
proof).
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4.3 Correctness

We conclude with notions of correctness of our slicing method. Let S =
(S, s0,Σ,−→) be a labeled transition system for a set of timed automata with

discrete data TA1, . . . , TAn and S′ = (S′, s0
′
,Σ′,−→′) be the labeled transition

system for its slice TA′
1, . . . , TA

′
n with respect to the set of atomic propositions

Pϕ. Labeling functions V : S → 2P ϕ

and V ′ : S′ → 2P ϕ

are defined as in
Section 3.2.

Definition 10 Let s = (q1, . . . , qn, v, τ) ∈ S, s′ = (q′1, . . . , q
′
n, v

′, τ ′) ∈ S′ and
∼= ⊆ S × S′. We say that the state s is related to the state s′ (we write s ∼= s′)
iff:

1. for each pair qi ∈ Qi and q′i ∈ Q′
i, where i = 1, . . . , n

(a) if qi ∈ QR
i ∩Q′

i, then qi = q′i, otherwise

(b) if qi ∈ QR
i \Q′

i, then qi
inv
=⇒ q′i, otherwise

(c) if qi ∈ Qi \QR
i , then q′i

inv
=⇒ qi or q′i = qi and

2. v(V ′) = v′(V ′) and

3. τ ′(X ′) = τ(X ′)

Lemma 1 The relation ∼= ⊆ S × S′ is a visible bisimulation([12]) between two
structures M = (S,V) and M ′ = (S′,V ′).

The proof of Lemma 1 can be found in the appendix. It follows from [12]
that two structures M = (S,V) and M ′ = (S′,V ′) are equivalent w.r.t. CTL X*
([9]) formulas if there exists a visible bisimulation between the states of two
structures. Thus, the consequence of Lemma 1 is that a model of a system
satisfies a CTL X* formula ϕ, if and only if a model of its slice with respect to
the set of propositions Pϕ satisfies ϕ.

5 Conclusions

The paper shows how the slicing technique can be adapted in model check-
ing of systems modeled as a set of timed automata with discrete data. We
have extended standard dependency relations by dependencies that arise when
concerning time features and presented the method of constructing the sliced
system with respect to the set of propositions of the formula to be verified. The
presented method of reduction preserves the temporal logic CTL X*.

The most important advantage of our approach is that it can be used prior
any existing algorithm or tool analyzing timed automata with discrete data.
Also it is completely orthogonal to any other abstraction methods and can
be combined with them to yield a more powerful tool in terms of state space
reduction. The method is efficient since it works on syntactic structure of a
system.
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A Appendix (proof of Lemma 1)

We begin by defining a few notions and properties that will be useful in the
proof. We say, that a transition with the label a is invisible, if for every pair of
states s1, s2 ∈ S, such that s1

a
−→ s2, it holds V(s1) = V(s2).

Definition 11 (Visible bisimulation [12]). A relation ∼=vb⊆ S × S′ is a
visible simulation between two structures M = (S,V) and M ′ = (S′,V ′), where
S = (S, s0,Σ,−→) and S′ = (S′, s′0,Σ

′,−→′), if s0 ∼=vb s
′
0 and for s ∼=vb s

′ the
following conditions hold:

1. V(s) = V(s′).

2. Let s
a

−→ s1. There are two cases:

• a is invisible and s1 ∼=vb s
′, or

• there exists a path s′0
c0−→ s′1

c1−→ . . .
cn−1

−→ s′n
cn−→ s′n+1 in M ′, where

s′ = s′0 and s1 ∼=vb s
′
n+1, such that s ∼=vb s

′
i for 0 ≤ i ≤ n and ci

is invisible for 0 ≤ i < n. Furthermore, if a is visible, then cn = a.
Otherwise, cn is invisible.

3. If there is an infinite path s = s0
a0−→ s1

a1−→ . . . in M , where ai is invisible
and si

∼=vb s
′ for i ≥ 0, then there exists a transition s′

c
−→ s1, such that

c is invisible, and for some j > 0, sj
∼=vb s

′.

