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On dimensions of secant varieties

1. Lecture 1

1.1. On the Waring problem. The story begins with a number theory question:
in 1770 E. Waring in [33] stated (without proofs) that:

“Every natural number is sum of at most 9 positive cubes.”
“Every natural number is sum of at most 19 biquadratics.”

Moreover, he believed that:

“for all integers d ≥ 2 there exists a positive integer g(d) such that
each n ∈ Z+ can be written as n = ad1 + · · · + adg(d) with ai ≥ 0,
i = 1, . . . , g(d).”

Waring belief was showed to be true by Hilbert in 1909 who proved that such a
g(d) exists for every d ≥ 2 and he computed it.

An analogous problem can be formulated for homogeneous polynomials.
Let K be an algebraically closed field of characteristic zero. We will work on the

projective space Pn = P(V ). The polynomial ring S := K[x0, . . . , xn] is a graduated
ring and so we can write it as K[x0, . . . , xn] =

⊕
d≥0 Sd where

Sd =< xd0, x
d−1
0 x1, . . . , x

d
n >= SdV is the vector space of homogeneous forms of

degree d (or the space of symmetric tensors of order d over a vector space of dimen-

sion n + 1). It is a well known fact that dimK(Sd) =
(
d+ n
n

)
. In a geometric

language those vector spaces Sd are called Complete Linear Systems of hypersur-
faces of degree d in Pn.
Sometimes we will write P(Sd) in order to mean the projectivization of Sd, there-
fore P(Sd) will be a P(n+d

d )−1 whose elements will be classes of forms of degree d:
[F ] ∈ P(Sd) with F ∈ Sd.

The analogous of Waring Problem for polynomials is the so called Little Waring
Problem:
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“Find the minimum s ∈ Z such that all forms F ∈ Sd are sum of
at most s d-th powers of linear forms.”

The problem we are interested in is a slightly different form of the little Waring
problem, it is called the Big Waring Problem and it is formulated as follows:

“Which is the minimum s ∈ Z such that the generic form F ∈ Sd
is a sum of at most s d-th powers of linear forms?”

F = Ld1 + · · ·+ Lds

In order to know which elements of Sd can be written as sum of s d-th powers
of linear forms, we study the image of the map

(1) φ : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φ(L1, . . . , Ls) = Ld1 + · · ·+ Lds .

The Big Waring problem asks to find the smallest s such that Im(φd) = Sd (we just
observe that if we require dim(φd) = Sd we would solve the little Waring problem).

The map φ can be viewed as a polynomial map between affine spaces:

φ : As(n+1) −→ AN=(n+d
n ).

In order to know the dimension of the image of such a map we look at its differential

dφ|P : TP (As(n+1)) −→ AN .

Let P = (L1, . . . , Ls) ∈ As(n+1) and v = (M1, . . . ,Ms) ∈ TP (As(n+1)) ' As(n+1)

where Li,Mi ∈ S1 for i = 1, . . . , s. Let us consider the following parameteri-
zations t 7−→ (L1 + M1t, L2 + M2t, . . . , Ls + Mst) of a line C passing through
P whose tangent vector at P is M . The image of C via φ is φ(L1 + M1t, L2 +
M2t, . . . , Ls + Mst) =

∑s
i=1(Li + Mit)d. The tangent vector to φ(C) in φ(P ) is

limt→0
d
dt

(∑s
i=1(Li +Mit)d

)
= limt→0

∑s
i=1 d(Li + Mit)d−1Mi =

∑s
i=1 dL

d−1
i Mi.

Now, as v = (M1, . . . ,Ms) varies in As(n+1), the tangent vectors we get span
< Ld−1

1 S1, . . . , L
d−1
s S1 >.

Hence we can say:

Proposition 1. Let L1, . . . , Ls be linear forms in S = K[x0, . . . , xn], where Li =
ai0x0 + · · ·+ ainxn and

φ : S1 × · · · × S1︸ ︷︷ ︸
s

−→ Sd, φ(L1, . . . , Ls) = Ld1 + · · ·+ Lds ;

then
rk(dφ)|(L1,...,Ls) = dimK < Ld−1

1 S1, . . . , L
d−1
s S1 > .

It is very interesting to have a look at how the problem of determining this dimen-
sion has been solved, because the solution involves many algebraic and geometric
tools.

1.2. Veronese variety. The first geometric object that is related with our problem
is the “Veronese variety”. We recall that the Veronese variety is the image of the
following embedding:

νd : Pn ↪→ P(n+d
d )−1

(u0 : . . . : un) 7→ (ud0 : ud−1
0 u1 : ud−1

0 u2 : . . . : udn).
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This embedding can also be dually characterized as:

νd : P(S1) = (Pn)∗ ↪→ P(Sd) =
(
P(n+d

d )−1
)∗

[L] 7→ [Ld]
[v] 7→ [v⊗d].

Therefore we can think to the Veronese variety as the variety that parameterizes
d-th powers of linear forms or completely decomposable symmetric tensors.

Example 1. Let V = C2 and d = 3, then

ν3 : P1 ↪→ P3

[a0, a1] 7→ [a3
0, a

2
0a1, a0a

2
1, a3] .

If we take {z0, . . . , z3} be the coordinates in P3, then the equations of the Veronese
curve in P3 are F0(z) = z0z2− z2

1 , F1(z) = z0z3− z1z2, F2(z) = z1z3− z2
2 . Observe

that those equations can be obtained as maximal minors of the following matrix:

(2)
(
z0 z1 z2

z1 z2 z3

)
.

Notice that this matrix can be obtained both as the defining matrix of the following
linear map:

S2C2∗ → S1C2, ∂2
ti 7→ ∂2

ti(f)

where f =
∑3
i=0

(
d
i

)−1
zit

3−i
0 ti1; or by flattening a 2×2×2 cube where at the vertex

in position ijk there is the element zi+j+k and then removing the repeated column.

The phenomenon described in Example 1 is a general fact: Veronese varieties
are always defined by 2×2 minors of matrices constructed as (2) (we will call them
Catalecticant matrices).

A hypermatrix (or a tensor) A = (xi1,...,it)1≤ij≤nj , j=1,...,t is said to be a generic
hypermatrix of indeterminates (or more simply generic hypermatrix ) of
S := K[xi1,...,it ]1≤ij≤nj , j=1,...,t, if the entries of A are the independent variables of
S.

The ideal of the 2-minors of a generic hypermatrix A = (xi1,...,it)1≤ij≤nj , j=1,...,t

is

I2(A) := (xi1,...,il,...,itxj1,...,jl,...,jt−xi1,...,jl,...,itxj1,...,il,...,jt)l=1,...,t; 1≤ik,jk≤nj , k=1,...,t.

It is a classical result (see [20]) that a set of equations for a Segre Variety is given
by all the 2-minors of a generic hypermatrix. In fact a Segre variety parameterizes
decomposable tensors, i.e. all the “rank one” tensors.

In [21] (Theorem 1.5) it is proved that, if A is a generic hypermatrix of a poly-
nomial ring S of size n1 × · · · × nt, then I2(A) is a prime ideal in S, therefore:

I(Seg(V1 ⊗ · · · ⊗ Vt)) = I2(A) ⊂ S.

Definition 1. A hypermatrix A = (ai1,...,id)1≤ij≤n, j=1,...,d is said to be “symmet-
ric” (or completely symmetric) if ai1,...,id = aiσ(1),...,iσ(d) for all σ ∈ Sd where Sd is
the permutation group of {1, . . . , d}.

With an abuse of notation we will say that a tensor T ∈ V ⊗d is symmetric if it
can be represented by a symmetric hypermatrix.
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Definition 2. Let H ⊂ V ⊗d be the
(
n+d−1

d

)
-dimensional subspace of the symmetric

tensors of V ⊗d, i.e. H is isomorphic to the symmetric algebra Symd(V ). Let S̃
be a ring of coordinates on P(n+d−1

d )−1 = P(H) obtained as the quotient S̃ = S/I
where S = K[xi1,...,id ]1≤ij≤n, j=1,...,d and I is the ideal generated by all

xi1,...,id − xiσ(1),...,iσ(d) ,∀ σ ∈ Sd.

The hypermatrix (xi1,...,id)1≤ij≤n, j=1,...,d whose entries are the indeterminates of
S̃, is said to be a “generic symmetric hypermatrix”.

The Veronese variety νd(Pn) ⊂ P(n+d−1
d )−1 can be viewed as Seg(V ⊗d)∩P(H) ⊂

P(H).
Let A = (xi1,...,id)1≤ij≤n, j=1,...,d be a generic symmetric hypermatrix, then it is a
known result that:

(3) I(νd(Pn)) = I2(A) ⊂ S̃.
See [32] for set theoretical point of view. In [29] the author proved that I(Yn−1,d)
is generated by the 2-minors of a particular catalecticant matrix (for a definition of
“Catalecticant matrices” see e.g. either [29] or [19]). A. Parolin, in his PhD thesis
([28]), proved that the ideal generated by the 2-minors of that catalecticant matrix
is actually I2(A), where A is a generic symmetric hypermatrix.

The analogous can be done for Segre-Veronese varieties: they are generated by
2× 2 minors of a generic hypermatrix with partial symmetric symmetries (cfr [9]).

1.3. Secant varieties.

Definition 3. Let X ⊂ PN be a projective variety of dimension n; we define σs(X)
the s-th secant variety of X as follows:

σs(X) :=
⋃

P1,...,Ps∈X
< P1, . . . , Ps >

where < P1, . . . , Ps > is the (s− 1)-projective space containing P1, . . . , Ps ∈ X.

The generic element of σs(X) is sum of s elements of X.

Example 2. Let L1, L2 ∈ S1V be tow homogeneous linear forms. The polynomial
Ld−1

1 L2 is clearly in σ2(νd(P(V ))) since Ld−1
1 L2 = limt→0 1/t((L1 + tL2)d−Ld2) but

there do not exist M1,M2 ∈ S1V such that Ld−1
1 L2 = Md

1 +Md
2 .

