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1. Apolarity, Artinian Gorenstein rings and Arithmetic Gorenstein
Varieties

1.1. Motivating question. Given a homogeneous form

F ∈ C[x0, . . . , xn]d

of degree d. A presentation

F = ld1 + . . .+ ldr , with linear forms li,

is called a power sum decomposition of F of length r.

Question 1.1. How many distinct decompositions of length r does F have, or if
infinite what is the structure of the set of power sum decompositions? (especially,
when r is minimal, the so called rank r(F ) of F?)

Let us be more precise: Think of the hyperplanes in Pn defined by the linear
forms li as points

([l1], ..., [lr]) ⊂ (Pn−1)∗

in the dual space.

Definition 1.2. The Variety of Sums of Powers ,

V SP (F, r) ⊂ Hilbr(Pn−1)∗,

is the closure in the Hilbert Scheme of (Pn−1)∗ of the set of r-tuples [l1], ..., [ln],
such that F = ld1 + . . .+ ldr .

Question 1.3. What are the global properties of V SP (F, r)?

1.2. Apolarity. A natural geometric setting for this question is the d-uple embed-
ding

(Pn−1)∗ → P(n+d
d )−1; [l] 7→ [ld].

In fact F represents a point [F ] ∈ P(n+d
d )−1 and

F = λ1l
d
1 + . . .+ λrl

d
r

for some λi ∈ C if and only if

[F ] ∈ 〈[ld1 ], ..., [ldr ]〉.
In particular, over C we may assume that each λi is 0 or 1.

This condition is studied using apolarity. Sylvester et al. introduced apolarity
to find power sum decompositions of forms.
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Let T = C[y0, . . . , yn−1] act on S = C[x0, . . . , xn−1] by differentiation:

yi ∈ T, F ∈ S ⇒ yi(F ) =
∂

∂xi
F.

Then
l =

∑
aixi and g ∈ Td ⇒ g(ld) = λg(a0, . . . , an),

for some λ 6= 0.
Therefore

[F ] ∈ 〈[ld1 ], ..., [ldr ]〉 ⊂ P(Sd) = P(n+d
d )−1

if and only if

{g ∈ Td|g(ld1) = ... = g(ldr) = 0} ⊂ {g ∈ Td|g(F ) = 0}

Definition 1.4. g ∈ T is apolar to F ∈ S if deg g ≤ deg F and g(F ) = 0.

Apolarity defines a duality:

P(T1) = P(S1)∗, P(Td) = P(Sd)∗.

The ideal
F⊥ := Ann F = {g ∈ T | g(F ) = 0}.

is called the apolar ideal of F . It is generated by the forms in T that are apolar to
F .

Lemma 1.5. (Apolarity) Let Γ = {[l1], . . . , [lr]} ⊂ P(S1), be a collection of r points.
Then

F = λ1l
d
1 + . . .+ λrl

d
r with λi ∈ C

if and only if
IΓ ⊂ F⊥ ⊂ T.

Proof. It remains to show that IΓ,d ⊂ F⊥ only if IΓ ⊂ F⊥. Assume therefore that
g ∈ IΓ,e. Then Td−eg ⊂ IΓ,d, so Td−eg(F ) = 0. But then g(F ) = 0. �

This lemma motivates the definition of an apolar subscheme.

Definition 1.6. Γ ⊂ P(S1) is an apolar subscheme to F if IΓ ⊂ F⊥ ⊂ T .