A relation ∼=vb is a visible bisimulation if both ∼=vb and ∼=T
vb (the transpose of

∼=vb) are visible simulations.

We say that a transition t ∈ Ti and a transition t′ ∈ T ′
i correspond to

each other if and only if source(t′) = source(t), guard(t′) = guard(t)|Aϕ ,
action(t′) = action(t)|Aϕ , label(t′) = label(t) provided |Σ(label(t))| > 1,
delay(t′) = delay(t), urgency(t′) = urgency(t) and target(t′) = target(t) pro-

vided target(t) ∈ Q′
i, otherwise target(t)

inv
=⇒ target(t′).

Let s = (q1, . . . , qn, v, τ) ∈ S. A transition t ∈ Ti with a label l ∈ Σi is
enabled at a state s (we write enabled(t, s)), if for every j ∈ Σ(l) there exists
t ∈ Tj such that source(t) = qj and v |= guard(t). A transition t ∈ Ti is fireable
at a state s (we write fireable(t, s)), if enabled(t, s) and τ |= delay(t).

Proposition 1 For each location q ∈ Q′
i ∩ QR

i and for each transition t ∈
out(q) ⊆ Ti there exists a corresponding transition t′ ∈ out(q) ⊆ T ′

i . For each
location q′ ∈ Q′

i and for each transition t′ ∈ out(q′) ⊆ T ′
i there exists a corre-

sponding transition t ∈ out(q′) ⊆ Ti.

Proof:
Follows immediately from Def. 9. ⊓⊔

Proposition 2 For each location q ∈ Qi ∩QR
i , such that none of the locations

from Q′
i depends on q, there exists exactly one location q1 ∈ Q′

i, such that for
all transitions t ∈ out(q) ⊆ Ti, if target(t) ∈ Q′

i, then target(t) = q1, otherwise

target(t)
inv
=⇒ q1.
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Proof:
Conversely, suppose that there is an invisible path π from q to q1 and an invisible
path π′ from q to q2 6= q1. Suppose that q is not post dominated by q1. There
are two cases. If the path π contains locations which are not post dominated by
q1, then let q3 be such a location, which is nearest to q1. But, in such case q1
is control dependent on q3 and q3 ∈ Q′

i according to Algorithm 1, which leads
to a contradiction with the fact that q3 is contained in an invisible path. If all
locations contained in π except q are post dominated by q1, then q1 is control
dependent on q, which in turn is a contradiction with the assumption.

Similarly, we show that q is post dominated by q2. Since both q1 and q2 post
dominate q, q1 is reachable from q2 and q2 is reachable from q1 which leads to
a contradiction with the fact that the automaton has a reducible control flow.
Similar arguments apply to other cases. ⊓⊔

Proposition 3 Let q ∈ Q′
i ∩ Q

R
i , where 1 ≤ i ≤ n, s = (q1, . . . , qn, v, τ) ∈ S,

s′ = (q′1, . . . , q
′
n, v

′, τ ′) ∈ S′ and s ∼= s′.

1. If a transition t ∈ out(q) ⊆ Ti is enabled at s, then each transition t′ ∈ T ′
i

corresponding to t is enabled at s′.

2. If a transition t ∈ out(q) ⊆ Ti is fireable at s, then there exists a transition
t′ ∈ T ′

i corresponding to t, which is fireable at s′.

3. If a transition t′ ∈ out(q) ⊆ T ′
i is enabled at s′, then there exits a transition

t ∈ Ti corresponding to t′, which is enabled at s.

4. If a transition t′ ∈ out(q) ⊆ T ′
i is fireable at s′, then there exits a transition

t ∈ Ti corresponding to t′, which is fireable at s.

Proof:
Let t ∈ out(q) ⊆ Ti and t′ ∈ T ′

i be a pair of corresponding transitions.

1. Since enabled(t, s) it follows that q = source(t) = qi and v |= guard(t).
By Def. 10.1 we have qi = q′i. This gives source(t′) = source(t) = qi =
q′i. Besides guard(t′) = guard(t)|Aϕ . There are two cases: guard(t′) =
guard(t) or guard(t′) = true. By Def. 10.2 v(V ′) = v′(V ′). We have
v′ |= guard(t′) since vars(guard(t′)) ⊆ V ′. Therefore t′ is enabled at s′.