Obviously

n = dim(X) < dim(σ2(X)) < dim(σ3(X)) < · · · < dim(σs(X)) = N.

Definition 4. The smallest s ∈ Z such that σs(X) = PN is the Generic Rank of
X.

The generic rank of X is an invariant of the embedded variety X.
If we consider the d-uple Veronese embedding of Pn it can be viewed as the

subset of K[x0, . . . , xn]d made by all forms which can be written as d-powers of
linear forms. From this point of view the generic rank s of the Veronese variety is
the minimum integer such that the generic form of degree d in n+ 1 variables is a
linear combination of s powers of linear forms in the same number of variables. I.e.
the generic rank of polynomials of given degree in certain numbers of variables is
the solution to the Big Waring Problem.
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We want to study the problem of determining the dimension of s-th secant
varieties of an n-dimensional projective variety X ⊂ PN .

Let Xs := X × · · · ×X︸ ︷︷ ︸
s

, X0 ⊂ X be the open subset of regular points of X and

Us(X) be the subset of Xs defined as

Us(X) = {(P1, . . . , Ps) ∈ Xs | Pi ∈ X0 ∀ i and the Pi’s are independent}.
Therefore for all (P1, . . . , Ps) ∈ Us(X) the span < P1, . . . , Ps > is a Ps−1.
Consider the following incidence variety:

Is(X) = {(Q, π) ∈ PN × Us(X) | Q ∈ π}
The dimension of that variety is

dim(Is(X)) = n(s− 1) + n+ s− 1.

With this definition we can consider the usual projection

p : Is(X)→ PN ;

the s-th secant variety of X is just the image of the map p:

σs(X) = Im(p : Is(X)→ PN ).

Now, if dim(X) = n, it is clear that, while dim(Is(X)) = ns+s−1, the dimension of
σs(X) can be smaller: it suffices that the generic fiber of p1 has positive dimension
to impose dim(σs(X)) < n(s− 1) +n+ s− 1. So it is a general fact that if X ⊂ PN
and dim(X) = n then:

dim(σs(X)) ≤ min{N, sn+ s− 1}.

Definition 5. A projective variety X ⊂ PN of dimension n is said to be s-defective
if dim(σs(X)) < min{N, sn+s−1} and δs(X) := min{N, sn+s−1}−dim(σs(X))
is called the s-th defect of X.

Alexander Hirschowitz Theorem ([2]) tells that the dimension of the s-th secant
variety to the Veronese variety is not always the expected one and they are able to
list all of them:

Theorem 1 (Alexander-Hirschowitz). If X = σs(νd(Pn)), for d ≥ 2. Then:

dim(X) = min
{(

n+ d

d

)
− 1, s(n+ 1)− 1

}
except for:

• d = 2, n ≥ 2, s ≤ n;
• d = 3, n = 4, s = 7, (δ = 1);
• d = 4, n = 2, s = 5, (δ = 1);
• d = 4, n = 3, s = 9, (δ = 2);
• d = 4, n = 4, s = 14, (δ = 1).

The mail ingredient is Terracini’s lemma (see [31], or [1]).

Lemma 1. (Terracini’s Lemma) Let X be an irreducible variety in PN , and let
P1, . . . , Ps be s generic points on X. Then, the projectivised tangent space to σs(X)
at a generic point Q ∈< P1, . . . , Ps > is the linear span in PN of the tangent spaces
TPi(X) to X at Pi, i = 1, . . . , s, i.e.

TQ(σs(X)) =< TP1(X), . . . , TPs(X) > .
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This “Lemma” can be proved in many ways, we present here a proof “made by
hands”.

Proof. We have already used the notation Xs for X×· · ·×X taken s times. Suppose
that dim(X) = n. Let us consider the following incidences variety:

I = {(P ;P1, . . . , Ps) ∈ Pn×Xs | P ∈ 〈P1, . . . , Ps〉, P1, . . . , Ps generic in X} ⊂ Pn×Xs,

and the two following projections:

π1 : I → σs(X)

and

π2 : I → Xs.

The dimension of Xs is clearly sn. If (P1, . . . , Ps) ∈ Xs the fiber π−1
2 ((P1, . . . , Ps))

is generically a Ps−1, s < N . Then dim(I) = sn+ s− 1. If π1 has finite fibers the
(s− 1)-secant variety to X is regular, otherwise it is defective with defect equal to
the dimension of the generic fiber.

Suppose that each Pi ∈ X ⊂ PN has coordinates Pi = [ai,0, . . . , ai,N ] for i =
1, . . . , s; around each Pi the variety X can be locally parameterized with some
functions fi,j : Kn+1 → Kn+1 for i = 1, . . . , s and j = 0, . . . , N that are zero at
the origin:

X :


x0 = ai,0 + fi,0(ui,0, . . . , ui,n)
...
xN = ai,N + fi,N (ui,0, . . . , ui,n)

.

Now we need a parameterization ϕ for σs(X). Consider a point in the subspace
spanned by s points of X (for simplicity of notation we omit the dependence
of the fi,j from the variables ui,j): < (a1,0 + f1,0, . . . , a1,N + f1,N ), . . . , (as,0 +
fs,0, . . . , as,N + fs,N ) >; an element of this subspace is of the form: λ1(a1,0 +
f1,0, . . . , a1,N+f1,N )+λ2(a2,0+f2,0, . . . , a2,N+f2,N )+· · ·+λs(as,0+fs,0, . . . , as,N+
fs,N ) for some λ1, . . . , λs ∈ K (we can assume that λ1 = 1). Therefore a parame-
terization of the s-th secant variety to X can be obtained by (a1,0 +f1,0, . . . , a1,N +
f1,N ) + (λ2 + t2)(a2,1−a1,0 +f2,1−f1,0, . . . , a2,N −a1,N +f2,N −f1,N ) + · · ·+ (λs+
ts)(as,1−a1,0+fs,1−f1,0, . . . , as,N−a1,N+fs,N−f1,N ) for some parameters t2, . . . , ts,
i.e. in coordinates the parameterization ϕ that we are looking for is that one
that sends an element (u1,0, . . . u1,n, u2,0, . . . , u2,n, . . . . . . , us,0, . . . , us,n, t2, . . . , ts) ∈
Ks(n+1)+s−1 into

(. . . , a1,j+f1,j+(λ2+t2)(a2,j−a1,j+f2,j−f1,j)+· · ·+(λs−ts)(as,j−a1,j+fs,j−f1,j), . . .) ∈ KN+1.

For simplicity we have written only the j-th element of the image. Therefore we
are able to write the Jacbian of ϕ. We are writing it in three blocks: the first one
is (N + 1)× (n+ 1), the second one is (N + 1)× (s− 1)(n+ 1) and the third one
is (N + 1)× (s− 1):

J0(ϕ) =
(

(1− λ2 − · · · − λs) ∂f1,j∂u1,k
| λi

∂fi,j
∂ui,k

| ai,j − a1,j

)
,

with i = 2, . . . , s; j = 0, . . . , N and k = 0, . . . , n. Now the first block is a base of
the tangent space to X at P1, and in the second block we can find the bases for the
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tangent spaces to X at P2, . . . , Ps; the rows of
∂fi,0
∂ui,0

· · · ∂fi,0
∂ui,N

...
...

∂fi,N
∂ui,0

· · · ∂fi,N
∂ui,N


give a base for TPi(X). �

Corollary 1. Let (X,L) be an integral, polarized scheme. If L embeds X as a
closed scheme in PN , then

dim(σs(X)) = N − dim(h0(IZ,X ⊗ L))

where Z is the union of s generic 2-fat points in X.

Proof. By Terracini’s Lemma, dim(σs(X)) = dim(< TP1(X), . . . , TPs(X) >), with
P1, . . . , Ps generic points onX. SinceX is embedded in PN = P(H0(X,L)∗), we can
view the elements of H0(X,L) as hyperplanes in PN ; the hyperplanes which contain
a space TPi(X) correspond to elements in H0(I2Pi,X ⊗ L), since they intersect
X in a subscheme containing the first infinitesimal neighborhood of Pi. Hence
the hyperplanes of PN containing the subspace < TP1(X), . . . , TPs(X) > are the
sections of H0(IZ,X ⊗ L), where Z is the scheme union of the first infinitesimal
neighborhoods in X of the points Pi’s. �

Remark 1. A hyperplane H contains the tangent space to a projective variety X
at a smooth point P if and only if the intersection X ∩H has a singular point at
P .

In fact the tangent space TP (X) to X at P has the same dimension of X and
TP (X∩H) = H∩TP (X). Moreover P is singular in H∩X if and only if dim(TP (X∩
H)) ≥ dim(X ∩H) = dim(X)− 1 and this happens if and only if H ⊃ TP (X).

Example 3. Consider the Veronese surface of P5. Let P be a general point of
σ2(ν2(P2)) and suppose that P ∈< R,Q > where R,Q ∈ ν2(P2). By Terracini’s
Lemma TP (σ2(ν2(P2))) =< TR(ν2(P2)), TQ(ν2(P2)) >. The expected dimension for
σ2(ν2(P2)) is 5, so dim(TP (σ2(ν2(P2)))) < 5 if and only if there exists a hyperplane
H containing TP (σ2(ν2(P2))). The Remark above tells us that this happens if and
only if there exists a hyperplane H such that H ∩ ν2(P2) is singular at R,Q.
Now ν2(P2) is the image of P2 via the map defined by complete linear system of
quadrics hence ν2(P2)∩H is the image of plane conics. Let R′, Q′ be the pre-images
via ν2 of R,Q respectively. Then 2 < R′, Q′ > is a plane conic singular at R′ and
Q′; it corresponds to the hyperplane section of ν2(P2) which is singular at R,Q.
Since 2 < R′, Q′ > is the only one plane conic singular at R′, Q′ we can say that
dim(TP (σ1(ν2(P2)))) = 4 < 5.
Since the 2-Veronese surface is defined by the complete linear system of quadrics,
the Corollary 1 allows to rephrase the defectivity of σ1(ν2(P2)) in terms of number
of conditions imposed by 2-fat points to forms of degree 2; i.e. “two 2-fat points of
P2 do not impose independent conditions to the degree 2 forms of K[x0, x1, x2]”.