1.3. Apolar ring of a form. The quotient ring

AF = T/F⊥

is called the apolar ring of F . It is a (graded) Artinian Gorenstein ring, i.e. the
socle (0 : m) is 1-dimensional:

(0 : m) = {g ∈ T |g · T1 ⊂ F⊥}/F⊥

= {g ∈ T |T1 · g(F ) = 0}/F⊥ = Td/F
⊥ ∼= C

Furthermore, the multiplication

AF,i ×AF,d−i → AF,d
∼= C

defines a perfect pairing, so the Hilbert function HF (i) = dimCAF,i is symmetric:

HF (i) = HF (d− i) i = 0, ..., d

Proposition 1.7. (Macaulay correspondence) There is a 1 − 1 correspondence
between graded Artinian Gorenstein quotients of T and homogeneous forms in S up
to scalars.
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Proof. For a graded Artinian Gorenstein quotient A with socle (0 : m) in degree d
the linear map

Td → Ad
∼= C

is defined by a linear form on Td, i.e. an element of Sd
∼= T ∗d . �

1.4. Arithmetic Gorenstein Varieties. A variety Xn ⊂ PN of dimension n is
arithmetic Gorenstein if its homogeneous coordinate ring S(X) is Gorenstein, i.e.
if every quotient of S(X) by a regular sequence of homogeneous forms of length
n+ 1 is an Artinian Gorenstein ring.

Equivalently, an arithmetic Gorenstein variety X ⊂ PN is a subcanonical arith-
metic Cohen Macaulay variety. Subcanonical here means that the canonical sheaf
is OX(n) for some n.

The minimal free resolution of the homogeneous ideal IX is symmetric and of
length equal to the codimension of X.

A general linear subspace P of dimension N−n−1 does not intersect Xn ⊂ PN .
But a basis of linear forms in the ideal IP define a regular sequence of length n+ 1
in S(X) and hence an Artinian Gorenstein quotient S(X ∩ P ).

By the Macaulay correspondence,

S(X ∩ P ) ∼= AFP

for some homogeneous form FP .

Lemma 1.8. The length of AFP
equals the degree of X.

Example 1.9. (Elliptic curves)E ⊂ PN an elliptic normal curve of degree N +1 is
arithmetic Gorenstein. For any codimension two subspace P such that P ∩ E = ∅,
the homogenous from FP is a quadric of rank N − 1. In fact, the values of the
Hilbert function are HFP

(0, 1, 2) = (1, N − 1, 1).

Example 1.10. (Canonical curves) A canonical curve C ⊂ Pg−1 is arithmetic
Gorenstein. For any codimension two subspace P such that P ∩C = ∅, the homoge-
nous from FP is a cubic form in g − 2 variables. In fact, C has degree 2g − 2 and
the values of the Hilbert function are HFP

(0, 1, 2, 3) = (1, g − 2, g − 2, 1).

Other examples include complete intersections, Grassmannians (linear, Lagrangian,
Orthogonal) and K3-surfaces.

Let Xn ⊂ PN be arithmetic Gorenstein. Then there is an open set U ⊂ G((, N)−
n− 1, N) parameterizing linear subspaces P of dimension N − n− 1 that does not
intersect X. Let d be the socle degree of S(X ∩ P ), for P ∈ U . The Macaulay
correspondence define a map

αX : U → Sd//GL(N − n); P 7→ FP

Question 1.11. What is the image of αX?
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1.5. V SP (FP , r). If Xn ⊂ Y n+1 ⊂ PN , then

IY ⊂ IX .

If both X and Y are arithmetically Cohen Macaulay and P is a general linear
subspace that intersects Y properly, then

IY ∩P ⊂ IX + IP .

In particular, P is of dimension N − n− 1, X is arithmetic Gorenstein and IYP
is

the ideal of Y ∩ P in S(P ), then

IYP
⊂ F⊥P

and Y ∩ P is apolar to FP .
Let

Y = {Y n+1 ⊃ Xn|Y is aCM, degY = r}
If P ⊂ PN is a general linear subspace of dimension N − n− 1, then

Y → HilbrP Y 7→ Y ∩ P

defines a map

Y → V SP (FP , r)

Example 1.12. (Complete intersections)
If Xn ⊂ PN is a complete intersection X = V (g1, g2, ..., gN−n) with gi ∈ Te,

then any corank one subspace U ⊂ 〈g1, g2, ..., gN−n〉 defines a variety YU ⊃ X of
dimension n+ 1 and degree eN−n−1.