2. Since fireable(t, s) it follows that enabled(t, s). As shown above each
transition corresponding to t is enabled at s′. By Def. 10.3 τ = τ ′.
Next, by Def. 9 there exists a transition t′ corresponding to t such that
delay(t) = delay(t′). From this we have τ ′ = τ |= delay(t) = delay(t′).
Therefore t′ is fireable at s′.

3. Assume enabled(t′, s′). Proposition 1 shows that there exists transition
t ∈ Ti corresponding to t′. We have two cases: there exists transition
t ∈ Ti corresponding to t′ such that guard(t) = guard(t′) or for each
transition t ∈ Ti corresponding to t′, guard(t) 6= guard(t′) = true. In
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the first case the same reasoning as above applies. In the other case none
of the locations from Q′

i ∩ Q
R
i depends on q. Indeed, if such a location

exists, then according to Algorithm 1 the guards of its outgoing transitions
would be relevant and guard(t′) would be equal to guard(t). Similarly,
we have |Σ(label(t)| = 1. Next, by Def. 8 there is at least one transition
t′′ ∈ out(q) enabled at s and urgency(t′′) = urgency(t) = urgency(t′).
Then, from guard(t′′) 6= guard(t′) = true we conclude that there is no
relevant operation in action of t′′. Thus action(t′) = ε = action(t′′)|Aϕ .
Since none of the locations from Q′

i ∩ QR
i depends on q, Proposition 2

holds, namely: if target(t′) ∈ Q′
i, then target(t′′) = target(t′), otherwise

target(t′′)
inv
=⇒ target(t′). Combining these we obtain that t′′ correspond

to t′ end t′′ is enabled at s.

4. The proof runs as before.
⊓⊔

Proposition 4 Let s = (q1, . . . , qn, v, τ) ∈ S, s′ = (q′1, . . . , q
′
n, v

′, τ ′) ∈ S′ and
s ∼= s′. qi ∈ Qi \QR

i iff q′i ∈ Q′
i \Q

R
i .

Proof:
Conversely, suppose that qi ∈ Qi\Q

R
i and q′i ∈ Q′

i∩Q
R
i . From this it follows that

qi 6= q′i. Hence, by Def. 10.1(c) we have q′i
inv
=⇒ qi. But according to Algorithm 1

the set Q′
i contains the locations from Qi \QR, which have predecessors in QR

i .
Thus, there is no invisible path from q′i to qi, which leads to a contradiction.
Next, suppose that qi ∈ QR

i and q′i ∈ Q′
i \ Q

R
i . This gives qi 6= q′i. Hence,

qi
inv
=⇒ q′i must hold to satisfy Def. 10.1(c), which again leads to a contradiction

with the fact that the locations from Qi \ Q
R, which have predecessors in QR

i

are contained in Q′
i. ⊓⊔

Proposition 5 Let t ∈ Ti, v
′
1 = v1(action(t)) and v′2 = v2(action(t)|Aϕ). If

v1(V ′) = v2(V ′), then v′1(V ′) = v′2(V ′).

Proof:
According to the definition all operations of action of t on variables from V ′ are
included in the action reduced to relevant operations in the same order. Since
v1(V ′) = v2(V ′), it follows that after the execution of the same sequence of
operations v′1(V ′) = v′2(V ′). ⊓⊔

Proof of Lemma 1:
We show that the relation ∼= satisfies conditions of Def. 11. It is easy to check
that s0 ∼= s′0. We proceed to prove that V(s) = V ′(s′). for s ∈ S, s′ ∈ S′, where
s ∼= s′. By Def. 4 and 9 we have vars(Pϕ) ⊆ V ′. By Def.10.2 v′(V ′) = v(V ′).
Hence, (e1 ∼ e2) ∈ V(s) iff (e1 ∼ e2) ∈ V ′(s′) for e1, e2 ∈ Φ(V ). It remains
to show that (TAi.q) ∈ V(s) iff (TA′

i.q) ∈ V ′(s′) for q ∈ states(Pϕ). By Def. 4
states(Pϕ) ⊆ Q′

i ∩Q
R
i .