Corollary 1 can be generalized to non complete linear systems on X.

Remark 2. Let D be any divisor of an irreducible projective variety X. With
|D| we indicate the complete linear system defined by D. Let V ⊂ |D| be a linear
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system. We use the notation

V (m1P1, . . . ,msPs)

for the subsystem of divisors of V passing through the fixed points P1, . . . , Ps with
multiplicities at least m1, . . . ,ms respectively.

When the multiplicities mi are equal to 2 for i = 1, . . . , s, the problem of the
knowledge of dim(V (2P1, . . . , 2Ps)) is equivalent to that of the dimension of the
s-th secant variety to a variety obtained as the closure of the image of the map we
are going to define.
Suppose that V is associated to a morphism ϕV : X0 → Pr (if dim(V ) = r) which is
an embedding on a dense open set X0 ⊂ X. We will consider the variety ϕV (X0).

In general we expect that if dim(X) = n then

expdim(V (2P1, . . . , 2Ps)) = dim(V )− s(n+ 1).

Proposition 2. Let Xbe an integral scheme and V be a linear system on X such
that the rational function ϕV : X 99K Pr associated to V , is an embedding on a
dense open subset X0 of X. Then σs

(
ϕV (X0)

)
is defective if and only if for general

points P1, . . . , Ps ∈ X

dim(V (2P1, . . . , 2Ps)) > min{−1, r − s(n+ 1)}.

This statement can be reformulated via Apolarity (next section).

1.4. Apolarity. This section is an exposition of inverse systems techniques, and
it follows [19].

Definition 6. Let S = K[x1, . . . , xn] and R = K[y1, . . . , yn] be polynomial rings
and consider the action of R on S (called Apolarity of R on S) defined as follows:

yi ◦ xj =
(

∂

∂xi

)
(xj) =

{
0, if i 6= j
1, if i = j

;

i.e. we view the polynomials of R as “partial derivative operator” on S.

Now we can extend this action to the whole rings R, S by linearity and using
properties of differentiation:

Ri × Sj −→ Sj−i

ri × sj := ri ◦ sj
in particular

yα ◦ xβ =

{
0, if α � β;∏n
i=1

(bi)!
(bi−ai)!x

β−α, if α ≤ β.

where xβ := xb10 · · ·xbnn when β = (b1, . . . , bn) and bi ≥ 0, and also α = (a1, . . . , an) ≤
β iff ai ≤ bi for all i = 1, . . . , n, that is equivalent to xα divides xβ in S.

Remarks:

• The action of R on S makes S a (non finitely generated) R-module (but
the converse is not true);
• the action of R on S lowers the degree;
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• the apolarity action induces a non-singular K-bilinear pairing:

Rj × Sj −→ K ∀ j = 0, 1, . . .

that induces two bilinear maps; 1

• Notice that if {yA} and {xB} are bases of Rj and Sj respectively, they are
not exactly dual bases. The dual bases of Rj and Sj are: {yA1 , . . . , yAt}
and { 1

c1
xA1 , . . . , 1

ct
xAt} for an appropriate choice of coefficients ci. So

{y1, . . . , yn} in R1 is a dual base of {x1, . . . , xn}, base of S1, with respect
to the apolarity action, but for j > 1 this is no longer true.

Definition 7. Let I be a homogeneous ideal of R. The Inverse System I−1 of I is
the R-submodule of S containing all the elements of S annihilated by I.

Remarks:

• If I = (F1, . . . , Ft) ⊂ R and G ∈ R then G ∈ I−1 ⇔ F1 ◦ G = · · · =
Ft ◦G = 0. Finding all such G’s means finding all the polynomial solutions
for the differential equations defined by the Fi’s, so one can notice that
determining I−1 is equivalent to solve (with polynomial solutions) a finite
set of differential equations;
• I−1 is a graduated submodule of S but it is not necessarily multiplicatively

closed and in general I−1 is not an ideal of S.
We need now a digression on the Hilbert function.
Let X ⊂ Pn(K) be a closed subscheme whose representative homogeneous ideal

is I := I(X) ⊂ S. Let A = S/I be the homogeneous coordinate ring of X; Ad will
be its degree d component.

Definition 8. The Hilbert Function of the scheme X is:

H(X, ·) : N→ N;

H(X, d) = dimK(Ad).

We can easy observe that

H(X, d) = dimK(Ad) = dimK(Sd)− dimK(Id).

Let us introduce the following theorem known as “Hilbert Theorem”:
In our work the importance of inverse systems will be given by the following

theorem, for a particular choice of the ideal I:

Theorem 2. The dimension of the part of degree d of the inverse system of an
ideal I ⊂ R is the Hilbert function of R/I in degree d:

(4) dimK(I−1)d = codim(Id) = H(R/I, d) .

1Let V ×W −→ K be a K-bilinear parity given by v×w −→ v ◦w. It induces two K-bilinear
maps:
φ : V −→ HomK(W,K) such that φ(v) := φv and φv(w) = v ◦ w and χ : W −→ HomK(V,K)
such that χ(w) := χw and χw(v) = v ◦ w.

V ×W −→ K is not singular iff for all the bases {w1, . . . , wn} of W the matrix (bij = vi ◦wj) is

invertible.
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Remark 3. • (I−1)d ∼= I⊥d .
2

• if I is a monomial ideal then I⊥d =< monomials of Rd that are not in Id >
• (I ∩ J)−1 = I−1 + J−1.

If I = ℘α1+1
1 ∩· · ·∩℘αs+1

s ⊂ S = K[x0, . . . , xn] with ℘i prime ideals of the points
P1, . . . , Ps ∈ Pn and Pi = [pi0 , pi1 , . . . , pin], LPi = pi0y0 + pi1y1 + · · ·+ pinyn ∈ R =
K[y0, . . . , yn] then

(I−1)d =
{
Rd, for d ≤ max{αi}
Ld−α1
P1

Rα1 + · · ·+ Ld−αsPs
Rαs , for d ≥ max{αi + 1}

and also
(5)

H(S/I, d) = dimK(I−1)d =
{

dimK(Rd), for d ≤ max{αi}
dimK(< Ld−α1

P1
Rα1 , . . . , L

d−αs
Ps

Rαs >), for d ≥ max{αi + 1} .

This last result gives a link between the Hilbert function of a set of fat points
and ideals generated by sums of powers of linear forms. This implies that:

Proposition 3. If I = ℘α1+1
1 ∩ · · · ∩ ℘αs+1

s ⊂ S = K[x0, . . . , xn] then (I−1)d ⊂
Rd = K[y0, . . . , yn]d is the d-th graded part of the ideal (Ld−α1

P1
, . . . , Ld−αsPs

) ⊂ R for
d ≥ max{αi + 1, i = 1, . . . , s}.

Finally the link between the big Waring problem and inverse systems is clear. If
in (5) all the αi are equal to 1, the dimension of the vector space< Ld−1

P1
R1, . . . , L

d−1
Ps

R1 >
is at the same time the Hilbert function of the inverse system of a scheme of s double
fat points, and the rank of the differential of the application φ defined in (1).

Thus we can say:

Theorem 3. Let L1, . . . , Ls be linear forms of R = K[y0, . . . , yn] such that:

Li = ai0y0 + · · ·+ ainyn

and let P1, . . . , Ps ∈ Pn such that:

Pi = [ai0 , . . . , ain ].

Let also ℘i ⊂ S = K[x0, . . . , xn] be the prime ideal associated to Pi for i = 1, . . . , s
and

φ : R1 × · · · ×R1︸ ︷︷ ︸
s

−→ Rd

with
φ(L1, . . . , Ls) = Ld1 + · · ·+ Lds ;

then
rk(dφ)|(L1,...,Ls) = dimK < Ld−1

1 R1, . . . , L
d−1
s R1 > .

2If V ×W −→ K is a non degenerate bilinear form and V1 is a subspace of W , then V ⊥1 is a

subspace of W and precisely: V ⊥1 = {w ∈ W/v ◦ w = 0 ∀ v ∈ V1} = {w ∈ W/χw(V1) = 0}. Let

V ×W −→ K be non singular simmetry with dimK(V ) = dimK(V1) = t, then dimK(V ⊥1 ) = n−t.
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And by (4), we have:

dim(〈Ld−1
1 R1, . . . , L

d−1
s R1〉) = H

(
S

℘2
1 ∩ · · · ∩ ℘2

s

, d

)
.

Now it is quite easy to see that

〈TP1νd(Pn), . . . , TPsνd(Pn)〉 = 〈Ld−1
1 R1, . . . , L

d−1
s R1〉.

Therefore, putting together Terracini’s Lemma with this last Theorem 3 we get:

dim(σs(νd(Pn)))+1 = dim〈TP1νd(Pn), . . . , TPsνd(Pn)〉 = dim〈Ld−1
1 R1, . . . , L

d−1
s R1〉 =

= codim〈Ld−1
1 R1, . . . , L

d−1
s R1〉⊥ = dim(℘2

1 ∩ · · · ∩ ℘2
s)d = H(S/(℘2

1 ∩ · · · ∩ ℘2
s), d).

Example 4. Let P ∈ Pn, ℘ ⊂ S be its representative prime ideal and f ∈ S. Then
the order of all partial derivatives of f vanishing in P is almost t if and only if
f ∈ ℘t+1 i.e. iff P is a singular point of V (f) of multiplicity grater or equal than
t+ 1.