Let P ⊂ PN be a general linear subspace of dimension N − n− 1, then Y ∩ P is
an apolar subscheme to FP of length eN−n−1,

In fact FP has rank eN−n−1 (cf. [10] for the argument presented below) and

V SP (FP , e
N−n−1) ⊃ PN−n−1 :

Assume that FP has an apolar subscheme Z of length d. Since FP is generated
by forms of degree e and IZ ⊂ F⊥P , we can find a form g of degree e such that
IZ + (g) ⊂ F⊥P and Z ∩ V (g) = ∅. But then S(Z)/(g) is an Artinian ring of length
degZ · e ≥ eN−n, i.e. degZ ≥ eN−n−1. By Bertini a general complete intersection
YU ∩P is smooth, so FP has rank eN−n−1. Finally, the set of corank one subspaces
U form a PN−n−1.

1.6. Binary forms.

Proposition 1.13. (Serre) Every arithmetic Gorenstein variety of codimension
two is a complete intersection.

Corollary 1.14. The apolar ideal F⊥ ⊂ C[y0, y1] of a binary form F ∈ C[x0, x1]
is a complete intersection F⊥ = (g1, g2).

Corollary 1.15. The rank of F equals the degree of g1 or the degree of g2.

Proof. Assume that degg1 ≤ degg2. If g1 is square free, then (g1) generates the
ideal of a minimal set of distinct points apolar to F . If g1 is not square free, any
element in F⊥ of degree less than degg2 is a multiple of g1 and hence not square
free. F⊥ is generated in degree degg2, so a general element in this degree is square
free by Bertini. �
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2. Exercises

Problem 2.1. Assume F be a binary form with apolar ideal F⊥ generated by g1

and g2 of degrees d1 and d2 respectively. Assume that d1 ≤ d2. Compute the Hilbert
function HF (i). In particular, show that d1 + d2 = degF + 2.

Problem 2.2. Assume C ⊂ Pg−1 is a canonical trigonal curve, and let P ⊂ Pg−1

be a general linear subspace of codimension 2. Compute the rank of the form FP .

3. Variety of sums of powers

In small codimension there are general structure theorems for arithmetic Cohen
Macaulay and arithmetic Gorenstein varieties. We ended the first lecture with the
case of binary forms.

3.1. Ternary forms.

Proposition 3.1. (Buchsbaum-Eisenbud) Every arithmetic Gorenstein variety of
codimension three is defined by the 2r-dimensional pfaffians of a (2r+ 1× 2r+ 1)-
dimensional skew symmetric matrix of homogeneous forms for some r.

Corollary 3.2. The apolar ideal F⊥ ⊂ C[y0, y1, y − 2] of a ternary form F ∈
C[x0, x1, x2] is a the rank 2r − 2-locus of a (2r + 1 × 2r + 1)-dimensional skew
symmetric matrix of homogeneous forms for some r.

We call the skew symmetric matrix the Buchsbaum-Eisenbud matrix of the ap-
olar ideal F⊥.

Now, any finite subscheme of P2 is arithmetically Cohen Macaulay.

Proposition 3.3. (Hilbert-Burch) The ideal of an arithmetic Cohen Macaulay
variety of codimension two is defined by the maximal minors of a (n × n + 1)-
dimensional matrix of homogeneous forms for some n.

The matrix is the matrix of syzygies between the generators of the ideal, and is
called the Hilbert-Burch matrix of the variety (or ideal).

Example 3.4. The general cubic ternary form F has Betti numbers

1 − − −
− 3 − −
− − 3 −
− − − 1

.

for F⊥. The pfaffians of the skew symmetric 3 × 3 matrix is simply the three
nonzero quadratic entries in the matrix. So F⊥ is a complete intersection. The
rank of F is therefore 4, any apolar subscheme of length 4 has a Hilbert-Burch
matrix of dimension 1× 2 with entries two quadrics, so V SP (F, 4) = P2.
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For a general 2r + 1 × 2r + 1-dimensional skew symmetric matrix with linear
entries the ideal generated by the 2r-dimensional pfaffians have Betti numbers

1 − − −
− − − −
...