1. if qi ∈ Q′
i ∩Q

R
i , then by Def. 10.1(a) q′i = qi.
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2. if qi ∈ QR
i \ Q′

i, then Def. 10.1(b) qi
inv
=⇒ q′i. Since qi /∈ Q′

i, we have
q 6= qi. Suppose q′i = q. According to Def. 4 predecessors of locations
from locs(Pϕ) are contained in the set Q′

i. Therefore there is no invisible
path from qi to q′i = q, which leads to a contradiction.

3. if qi ∈ Qi \ QR
i , then qi 6= q. Proposition 4 gives q′i ∈ Q′

i \ Q
R
i , hence

q 6= q′i.

From this we see that q = qi iff q = q′i which completes the proof of V(s) = V ′(s′).
( ⇒ )

Let sk = (qk
1 , . . . , q

k
n, v

k, τk) ∈ S, s′ = (ql
1
′
, . . . , ql

n

′
, vl′, τ l′) ∈ S′. In this part of

the proof we show that, if sk
∼= s′l and sk

ak−→ sk+1, then one of the following
two cases holds (as in Item 2 of Def. 11):

k
a

a
l

s’
l

s’
l+1

s
k

s
k+1

s
k

s
k+1

k
a

s’
l

case 1 case 2

case 1 there exists state s′l+1 and there exists transition with the label a′l, such

that s′l
a′

l−→ s′l+1 and sk+1
∼= s′l+1 and if ak is visible, then a′l = ak,

otherwise a′l is invisible,

case 2 sk+1
∼= s′l and ak is invisible.

The proof falls into two parts.

1. ak ∈ Σ. Let TAi be one of automata performing a transition with the
label ak.

case 1 In case of qk
i ∈ Q′

i ∩Q
R Proposition 3.2 shows that there exists a

transition corresponding to tk, which is fireable at s′. If target(tk) ∈

Qi, then qk+1
i = target(tk) = target(t′l) = ql+1

i

′
. Otherwise, by

Proposition 2 qk+1
i = target(tk)

inv
=⇒ target(t′l) = ql+1

i

′
. It is clear

that current locations of automata not performing any transition stay
unchanged. This proves that Item 1 of the Def. 10 holds for sk+1 and
s′l+1. Satisfaction of Item 2 follows immediately from Proposition 5.
It is easy to check that Item 3 is also satisfied. Combining these gives
sk+1

∼= s′l+1. Clearly, either label(t′l) = label(tk), which gives a′l = ak

or V(sk) = V(sk+1), which follows that ak is invisible.
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case 2 In case of qk
i ∈ QR

i \Q′
i Proposition 2 gives qk+1

i

inv
=⇒ ql

i

′
. Other-

wise, qk
i ∈ Qi \QR

i and qk+1
i ∈ Qi \QR

i . By Def. 10.1(c) ql
i

′ inv
=⇒ qk

i

or qk
i = ql

i

′
. Therefore ql

i

′ inv
=⇒ qi

k+1. We see at once that Item 2
and 3 of Def. 10 are also satisfied. By the above sk+1

∼= s′l. Since
V(sk) = V(sk+1), it follows that ak is invisible.

2. ak ∈ IR+, which represents time progress. In this case qk+1
i = qk

i for

all i, vk+1 = vk and τk+1 = τk + ak. Obviously, ql+1
i

′
= ql

i

′
for all i

and vl+1′ = vl′. Furthermore τ l+1′ = τ l′ + ak = τk + ak = τk+1. This
proves sk+1