Therefore:

(6) H(S/℘t, d) =


(
d+ n
n

)
, if d < t(

t− 1 + n
n

)
, if d ≥ t

.

It is easy to conclude that one t-fat point of Pn has the same Hilbert function of(
t−1+n
n

)
generic distinct points of Pn. Therefore dim(νd(Pn)) = H(S/℘2, d) − 1 =

n+ 1− 1. In fact the Veronese varieties are never defective.

Example 5. Let P1, P2 be two points of P2, ℘i ⊂ S = K[x0, x1, x2] their associated
prime ideals and let α1 = α2 = 2 so that I = ℘2

1 ∩ ℘2
2. Is the Hilbert function of

I equal to the Hilbert function of 6 points of P2 in general position? No, because
the Hilbert function of 6 general points of P2 is 1 3 6 6 . . . and this means that I
should not contain conics, but this is clearly false because the double line through
P1 and P2 is contained in I. This implies that σ2(ν2(P2)) is defective.

The general problem is not yet solved: there is only a conjecture due first to
Beniamino Segre (rephrased also by B. Harbourne, A. Gimigliano, A. Hirschowitz
and others) which describes how the element of Sd(Pα1

1 , . . . , Pαss ) should be done
when it has not the expected dimension.

Definition 9. Let P1, . . . , Ps be s points of Pn in general position. If Sd(Pα1
1 , . . . , Pαss )

is a linear system whose dimension is not the expected one, it is said to be a Special
Linear System.

Conjecture 1 (Segre, 1961). If Sd(Pα1
1 , . . . , Pαss ) ⊂ K[x0, x1, x2] is a special

linear system, then there is a fixed double component for all curves through the
scheme defined by ℘α1

1 ∩ · · · ∩ ℘αss .

Conjecture 2 (Gimigliano, 1987). Consider the linear system Sd(Pα1
1 , . . . , Pαss ) ⊂

K[x0, x1, x2], then one has the following possibilities:

(1) the system is non-special and its general member is irreducible;
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(2) the system is non-special, its general member is non-reduced, reducible, its
fixed components are all rational curves, except for at most one (this may
occur only if the system has dimension 0), and the general member of its
movable part is either irreducible or composed of rational curves in a pencil;

(3) the system is non-special of dimension 0 and consists of a unique multiple
elliptic curve;

(4) the system is special and it has some multiple rational curve as a fixed
component.

Conjecture 3 (Harbourne-Hirschowitz, 1989). A linear system of plane curves
Sd(Pα1

1 , . . . , Pαss ) ⊂ K[x0, x1, x2] with general multiple base points is special if
and only if it is (-1)-special, i.e. it contains some multiple rational curve of self-
intersection -1 in the base locus.

Conjecture 4 (Nagata, 1960). Sd(Pα1 , . . . , P
α
s ) ⊂ K[x0, x1, x2] is empty as soon

as n ≥ 10 and d ≤
√
nṁ.

1.5. La méthode d’Horace.

Definition 10. We say that a collection Zr of r double points imposes independent
conditions on OPn(d) (hypersurfaces of degree d in n+ 1 variables if codim(IZr (d))
in SdV is min{

(
n+d

d,r(n+1)

)
}.

Corollary 2. σs(νd(Pn)) has the expected dimension if and only if Zs, scheme of
s generic double points in Pn, imposes independent conditions on OPn(d).

Here the description of the Horace method ([2]).

Definition 11. Let Zr ⊂ Pn be a scheme of r double points. It corresponds to
the ideal sheaf IZr . Let H ⊂ Pn hyperplane. The trace of Zr with respect to H is
the schematic intersection TrH(Zr) = Zr ∩H. The Residual ResH(Zr) of Zr with
respect to H is defined by the ideal sheaf IZr : OPn(−H).

Example 6. If Z1 ⊂ Pn is the scheme defined by ℘2 with support on H, then
ResH℘

2 ⊂ Pn is defined by ℘, while TrH(℘2) ⊂ Pn−1 is still defined by the square
of the ideal of a point ℘̃2.

Taking the global sections of the restriction exact sequence

0→ IResHZr (d− 1)→ IZr (d)→ ITrH(Zr)(d)→ 0,

we obtain the so called Castelnuovo exact sequence

(7) 0→ IResHZr (d− 1)→ IZr (d)→ ITrH(Zr)(d)

from which we get the following inequality

dim IZr (d) ≤ dim IResHZr (d− 1) + dim ITrH(Zr)(d).

Consider the following:
(1) ResHZr imposes independent conditions to OPn(d− 1)
(2) TrH(Zr) imposes independent conditions to OPn−1(d).

Now items (1) and (2) above are equivalent to the following respectively:

(1) dim(IResH(Zr)(d− 1)) = max{
(
d−1+n
d−1

)
− (r − t)(n+ 1)− t, 0};

(2) dim(ITrH(Zr)(d)) = max{
(
d+n−1

d

)
− tn, 0}
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So if max{
(
d+n−1

d

)
− tn, 0} =

(
d+n−1

d

)
− tn then dim IZr (d) ≤

(
d+n
n

)
− r(n+ 1).

While if max{
(
d+n−1

d

)
− tn, 0} = 0 then dim IZr (d) ≤ 0. But since dim IZr (d) is

always greater or equal than the expected dimension, we have that in both cases Zr
imposes independent conditions on the system OPn(d). This proves the following:

Theorem 4 (Brambilla, Ottaviani, [13]). Let Zr be a union of r double points of
Pn and let H ⊂ Pn be a hyperplane such that t of the r points of Z have support
on H. Assume that TrH(Zr) imposes independent conditions on OH(d) and that
ResHZr imposes independent conditions on OPn(d− 1). Now, if

(1) tn ≤
(
d+n−1
n−1

)
r(n+ 1)− tn ≤

(
d+n−1
n

)
,

(2) tn ≥
(
d+n−1
n−1

)
r(n+ 1)− tn ≥

(
d+n−1
n

)
.

Then Zr imposes independent conditions on the system OPn(d).

The technique used by Alexander and Hirschowitz to compute the dimension of
secant varieties of Veronese varieties is mainly the Horace method via induction.

1.6. Example of induction. The idea of induction works well to prove regularity
of secant varieties but it doesn’t work at all for the defective cases that have to
be proven case by case. We have already seen that the case of Veronese surfaces
and of quadrics are defective, so we cannot take them as first step of the induction.
Let us start with σs(ν3(P3)) ⊂ P19. The expected dimension of σs(ν3(P3)) is
4s − 1. Therefore we expect that σ5(ν3(P3)) fills up the ambient space. Now
H(S/℘2

1 ∩ · · · ∩ ℘2
5) = 19− (] cubics through 5 double points in P3) = 19− 0 hence

σs(ν3(P3)) = P19 as expected. This implies that

(8) dim(σs(ν3(P3))) is the expected one for all s ≤ 5.

In fact:

Proposition 4. Assume that X is k-defective, with k-defect δk. Assume σk+1(X) 6=
PN . Then X is also (k + 1)-defective.

Proof. By assumptions and by Terracini’s lemma, if P1, . . . , Pk ∈ X are general
points, then the span TP1,...,Pk , which is the tangent space at a general point of
σk(X), has dimension min(N, kn+k−1)−δk. Hence adding one general point Pk+1,
the space TP1,...,Pk,Pk+1 , which is the span of TP1,...,Pk and TPk+1 , has dimension at
most min(N, kn+ k− 1)− δk +n+ 1. This last number, by assumptions, is smaller
than N , while it is clearly smaller than (k+ 1)n+ k. So X is (k+ 1)-defective. �

1.7. Exercises.

Exercise 1. Prove that all the equations F0 = 0, F1 = 0, F2 = 0 are needed to
define ν3(P1). Moreover show that through a given point P ∈ P3 \ ν3(P1) there
exists at most one secant line to ν3(P1).

Exercise 2. Let Q ⊂ P3 be a smooth quadric, and let ν2(Q) be the image of Q
into P9 via Veronese embedding O(2). Show that ν2(Q) is 3-defective. How can
one generalize this to Q ⊂ Pn, n > 2?

Exercise 3. Prove that σ5(ν4(P2)) is defective.
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2. Lecture 2

Consider d = 4, s = 8 in P3, i.e. σ8(ν4(P3)).
We need to compute H(K[x0, . . . , x3]/(℘2

1 ∩ · · · ∩ ℘2
8), 4). In order to use Horace

Lemma we need to know how many points among ℘2
1 ∩ · · · ∩ ℘2

8 have support
on a given hyperplane. The good news is upper semicontinuity that allows us to
specialize points on a hyperplane. In fact if the specialized scheme has the expected
Hilbert function, then also the general scheme has the expected Hilbert function
(again this argument cannot be used if the specialized one doesn’t have the expected
Hilbert function). We choose to specialize 4 points on H: supp(V (℘2

1∩· · ·℘2
4)) ∈ H.

Therefore ResH(Z8) = P1 + · · ·+P4 +2P5 + · · ·+2P8 and TrH(Z8) = 2P̃1 + · · · 2P̃4

where 2P̃1 + · · · 2P̃4 are four double points of P2. Consider now the Castelunovo
exact sequence (7). Now 4 double points in P3 imposes independent conditions to
OP3(3) by (8), then adding 4 simple general points imposes independent conditions,
therefore ResHZr imposes independent condition to OP3(3). Also TrH(Zr) imposes
independent condition to OP2(4). Therefore we have proved that

σs(ν4(P3)) has the expected dimension for any s ≤ 8.

This argument cannot be use to study σ9(ν4(P3)) because it is defective (we
cannot use induction on s in this case). Anyway we can use induction on d.

Exercise 4. Prove that σ14(ν5(P3)) is regular.