...
...

...
− 2r + 1 2r + 1 −
...

...
...

...
− − − −
− − − 1

.

The Hilbert function H of the Artinian Gorenstein quotient A must have H(r) =(
r+2

2

)
− 2r − 1 =

(
r
2

)
, so

H(0, 1, 2, 3, .., r−2, r−1, r, .., 2r−3, 2r−2) = (1, 3, 6, ...,

(
r

2

)
,

(
r + 1

2

)
,

(
r

2

)
, ..., 3, 1)

In particular, A = AF for a form of degree 2r − 2. In fact, this Hilbert function
is clearly maximal for such forms, and a general ternary form F of degree 2r − 2
appear this way.

Problem 3.5. Show that a ternary form F of degree 2r − 2 has an apolar ideal
generated by the pfaffians of a 2r+1×2r+1 skew symmetric matrix of linear forms
if and only if its Catalecticant (

(
r+1

2

)
×
(
r+1

2

)
)-matrix is nonsingular.

The minimal length of a finite subscheme in P2 not contained in any curves of
degree r − 1 is

(
r+1

2

)
, and such a scheme has Hilbert Burch matrix of dimensions

(r)× (r + 1) with linear entries.

Proposition 3.6. (Mukai) When F is a general ternary form of even degree 2r−2
less than 10, then F has rank

(
r+2

2

)
, and the Hilbert-Burch matrix of any apolar

subscheme of length
(
r+1

2

)
is a submatrix of the Buchsbaum -Eisenbud matrix of

F⊥ complementary to a r × r-square of zeros.

Furthermore Mukai describes V SP (F, rankF ) in these cases:

Corollary 3.7. (Mukai)

(1) If F is a ternary quadric of rank 3, then V SP (F, 3) is a Fano 3-fold of
degree 5.

(2) If F is a general ternary quartic of rank 6, then V SP (F, 6) is a Fano 3-fold
of degree 22.

(3) If F is a general ternary sextic of rank 10, then V SP (F, 10) is a K3-surface
of degree 38.

(4) If F is a general ternary octic of rank 15, then V SP (F, 15) is a set of 16
points.

3.2. Projection from partials. We know that apolar subschemes by their span
in P(Sd) define linear subspaces through [F ]. This property may be extended to
partials of F , in which case the apolar subschemes may be easier to detect.

Let e ≤ d. Then F⊥e define a rational map

aF,e : P(S1)→ P((F⊥e )∗)
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Since

F⊥e = {g ∈ Te|g(F ) = 0} = {g ∈ Te|Td−e(g(f)) = g(Td−e(f)) = 0} = (Td−e(f))⊥ ⊂ Te
the rational map aF is the composition of the e-uple embedding P(S1) → P(Se)
and the projection from the space spanned by the partials

〈Td−e〉 ⊂ P(Se).

Therefore we call the map aF,e the projection from the partials of degree e. If
Γ ⊂ P(S1) is apolar to F , then IΓ,e ⊂ F⊥e , which means that the span of aF,e(Γ)
has codimension equal to the codimension of the span of Γ in P(Se).

Example 3.8. Let (n, d) = (2, 3), and F is general, i.e. V (F ) is a general plane
cubic curve. Then F⊥ is a complete intersection of three quadrics (g1, g2, g3). The
projection of the partials of degree 2 is then the morphism

aF,2 : P2 → P2; (a0 : a1 : a2) 7→ (g1(a0, a1, a2) : g2(a0, a1, a2) : g3(a0, a1, a2))

A subscheme of length 4 in P(S1) spans a P4 in P(S2) unless it is contained in a
plane, so the span of every apolar scheme Γ of length 5 has codimension 5, so the
same is true for the codimension of the span of aF,2(Γ) ⊂ P5. So aF,2(Γ) is a point,
and Γ is the complete intersection of two quadrics in (g1, g2, g3).