∼= s′l+1, where s′l
ak−→ s′l+1. We need only to show that time

progress of amount ak is possible at the state s′l. Recall that a timed
transition of duration ak > 0, can be performed at s′l iff for all transitions
t′ ∈ T ′

i , ¬enabled(t′, s′l) or ¬urgency(t′) and τ + ak |= I ′(q′i) for all i.
Let t′ ∈ T ′

i for arbitrary i. Suppose that enabled(t′, s′l) and urgency(t′).
There are three cases. If qk

i ∈ Q′
i ∩ Q

R
i , then by Def. 10 it follows that

ql
i

′
= qk

i . Hence, from Proposition 3.3 there exists t ∈ T corresponding to
t′ that is enabled at the state sk. A contradiction with time progress. If
qk
i ∈ QR

i \ Q′
i, then it follows from Def. 8 that time cannot progress at

the location qk
i , which again leads to a contradiction. If qk

i ∈ Qi \ QR
i ,

then from Proposition 4 we see that ql
i

′
∈ Q′

i \Q
R
i . But by Def. 9 we have

that ql
i

′
is an ending location. A contradiction. This proves that for all

transitions t′ ∈ T ′
i , ¬enabled(t′, s′l) or ¬urgency(t′). It follows easily from

τ + ak |= I(qi) that τ + ak |= I ′(q′i) for all i.

( ⇐ )

In the last part of the proof we show that if sk
∼= s′l and s′l

a′

l−→ s′l+1 in M ′, then

there exists a path sk
ak−→ sk+1

ak+1

−→ . . .
ak+p−1

−→ sk+p

ak+p

−→ sk+p+1 in M , such
that sk+p+1

∼= s′l+1 and sk+j
∼= s′l for 0 ≤ j ≤ p and the transitions with labels

ak+j are invisible for 0 ≤ j < p. Furthermore, if a transition with the label a′l
is visible, then ak+p = a′l, otherwise transition with the label ak+p is invisible.

s’
l+1

s
k

s’
l
s’
l

l
a

a

s s

k+p

k+p k+p+1

’

Again, there are two cases:

1. a′l ∈ Σ′ is an action transition. Let TAi be the one of automata performing
the transition with the label a′l and t′l be this transition. We give only the
main ideas for this part of the proof.

24



Execution of the transition t′l in S′ corresponds the execution of a sequence
of transitions tk, . . . , tk+p in S for p ≥ 0, such that the transition tk+p

corresponds to the transition t′l and if p > 0, then target(tp+k−1) = qk+p
i =

ql
i

′
. Intuitively, if qk

i = ql
i

′
, which means that the current location of TAi is

relevant, then TAi executes the transition corresponding to t′l. Otherwise,

if qk
i

inv
=⇒ ql

i

′
, then TAi executes the sequences of transitions along an

invisible path from qk
i to qk+p

i = ql
i

′
and the transition corresponding to

t′l.

It is straightforward that tk+j is fireable at sk+j for j = 0, . . . , p. The
proof of sk+j

∼= s′l for 0 ≤ j ≤ p can be handled in much the same way as
the proof in the previous part.

Since sk+j
∼= s′l and sk+j+1

∼= s′l for 0 ≤ j < p, we obtain V(sk+j) =
V ′(s′l) = V(sk+j+1). Therefore ak+j are invisible.

Next, since fireable(t′l, s
′
l) from Proposition 3.4 there exists a transition

tp going out of location qk+p
i ∈ Q′

i, corresponding to t′l, which is fireable
at sk+p. Again, we leave it to the reader to verify that sk+p+1

∼= sl+1.

2. a′l ∈ IR+ is a timed transition. The timed transition a′l in S′ corresponds
to a sequence of transitions t11, . . . , t

1
p1
, t21, . . . , t

2
p2
, . . . , tn1 , . . . , t

n
pn
, t in S,

where t is the timed transition of duration a′l and for all i, if qk
i ∈ QR

i \Q′
i,

then pi > 0, otherwise pi = 0. Each subsequence ti1, . . . t
i
pi

is built in the
same way as the sequence tk, . . . tk+p−1 in Item 1 above (each automaton
which is not in a relevant location goes to the nearest such a location).
The construction is possible by assumption of progressiveness of the set of
automata. We skip further details. The proof for sk+p+1

∼= s′l+1 is similar
to the previous cases.

Thus, the conditions of Def. 11 hold and ∼= is a visible bisimulation.
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