To use induction we need to prove the first case d = 3. We have done already
P3. Now, d = 3, n = 4, k = 7 is a defective case. So we need to start with
d = 3 and n = 5. We expect that σ10(ν3(P5)) fills up the ambient space. Let’s
try to apply Horace method. The hyperplane H is a P4, one double point in P4

has degree 5, so we can specialize up to 7 points on H (in P4 there are exactly
35 = 7 × 5 cubics), BUT 7 double points in P4 are defective in degree 3, in fact
H(K[x0, . . . , x4]/℘2

1 ∩ · · · ∩ ℘2
7, 3) =

(
4+3

3

)
− 1. Therefore, if we specialize 7 points

on H we are “not using all the room that we can use” if we want to get a 0 in the
trace term of Castelunovo exact sequence we have to add one more condition on
H. How can we get one single condition among 10 double points in P5 where each
double point imposes 6 conditions?

2.1. La méthode d’Horace differentielle. This description follows the guide
lines of [10].

Definition 12. In the algebra of formal functionsK[[x, y]], where x = (x1, . . . , xn−1),
a vertically graded (with respect to y) ideal is an ideal of the form:

I = I0 ⊕ I1y ⊕ · · · ⊕ Im−1y
m−1 ⊕ (ym)

where for i = 0, . . . ,m− 1, Ii ⊂ κ[[x]] is an ideal.

Let Q be a smooth n-dimensional integral scheme, let K be a smooth irreducible
divisor on Q. We say that Z ⊂ Q is a vertically graded subscheme of Q with base
K and support z ∈ K, if Z is a 0-dimensional scheme with support at the point z
such that there is a regular system of parameters (x, y) at z such that y = 0 is a
local equation for K and the ideal of Z in ÔQ,z ∼= K[[x, y]] is vertically graded.

Let Z ∈ Q be a vertically graded subscheme with base K, and p ≥ 0 be a fixed
integer; we denote by RespK(Z) ∈ Q and TrpK(Z) ∈ K the closed subschemes
defined, respectively, by the ideals:
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IRespK(Z) := IZ + (IZ : Ip+1
K )IpK , ITrpK(Z),K := (IZ : IpK)⊗OK .

In RespK(Z) we take away from Z the (p+ 1)th “slice”; in TrpK(Z) we consider only
the (p + 1)th “slice”. Notice that for p = 0 we get the usual trace and residual
schemes: TrK(Z) and ResK(Z).

Finally, let Z1, . . . , Zr ∈ Q be vertically graded subschemes with base K and
support zi, Z = Z1 ∪ . . . ∪ Zr, and p = (p1, . . . , pr) ∈ Nr.

We set:

TrpK(Z) := Trp1K (Z1) ∪ · · · ∪ TrprK (Zr), RespK(Z) := Resp1K (Z1) ∪ · · · ∪ResprK (Zr).

Proposition 5 (Horace differential Lemma, [3] Proposition 9.1). Let H be a
hyperplane in Pn and let W ıPn be a 0-dimensional closed subscheme.

Let S1, . . . , Sr, Z1, . . . , Zr be 0−dimensional irreducible subschemes of Pn such
that Si ∼= Zi, i = 1, . . . , r, Zi has support on H and is vertically graded with base
H, and the supports of S = S1 ∪ · · · ∪Sr and Z = Z1 ∪ · · · ∪Zr are generic in their
respective Hilbert schemes. Let p = (p1, . . . , pr) ∈ Nr. Assume:

(1) H0(ITrHW∪TrpH(Z),H(n)) = 0 and
(2) H0(IResHW∪RespH(Z)(n− 1)) = 0,

then

H0(IW∪S (n)) = 0.

For double fat points, this can be rephrased as follows.

Proposition 6 (Horace differential lemma for double fat points). Let H ⊂
Pn be a hyperplane, P1, . . . , Pr ∈ Pn generic points, and Z̃ be a 0-dimensional
scheme. Let Z = Z̃ + 2P1 + · · ·+ 2Pr ⊂ Pn, Z̃ ′ = ResH(Z̃), T̃ = TrH(Z̃).
Let P ′1, . . . , P

′
r be generic points on H. Let D2,H(P ′i ) = 2P ′i ∩ H and Z ′ = Z̃ ′ +

D2,H(P ′1) + · · · + D2,H(P ′r), T = T̃ + P ′1 + · · · + P ′r. Then dim(IZ)t = 0 if the
following two conditions are satisfied.

• DEGUE: dim(IZ′)t−1 = dim(IZ̃+D2,H(P ′1)+···+D2,H(P ′r))t−1 = 0;
• DIME: dim(IT )t = dim(IT̃+P ′1+···+P ′r

)t = 0.

Now with this proposition we can conclude the case of σ10(ν3(P5)). Specialize
P1, . . . , P8 on H and take Z̃ = 2P1 + · · · + 2P7 + 2P9 + 2P10 ⊂ P5 with supp(Pi)
on H for i = 1, . . . , 7 and out of H for i = 9, 10. Then Z̃ ′ = ResH(Z̃) = P1 + · · ·+
P7 + 2P9 + 2P10 ⊂ P5 and T̃ = TrH(Z̃) = 2P̃1 + · · · 2P̃7 ⊂ H where 2P̃i = 2Pi ∩H.
Then take D2,H(P8) = 2P8 ∩ H. Now Z ′ = Z̃ ′ + D2,H(P8) = P1 + · · · + P7 +
2P9 + 2P10 + D2,H(P8) ⊂ P5, and T = T̃ + P8 = 2P̃1 + · · · 2P̃7 + P8 ⊂ H. Then
DIME is now ok because we have added on the trace exactly the one condition that
we were missing. Also DIME is ok because 7 simple points imposes independent
conditions to quadrics, 2 double points does not impose independent conditions to
quadrics but we know how many conditions they impose 6+6-1 and D2,H(P8) can
be proved to impose independent conditions to quadrics. All together the should
impose 7+11+5=23 conditions that is sufficient to get DEGUE since there are only
21 quadrics in P5.
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2.2. Exercises.

Exercise 5. Compute the dimensions of σs(ν6(P3)).

Exercise 6. Let τ(νd(Pn)) ⊂ P(n+d
d )−1 be the tangential variety to the Veronese

variety. After having computed the tangent space to τ(νd(Pn)) at one smooth
point deduce the structure of the scheme Z such that I(Z)d is the inverse system
of TP (τ(νd(Pn))). Then prove that σ3(τ(ν4(P2))) has the expected dimension.

Algorithms for the rank of a given polynomial

3. Lecture 3

On Sylvester’s algorithm

This description can be found in [11].
If V is a two dimensional vector space, there is a well known isomorphism between∧d−r+1(SdV ) and Sd−r+1(SrV ) (see [26]). Such isomorphism can be interpreted

in terms of projective algebraic varieties; it allows to view the (d − r + 1)-uple
Veronese embedding of Pr, as the set of (r − 1)-dimensional projective subspaces
of Pd that are r-secant to the rational normal curve. The description of this result,
via coordinates, was originally given by A. Iarrobino, V. Kanev (see [22]). We give
here the description appeared in [4] (Lemma 2.1).

Lemma 2. Consider the map φr,d−r+1 : P(K[t0, t1]r) → G(d − r + 1,K[t0, t1]d)
that maps the class of p0 ∈ K[t0, t1]r to the (d − r + 1)-dimensional subspace of
K[t0, t1]d of forms of the type p0q, with q ∈ K[t0, t1]d−r. Then the following hold:
(i) The image of φr,d−r+1, after the Plücker embedding of G(d− r + 1,K[t0, t1]d),
is the r-dimensional (d− r + 1)-th Veronese variety.
(ii) Identifying G(d− r + 1,K[t0, t1]d) with the Grassmann variety of subspaces of
dimension r − 1 in P(K[t0, t1]∗d), the above Veronese variety is the set of r-secant
spaces to a rational normal curve Cd ⊂ P(K[t0, t1]∗d).

Proof. Write p0 = u0t
r
0 + u1t

r−1
0 t1 + · · · + urt

r
1. Then a basis of the subspace of

K[t0, t1]d of forms of the type p0q is given by:

(9)


u0t

d
0 + · · ·+ urt

d−r
0 tr1

u0t
d−1
0 t1 + · · ·+ urt

d−r−1
0 tr+1

1

. . .
u0t

r
0t
d−r
1 + · · ·+ urt

d
1.

The coordinates of these elements with respect to the basis {td0, td−1
0 t1, . . . , t

d
1} of

K[t0, t1]d are thus given by the rows of the matrix
u0 u1 . . . ur 0 . . . 0 0
0 u0 u1 . . . ur 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 u0 u1 . . . ur 0
0 . . . 0 0 u0 . . . ur−1 ur

 .

The standard Plücker coordinates of the subspace φr,d−r+1([p0]) are the maximal
minors of this matrix. It is known (see for example [5]), that these minors form
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a basis of K[u0, . . . , ur]d−r+1, so that the image of φ is indeed a Veronese variety,
which proves (i).

To prove (ii), we recall some standard facts from [5]. Take homogeneous coordi-
nates z0, . . . , zd in P(K[t0, t1]∗d) corresponding to the dual basis of {td0, td−1

0 t1, . . . , t
d
1}.

Consider Cd ⊂ P(K[t0, t1]∗d) the standard rational normal curve with respect to
these coordinates. Then, the image of [p0] by φr,d−r+1 is precisely the r-secant
space to Cd spanned by the divisor on Cd induced by the zeros of p0. This com-
pletes the proof of (ii). �

Since dim(V ) = 2, the Veronese variety of P(SdV ) is the rational normal curve
Cd ⊂ Pd. Hence, a symmetric tensor t ∈ SdV has symmetric rank r if and only if r
is the minimum integer for which there exist a Pr−1 = P(W ) ⊂ P(SdV ) such that
T ∈ P(W ) and P(W ) is r-secant to the rational normal curve Cd ⊂ P(SdV ) in r
distinct points.
Consider the maps:
(10)

P(K[t0, t1]r)
φr,d−r+1→ GG(d− r,P(K[t0, t1]d))

αr,d−r+1' GG(r − 1,P(K[t0, t1]d)∗).