Example 3.9. Let (n, d) = (3, 3), and F is general, i.e. V (F ) is a general plane
cubic surface. Then F⊥ is generated by six quadrics (g1, ..., g6). The projection of
the partials of degree 2 is then the morphism

aF,2 : P3 → P5; (a0 : a1 : a2 : a3) 7→ (g1(a0, a1, a2, a3) : ... : g6(a0, a1, a2, a3))

A subscheme of length 5 in P(S1) spans a P4 in P(S2) unless it is contained in a
line, so the span of every apolar scheme Γ of length 4 has codimension 2, so the
same is true for the codimension of the span of aF,2(Γ) ⊂ P2. So aF,2(Γ) is a point,
and Γ is contained in five independant quadrics in (g1, ..., g6), i.e. Γ is the fiber
over a 5-tuple point of the map aF,2. (In fact there is a unique such Γ).

3.3. Cubic forms in at most 6 variables. We have seen that codimension 2
sections of a canonical curve of genus g define via the Macaulay Correspondence
cubic forms in g − 2 variables.. It is natural to ask, which cubic forms appear
this way. By simple dimension count, the space of canonical curves has dimension
3g−3, the Grassmannian of codimension 2 subspaces in Pg−1 has dimension 2g−4,
so altogether we get at most a 5g − 7 dimensional family of cubic forms in g − 2
variables. The space of cubic forms modulo change of variables has dimension(
g
3

)
− (g−2)2, which is larger than 5g−7 when g ≥ 10. Mukai shows that a general

canonical curve is a complete intersection on a himogeneous variety for g ≤ 9, so
this count is wrong, the estimate in g = 8, 9 is not good enough. In fact you get the
general cubic when g ≤ 7. In genus 8 you get a codimension one family of cubics,
and in genus 9 you get a set of cubics of larger codimension.

Let us enumerate the cases 3 ≤ g ≤ 8

(1) g = 3. C is a plane quartic, and any cubic F in one variable is a a cube
with Hilbert function (1, 1, 1) for the apolar ring V SP (F, 1) = pt.

(2) g = 4. C is a complete intersection (2, 3) as is the apolar ideal of a cubic
binary form F . V SP (F, 2) = pt.

(3) g = 5. C is a complete intersection (2, 2, 2) as is the apolar ideal of a cubic
binary form F . V SP (F, 4) = P2.
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(4) g = 6. C is a complete intersection of G(2, 5) with four hyperplanes and
a quadric. The four hyperplanes define unique ACM surface of degree 5
containg C. V SP (F, 5) = pt.

(5) g = 7. C is a complete intersection of S10, the 10-dimensional spinor variety
with nine hyperplanes. V SP (F, 8) is a Fano 5-fold.

(6) g = 8. C is a complete intersection of G(2, 8), with eight hyperplanes.
V SP (F, 10) is a Hyperkähler 4-fold.

We now discuss the two last ones in more detail.

3.4. Cubic 3-folds. The spinor 10-fold in P15 is defined by 10 quadrics that define
surjective map

α : P15 · · · > Q ⊂ P9

where Q is smooth quadric hypersurface. The spinor variety parameterizes one of
the two families of P4’s in Q, in fact the rational map is regular on the blowup of
P15 along S10 and over each point on S10 there is a P4 in the exceptional divisor
which is mapped to a P4 in Q.

Let P be a general P4 in P15, and let F = FP the associated cubic form. The
projection from partials aF,2 is then nothing but the restriction of the map α to P .