Clearly, since dim(V ) = 2, we can identify P(K[t0, t1]d)∗) with P(SdV ), hence the
Grassmannian GG(r− 1,P(K[t0, t1]d)∗) can be identified with GG(r− 1,P(SdV )).
Now, by Lemma 2, a projective subspace P(W ) of P(K[t0, t1]d)∗ ' P(SdV ) '
Pd is r-secant to Cd ⊂ P(SdV ) in r distinct points if and only if it belongs to
Im(αr,d−r+1 ◦ φr,d−r+1) and the preimage of P(W ) via αr,d−r+1 ◦ φr,d−r+1 is a
polynomial with r distinct roots.
Therefore, a symmetric tensor t ∈ SdV has symmetric rank r if and only if r is the
minimum integer for which:

(1) T belongs to an element P(W ) ∈ Im(αr,d−r+1 ◦ φr,d−r+1) ⊂ GG(r −
1,P(SdV )),

(2) there exist a polynomial p0 ∈ K[t0t1]r such that αr,d−r+1(φr,d−r+1([p0])) =
P(W ) and p0 has r distinct roots,

Fix the natural basis Σ = {td0, td−1
0 t1, . . . , t

d
1} in K[t0, t1]d. Let P(U) be a (d − r)-

dimensional projective subspace of P(K[t0, t1]d). The proof of Lemma 2 shows
that P(U) belongs to the image of φr,d−r+1 if and only if there exist u0, . . . , ur ∈
K such that U =< p1, . . . , pd−r+1 > with p1 = (u0, u1, . . . , ur, 0, . . . , 0)Σ, p2 =
(0, u0, u1, . . . , ur, 0, . . . , 0)Σ, . . . ,pd−r+1 = (0, . . . , 0, u0, u1, . . . , ur)Σ.
Now let Σ∗ = {z0, . . . , zd} be the dual basis of Σ. Therefore there exist a W ⊂ SdV
such that P(W ) = αr,d−r+1(P(U)) if and only if W = H1 ∩ · · · ∩Hd−r+1 and the
Hi’s are as follows:

H1 : u0z0 + · · ·+ urzr = 0
H2 : u0z1 + · · ·+ urzr+1 = 0

. . .
Hd−r+1 : u0zd−r + · · ·+ urzd = 0.

This is sufficient to conclude that T ∈ P(SdV ) belongs to an (r − 1)-dimensional
projective subspace of P(SdV ) that is in the image of αr,d−r+1 ◦ φr,d−r+1 defined
in (10) if and only if there exist H1, . . . ,Hd−r+1 hyperplanes in SdV as above such
that T ∈ H1 ∩ . . . ∩Hd−r+1.
Given t = (a0, . . . , ad)Σ∗ ∈ SdV , T ∈ H1 ∩ . . .∩Hd−r+1 if and only if the following
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linear system admits a non trivial solution:
u0a0 + · · ·+ urar = 0
u0a1 + · · ·+ urar+1 = 0
...
u0ad−r + · · ·+ urad = 0.

If d− r + 1 < r + 1 this system admits an infinite number of solutions.
If r ≤ d/2, it admits a non trivial solution if and only if all the maximal (r + 1)-
minors of the following (d− r + 1)× (r + 1) catalecticant matrix vanish:

Md−r,r =


a0 · · · ar
a1 · · · ar+1

...
...

ad−r · · · ad

 .

Remark 4. The dimension of σr(Cd) is the minimum between 2r − 1 and d.
Actually σr(Cd) ( Pd if and only if 1 ≤ r <

⌈
d+1

2

⌉
.

Remark 5. An element T ∈ Pd belongs to σr(Cd) for 1 ≤ r <
⌈
d+1

2

⌉
if and only

if the catalecticant matrix Mr,d−r defined in Definition 13 does not have maximal
rank.

Sylvester Algorithm works as follows.
Let p ∈ K[x0, x1]d be a homogeneous polynomial of degree d in two variables:

p(x0, x1) =
∑d
k=0 akx

k
0x

d−k
1 ; then we can associate to the form p a symmetric tensor

t ∈ SdV ' K[x0, x1]d where t = (bi1,...,id)ij∈{0,1};j=1,...,d, and bi1,...,id =
(
d
k

)−1 · ak
for any d-uple (i1, . . . , id) containing exactly k zeros. This correspondence is clearly
one to one:

(11)
K[x0, x1]d ↔ SdV∑d

k=0 akx
k
0x

d−k
1 ↔ (bi1,...,id)ij=0,1; j=1,...,d

with (bi1,...,id) as above.
Moreover, we can associate to a polynomial p(x0, x1) =

∑d
k=0 akx

k
0x

d−k
1 , or to

the symmetric tensor t associated to it, the so called Catalecticant matrix Md−r,r(t),
defined as follows (for a definition of Catalecticant matrix see also [23]; Md−r,r(t)
it is also called Hankel matrix in [12]):

Definition 13. Let p(x0, x1) =
∑d
k=0 akx

k
0x

d−k
1 , and t = (bi1 , . . . , bid)ij=0,1; j=1,...,d ∈

SdV be the symmetric tensor associated to p, as above. Then the Catalecticant
matrix Md−r,r(t) associated to t (or to p) is the (d − r + 1) × (r + 1) matrix with
entries: ci,j =

(
d
i

)−1
ai+j−2 with i = 1, . . . , d− r and j = 1, . . . , r.

We describe here a version of the Sylvester algorithm ([30], [18], or [12]):

Algorithm 1. Input: A binary form p(x0, x1) of degree d or, equivalently, its
associated symmetric tensor t.
Output: A decomposition of p as p(x0, x1) =

∑k
j=1 λj lj(x0, x1)d with λj ∈ K and

lj ∈ K[x0, x1]1 for j = 1, . . . , r with r minimal.
(1) Initialize r = 0;
(2) Increment r ← r + 1;
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(3) If the rank of the matrix Md−r,r is maximum, then go to step 2;
(4) Else compute a basis {l1, . . . , lh} of the right kernel of Md−r,r;
(5) Specialization:

• Take a vector q in the kernel, e.g. q =
∑
i µili;

• Compute the roots of the associated polynomial q(x0, x1) =
∑r
h=0 qhx

h
0x

d−h
1 .

Denote them by (αj , βj), where |αj |2 + |βj |2 = 1;
• If the roots are not distinct in P1, go to step 2;
• Else if q(x0, x1) admits r distinct roots then compute coefficients λj ,

1 ≤ j ≤ r, by solving the linear system below:
αd1 · · · αdr

αd−1
1 β1 · · · αd−1

r βr
αd−2

1 β2
1 · · · αd−2

r β2
r

...
...

...
βd1 · · · βdr

λ =


a0

1/da1(
d
2

)−1
a2

...
ad

 ;

(6) The decomposition is p(x0, x1) =
∑r
j=1 λj lj(x0, x1)d, where lj(x0, x1) =

(αjx1 + βjx2).

The following result has been proved by G. Comas and M. Seiguer in [18], and it
describes the structure of the stratification by symmetric rank of symmetric tensors
in SdV with dim(V ) = 2. This result allows to improve the classical Sylvester
algorithm.

Theorem 5. Let X1,d = Cd ⊂ P(SdfV ), dim(V ) = 2, be the rational normal curve,
parameterizing decomposable symmetric tensors (Cd = {T ∈ P(SdV ) | rk(T ) = 1}),
i.e. homogeneous polynomials in K[t0, t1]d which are d-th powers of linear forms.
Then:

∀ r, 2 ≤ r ≤
⌈
d+ 1

2

⌉
: σr(Cd) \ σr−1(Cd) = σr,r(Cd) ∪ σr,d−r+2(Cd)

where σr,r(Cd) and σr,d−r+2(Cd) are subsets of σr(Cd) containing only elements of
ranks r and d− r + 2 respectively.

Proof. Of course, for all t ∈ SdV , if rk(t) = r, with r ≤ dd+1
2 e, we have T ∈

σr(Cd) \ σr−1(Cd). Thus we have to consider the case rk(t) > dd+1
2 e.

If a point in K[t0, t1]∗d represents a tensor t with rk(t) > dd+1
2 e, then we want

to show that rk(t) = d − r + 2, where r is the minimum such that T ∈ σr(Cd),
r ≤ dd+1

2 e.
Let us consider the case r = 2 first: Let T ∈ σ2(Cd) \ Cd. If rk(t) > 2, it means

that T lies on a line tP , tangent to Cd at a point P (since T has to lie on a P1 which is
the image of a non-reduced form of degree 2: p0 = l2 with l ∈ K[x0, x1]1, otherwise
rk(t) = 2). We want to show that rk(t) = d; in fact, if rk(t) = r < d, there
would exist distinct points P1, . . . , Pd−1 ∈ Cd, such that T ∈< P1, . . . , Pd−1 >; in
this case the hyperplane H =< P1, . . . , Pd−1, P > would be such that tP ⊂ H, a
contradiction, since H ∩ Cd = 2P + P1 + · · ·+ Pd−1, which has degree d+ 1.

Notice that rk(t) = d is possible, since obviously there is a (d − 1)-space (i.e.
a hyperplane) through T cutting d distinct points on Cd (any generic hyperplane
through T will do). This also shows that d is the maximum possible rank.

Now let us generalize the procedure above; let T ∈ σr(Cd)\σr−1(Cd), r ≤ dd+1
2 e;

we want to prove that if rk(t) 6= r, then rk(t) = d − r + 2. Since rk(t) > r, we
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know that T must lie on a Pr−1 which cuts a non-reduced divisor Z ∈ Cd with
deg(Z) = r; therefore there is a point P ∈ Cd such that 2P ∈ Z. If we had
rk(t) ≤ d − r + 1, then T would be on a Pd−r which cuts Cd in distinct points
P1, . . . , Pd−r+1; if that were true the space < P1, . . . , Pd−r+1, Z − P > would be
(d− 1− deg(Z − 2P )∩{P1, . . . , Pd−r+1})-dimensional and cut P1 + · · ·+Pd−r+1 +
Z − (Z − 2P ) ∩ {P1, . . . , Pd−r+1} on Cd, which is impossible.

So we got rk(t) ≥ d − r + 2; now we have to show that the rank is actually
d− r + 2. Let’s consider the divisor Z − 2P on Cd; we have deg(Z − 2P ) = r − 2,
and the space Γ =< Z − 2P, T > which is (r − 2)-dimensional since < Z − 2P >
does not contain T (otherwise T ∈ σr−3(Cd)). Consider the linear series cut on
Cd by the hyperplanes containing Γ: we will be finished if we show that its generic
divisor is reduced.

If it is not, there should be a fixed non-reduced part of the series, i.e. at least
a divisor of type 2Q. If this is the case, each hyperplane through Γ would contain
2Q, hence 2Q ⊂ Γ, which is impossible, since we would have deg(Γ∩Cd) = r, while
dim Γ = r − 2.

Thus rk(t) = d− r + 2, as required. �

This theorem allows to get a simplified version of the Sylvester algorithm (see
also [18]), which computes only the symmetric rank of a symmetric tensor, without
computing the actual decomposition.

Algorithm 2. The (Sylvester) Symmetric Rank Algorithm:

Input: The projective class T of a symmetric tensor t ∈ SdV with dim(V ) = 2
Output: rk(t).

(1) Initialize r = 0;
(2) Increment r ← r + 1;
(3) Compute Md−r,r(t)’s (r + 1) × (r + 1)-minors; if they are not all equal

to zero then go to step 2; else, T ∈ σr(Cd) (notice that this happens for
r ≤ dd+1

2 e); go to step 4.
(4) Choose a solution (u0, . . . , ud) of the system Md−r,r(t) ·(u0, . . . , ur)t = 0. If

the polynomial u0t
d
0+u1t

d−1
0 t1+· · ·+urtr1 has distinct roots, then rk(t) = r,

i.e. T ∈ σr,r(Cd), otherwise rk(t) = d− r + 2, i.e. T ∈ σr,d−r+2(Cd).

Remark 6. When a form f ∈ K[x0, . . . , xn] can be written using less variables
(i.e. f ∈ K[l0, . . . , lm], for lj ∈ K[x0, . . . , xn]1, m < n) then the symmetric rank
of the symmetric tensor associated to f ( with respect to Xn,d) is the same one as
the one with respect to νd(Pm), (e.g. see [24], [25]). In particular, when a tensor
is such that T ∈ σr(Xn,d) ⊂ P(SdV ), dim(V ) = n + 1, then, if r < n + 1, there
is a subspace W ⊂ V with dim(W ) = r such that T ∈ P(SdW ); i.e. the form
corresponding to T can be written with respect to r variables.

Consider the following construction

(12)

Hilbr(Pn)
φ
99K G

((
d+n
n

)
− r,K[x0, . . . , xn]d

)
∼= ...

... ∼= G
((
d+n
n

)
− r − 1,P(K[x0, . . . , xn]d)

)
→ G(r − 1,P(K[x0, . . . , xn]d)∗).
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The map φ in (12) sends a scheme Z (0-dimensional with deg(Z) = r) to the
vector space (IZ)d; it is defined in the open set formed by the schemes Z which
impose independent conditions to forms of degree d.

As in the case n = 1, the final image in the above sequence gives the (r−1)-spaces
which are r-secant to the Veronese variety in PN ∼= P(K[x0, . . . , xn]d)∗; moreover
each such space cuts the image of Z on the Veronese.

Notation 1. From now on we will always use the notation ΠZ to indicate the
projective linear subspace of dimension r − 1 in P(SdV ), with dim(V ) = n + 1,
generated by the image of a 0-dimensional scheme Z ⊂ Pn of degree r via Veronese
embedding.

Theorem 6. Any T ∈ σ2(Xn,d) ⊂ P(V ), with dim(V ) = n + 1, can only have
symmetric rank equal to 1, 2 or d. More precisely:

σ2(Xn,d) \Xn,d = σ2,2(Xn,d) ∪ σ2,d(Xn,d),

moreover σ2,d(Xn,d) = τ(Xn,d) \Xn,d.

Proof. The Theorem is actually a quite direct consequence of Remark 6 and of
Theorem 5, but let us describe the geometry in some detail. Since r = 2, every
Z ∈ Hilb2(Pn) is the complete intersection of a line and a quadric, so the structure
of IZ is well known: IZ = (l1, . . . , ln−1, q), where li ∈ R1, linearly independent, and
q ∈ R2 − (l1, . . . , ln−1)2.

If T ∈ σ2(νd(Pn)) we have two possibilities; either rk(T ) = 2 (i.e. T ∈ σ0
2(ν2(Pn))),

or rk(T ) > 2 i.e. T lies on a tangent line ΠZ to the Veronese, which is given by
the image of a scheme Z of degree 2, via the maps (12). We can view T in the
projective linear space H ∼= Pd in P(SdV ) generated by the rational normal curve
Cd ⊂ Xn,d, which is the image of the line L defined by the ideal (l1, . . . , ln−1) in
Pn with l1, . . . , ln−1 ∈ V ∗ (i.e. L ⊂ |PPn is the unique line containing z); hence
we can apply Theorem 5 in order to get that rk(T ) ≤ d.

Moreover, by Remark 6, we have rk(T ) = d. �

Remark 7. Let us check that it is the annihilation of the (3 × 3)-minors of the
first two catalecticant matrices, Md−1,1 and Md−2,2 which determines σ2(νd(Pn))
(actually such minors are the generators of Iσ2(νd(Pn)), see [23]).

Following the construction above (12), we can notice that the linear spaces de-
fined by the forms li ∈ V ∗ in the ideal IZ , are such that their coefficients are the
solutions of a linear system whose matrix is given by the catalecticant matrixMd−1,1

defined in Definition 13 (where the ai’s are the coefficients of the polynomial de-
fined by t); since the space of solutions has dimension n−1, we get rk(Md−1,1) = 2.
When we consider the quadric q in IZ , instead, the analogous construction gives
that its coefficients are the solutions of a linear systems defined by the catalecti-
cant matrix Md−2,2, and the space of solutions has to give q and all the quadrics in
(l1, . . . , ln−1)2, which are

(
n
2

)
+ 2n− 1, hence rk(Md−2,2) =

(
n+2

2

)
− (
(
n
2

)
+ 2n) = 2.

Therefore we can write down an algorithm to test if an element T ∈ σ2(Xn,d)
has symmetric rank 2 or d.

Algorithm 3. Algorithm for the symmetric rank of an element of σ2(Xn,d)

Input: The projective class T of a symmetric tensor t ∈ SdV , with dim(V ) = n+1;
Output: T /∈ σ2(Xn,d), or T ∈ σ2,2(Xn,d), or T ∈ σ2,d(Xn,d), or T ∈ Xn,d.
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(1) Consider the homogeneous polynomial associated to t as in (11) and rewrite
it with the minimum possible number of variables (methods are described
in [15] or [27]), if this is 1 then T ∈ Xn,d; if it is > 2 then T /∈ σ2(Xn,d),
otherwise T can be viewed as a point in P(SdW ) ∼= Pd ⊂ P(SdV ), and
dim(W ) = 2, so go to step 2.

(2) Apply the Algorithm 2 to conclude.

Everything that we have done in this section doesn’t use anything more than
Sylvester’s Algorithm for the 2 variables case. What can be done if we have to deal
with more variables?

3.1. Beyond Sylvester’s Algorithm using 0-dimensional schemes. We keep
following [11].

If f ∈ σ3(νd(Pn)) \ σ2(νd(Pn)) then we will need more than 2 variables.

Theorem 7. Let d ≥ 3, Xn,d ⊂ P(V ). Then:
σ3(Xn,3) \ σ2(Xn,3) = σ3,3(Xn,3) ∪ σ3,4(Xn,3) ∪ σ3,5(Xn,3), while, for d ≥ 4:
σ3(Xn,d) \ σ2(Xn,d) = σ3,3(Xn,d) ∪ σ3,d−1(Xn,d) ∪ σ3,d+1(Xn,d) ∪ σ3,2d−1(Xn,d).

Proof. For any scheme Z ∈ Hilb3(P(V )) there exist a subspace U ⊂ V of dimension
3 such that Z ⊂ P(U). Hence, when we make the construction in (12) we get
that ΠZ is always a P2 contained in P(SdU) and νd(P(U)) is a Veronese surface
X2,d ⊂ P(SdU) ⊂ P(SdV ). Therefore, by Remark 6, it is sufficient to prove the
statement for X2,d ⊂ P(SdU).

We will consider first the case when there is a line L such that Z ⊂ L. In this
case, let Cd = νd(L), we get that T ∈ σ3(Cd), hence either T ∈ σ3,3(Cd) (hence
T ∈ σ3,3(X2,d)), or (only when d ≥ 4) T ∈ σ3,d−1(Cd), hence rk(T ) ≤ d − 1. It is
actually d− 1 by Remark 6.

Now we let Z not to be on a line; the scheme Z ∈ Hilb3(Pn) can have support
on 3 , 2 distinct points or on one point.

If Supp(Z) is the union of 3 distinct points then clearly ΠZ , that is the image
of Z via (12), intersects X2,d in 3 different points and hence any T ∈ ΠZ has
symmetric rank precisely 3, so T ∈ σ3,3(X2,d).