Now, F is general, so by the Alexander Hirschowitz theorem the rank of F is
8. Let Γ ⊂ P be a general set of 8 points apolar to P . Then the span of Γ has
codimension 7 in the 2-uple embedding, therefore α(Γ) spans only a plane. This
plane L must be contained in the quadric Q ⊂ P9, so Γ is the intersection of
YL = α−1(L) with P . In fact one can show that YL is an arithmetic CM variety
of degree 8 and dimension 9 inside a pencil of tangent hyperplanes to S. Now, the
pencils of tangent hyperplanes that contain P coincide with the lines inside the
dual variety of S10 intersected with the P10 of hyperplanes that contain P . Now,
S10 is isomorphic to its dual, so these lines are lines inside a fivefold linear section
of S10. In fact, in [9] we prove

Proposition 3.10. V SP (F ; 8) is isomorphic to the Fano variety of lines in the
fivefold proper intersection of S10 with a P10.

3.5. Cubic 4-folds. The ideal of the Grassmannian G((, 2), 6) ⊂ P14 is generated
by 15 quadrics that define a Cremona transformation

α : P14 · · · > P14.

The secant variety of G((, 2), 6) ⊂ P14 is a Pfaffian cubic hypersurface that is
contract by α to the dual G((, 2), 6).

Let P be a general P5 in P14, and let F = FP the associated cubic form. The
projection from partials aF,2 is then nothing but the restriction of the map α to P .

Now, the cubics F we obtain this way form a hyperspace in the space of cubic
forms. By a simple dimension count, the cubic forms of rank at most 9 form a
variety of codimension at least 2, so a general F has rank 10.

Take a general set Γ of 10 points apolar to F . Its span in the 2-uple embedding
has codimension 11, so the span of α(Γ) is a P3, called PΓ.

It is shown in [5] that α(Γ) ⊂ G(2, 6) ∩ PΓ and that G(2, 6) ∩ PΓ is a quadric
surface. Furthermore,

Y = α−1(PΓ) = Cp1
∩ Cp2

⊂ HTp1
∩HTp2
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where p1 and p2 are points in the strict dual variety of G(2, 6), the hyperplanes
HTp1 , HTp2 are the corresponding special tangent hyperplanes, and Cp1 , Cp2 are
the tangent cones to G(2, 6) inside these hyperplanes. Each Cpi is isomorphic to a
cone over P1×P3, and Y is a 7-dimensional aCM variety of degree 10. This variety
Y intersects P in Γ, since HTp1

, HTp2
both contain P . Such pair of hyperplanes

are parametrized by pairs of points on the variety S(P ) = P8 ∩ G(2, 6) of special
hyperplanes that contain P . In [5] this argument is completed to give a proof that

Proposition 3.11. V SP (F ; 10) is isomorphic to Hilb2(S(P )). In particular, since
S(P ) is a K3-surface, V SP (F ; 10) is a hyperkähler 4-fold.

In fact by deformation, the V SP (F, 10) of a general cubic fourfold F is a hy-
perkähler fourfold.

There is another interesting codimension one family of cubic fourfolds, namely
those that are apolar to a Veronese surface. In that case the restriction of the cubic
form F to the Veronese surface is a ternary sextic form G. The V SP (G, 10) embeds
naturally in V SP (F ; 10). The former is a K3 surface of genus 10 as we saw above.
In fact V SP (F ; 10) is singular along this surface. This follows from the following
general criterion for singularities on a V SP (F, rank F

Proposition 3.12. Assume that Γ is an apolar subscheme of rank equal to the
minimal rank of F , and F has generic rank. If some hypersurface of degree equal
to degF is singular along Γ, then Γ is a singular point on V SP (F, rank F )

Proof. From the incidence
{(F,Γ)|IΓ ⊂ F⊥}

the first projection is ramified, by Terracini’s lemma, at any Γ satisfying the con-
dition of the lemma. �

4. Exercises

Problem 4.1. Assume F⊥ is a complete intersection of r forms of degree e. Find
the degree of F .

Problem 4.2. Compute the rank of the cubic form x(xy − z2).
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