If Supp(Z) = {P,Q} with P 6= Q, then the scheme Z is the union of a simple
point, Q, and of a 2-jet J at P . The structure of 2-jet on P implies that there exist
a line L ⊂ Pn whose intersection with Z is a 0-dimensional scheme of degree 2.
Hence ΠZ =< Tνd(P )(Cd), νd(Q) > where Tνd(P )(Cd) is the projective tangent line
at νd(P ) on Cd = νd(L). Since T ∈ ΠZ , the line < T, νd(Q) > intersects Tνd(P )(Cd)
in a point Q′ ∈ σ2(Cd). From Theorem 5 we know that rk(Q′) = d. We may
assume that T 6= Q′ because otherwise T should belong to σ2(X2,d).

We have Q /∈ L because Z is not in a line, so T can be written as a combi-
nation of a tensor of symmetric rank d and a tensor of symmetric rank 1, hence
rk(t) ≤ d+ 1. Now suppose that rk(t) = d, hence there should exist Q1, . . . , Qd ∈
X2,d such that T ∈< Q1, . . . , Qd >; notice that Q1, . . . , Qd are not all on Cd,
otherwise T ∈ σ2(X2,d). Let P1, . . . , Pd be the pre-image via νd of Q1, . . . , Qd;
then P1, . . . , Pd together with J and Q should not impose independent condi-
tions to curves of degree d, so, by Lemma 3, either P1, . . . , Pd, J are on L, or
P1, . . . , Pd, P,Q are on a line L′. The first case is not possible, since Q1, . . . , Qd are
not on Cd. In the other case notice that, by Lemma 3 and the Remark 8, should
have that < Q1, . . . , Qd, Tνd(P )(Cd), νd(Q) >∼= Pd, but since < Q1, . . . , Qd > and
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< Tνd(P )(Cd), νd(Q) > have T, νd(P ) and νd(Q) in common, they generate a (d−1)-
dimensional space, a contradiction. Hence rk(t) = d+ 1.

This construction shows also that T ∈ σ3,d+1(X2,d), and that there exist W ⊂ V
with dim(W ) = 2 and l1, . . . , ld ∈W ∗ and ld+1 ∈ V ∗ such that t = ld1 +· · ·+ldd+ldd+1

and t = [T ].
If Supp(Z) is only one point P ∈ P2, then Z can only be one of the following:

either Z is 2-fat point (i.e. IZ is I2
P ), or there exists a smooth conic containing Z.

If Z is a double fat point then ΠZ is the tangent space to X2,d at νd(P ), hence if
T ∈ ΠZ , then the line < νd(P ), T > turns out to be a tangent line to some rational
normal curve of degree d contained in X2,d, hence in this case T ∈ σ2(X2,d).
If there exists a smooth conic C ⊂ P2 containing Z, write Z = 3P and consider
C2d = νd(C), hence T ∈ σ3(C2d), therefore by Theorem 5 clearly rk(t) ≤ 2d − 1.
Suppose that rk(t) ≤ 2d − 2, hence there exist P1, . . . , P2d−2 ∈ P2 distinct points
that are neither on a line nor on a conic containing 3P , such that T ∈ ΠZ′ with
Z ′ = P1+· · ·+P2d−2 and Z+Z ′ = 3P+P1+· · ·+P2d−2 doesn’t impose independent
conditions to the planes curves of degree d. Now, by Lemma 3 we get that 3P+P1+
· · ·+P2d−2 doesn’t impose independent conditions to the plane curves of degree d if
and only if there exists a line L ⊂ P2 such that deg((Z +Z ′)∩L) ≥ d+ 2. Observe
that Z ′ cannot have support contained in a line because otherwise T ∈ σ2(X2,d).
Moreover Z + Z ′ cannot have support on a conic C ⊂ P2 because in that case T
would have symmetric rank 2d− 1 with respect to νd(C) = C2d.
We have to check the following cases:

(1) There exist P1, . . . , Pd+2 ∈ Z ′ on a line L ⊂ P2;
(2) There exist P1, . . . , Pd+1 ∈ Z ′ such that together with P = Supp(Z) they

are on the same line L ⊂ P2;
(3) There exist P1, . . . , Pd ∈ Z ′ such that together with the 2-jet 2P they are

on the same line L ⊂ P2.
Case 1. Let P1, . . . , Pd+2 ∈ L ⊂ P2, then νd(L) = Cd ⊂ Pd ⊂ PN with N =(

d+2
2

)
− 1. Clearly T ∈ ΠZ ∩ ΠZ′ , then dim(ΠZ + ΠZ′) ≤ dim(ΠZ) +

dim(ΠZ′), moreover ΠZ′ doesn’t have dimension 2d−3 as expected because
νd(P1), . . . , νd(Pd+2) ∈ Cd ⊂ Pd, hence dim(ΠZ′) ≤ 2d − 4 and dim(ΠZ +
ΠZ′) ≤ 2d − 2. But this is not possible because Z + Z ′ imposes to the
plane curves of degree d only one condition less then the expected, hence
dim(IZ+Z′(d)) =

(
d+1

2

)
− d + 1 and then dim(ΠZ + ΠZ′) = 2d− 1, that is

a contradiction.
Case 2. Let P1, . . . , Pd+1, P ∈ L ⊂ P2, then νd(P1), . . . , νd(Pd+1), νd(P ) ∈ νd(L) =

Cd. Now ΠZ ∩ΠZ′ ⊃ {νd(P ), T}, then again dim(ΠZ + ΠZ′) ≤ 2d− 2.
Case 3. Let P1, . . . , Pd, 2P ∈ L ⊂ P2, as previously νd(P1), . . . , νd(Pd+1), νd(2P ) ∈

νd(L) = Cd, then now Tνd(P )(Cd) is contained in < Cd > ∩ΠZ . Since
< νd(P1, . . . , νd(Pd) >) is an hyperplane in < Cd >= Pd, it will intersect
Tνd(P )(Cd) in a point Q different form νd(P ). Again dim(ΠZ ∩ ΠZ′) ≥ 1
and then dim(ΠZ + ΠZ′) ≤ 2d− 2.

�

It is worth to stress the importance of Lemma 3 used many times in the proof.

Lemma 3. Let Z ⊂ Pn, n ≥ 2, be a 0-dimensional scheme, with deg(Z) ≤ 2d+ 1.
A necessary and sufficient condition for Z to impose independent conditions to
hypersurfaces of degree d is that no line L ⊂ Pn is such that deg(Z ∩ L) ≥ d+ 2.
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Proof. The statement was probably classically known, we prove it here for lack of
a precise reference. Let us work by induction on n and d; if d = 1 the statement is
trivial; so let us suppose that d ≥ 2 and now let’s work by induction on n. Let us
consider the case n = 2 first. If there is a line L which intersects Z with multiplicity
≥ d+ 2, then trivially Z cannot impose independent condition to curves of degree
d, since the fixed line imposes d+ 1 conditions, hence we have already missed one.
So, suppose that no such line exist, and let L be a line such that Z ∩L is as big as
possible (but Z ∩ L ≤ d + 1). Let TrLZ, the Trace of Z on L, be the schematic
intersection Z ∩ L and ResLZ, the Residue of Z with respect to L, be the scheme
defined by (IZ : IL). We have the following exact sequence of ideal sheaves:

0→ IResLZ(d− 1)→ IZ(d)→ ITrLZ(d)→ 0.

Then no line can intersect ResLZ with multiplicity ≥ d+1, because deg(Z) ≤ 2d+1
and L is a line with maximal intersection with Z; so if deg(L′ ∩ resLZ) = d + 1,
we’d have that also deg(L ∩ Z) = d+ 1, which is impossible because it would give
deg(L ∩ Z) + deg(L′ ∩ resLZ) = deg(L′ ∩ resLZ) = 2d+ 2, while degZ ≤ 2d+ 1.
Hence we have h1(IResLZ(d − 1)) = 0, by induction on d; on the other hand, we
have h1(ITrLZ(d)) = h1(OP1(d − deg(TrLZ))) = 0, hence also h1(IZ(d)) = 0, i.e.
Z imposes independent conditions to curves of degree d (notice that the condition
deg(Z) ≤ 2d+ 1 yields h0(IZ(d)) > 0).

With the case n = 2 done, let us finish by induction on n; let n ≥ 3 now; again,
if there is a line L which intersects Z with multiplicity ≥ d + 2, we can conclude
that Z does not impose independent conditions to forms of degree d, as in the
case n = 2. Otherwise, consider a hyperplane H, with maximum multiplicity of
intersection with Z, and consider the exact sequence:

0→ IResHZ(d− 1)→ IZ(d)→ ITrHZ(d)→ 0.

We have h1(IResHZ(d − 1)) = 0, by induction on d, and h1(ITrHZ(d)) = 0, by
induction on n, so we get that h1(IZ(d)) = 0 again, and we are done. �

Remark 8. Notice that if degL∩Z is exactly d+ 1 +k, then the dimension of the
space of curves of degree d through them increases exactly by k with respect to the
generic case.

It is quite easy to see that Lemma 3 can be improved as follows (see [6]).

Lemma 4. Let Z ⊂ Pn, n ≥ 2, be a 0-dimensional scheme, with deg(Z) ≤ 2d+ 1.
If h1(Pn, IZ(d)) > 0 there there exists a unique line L ⊂ Pn such that deg(Z ∩L) =
d+ 1 + h1(Pn, IZ(d)) > 0.

We can go back to our problem of finding the rank of a given tensor. If now we
want to treat the case of σ4(νd(Pn)) analogously we did for σ3(νd(Pn)), we can (see
[8]) but it requires a very complicate analysis on the schemes of length 4. Despite
the long procedure required for the classification of the rank with respect to the
minimal length of 0-dimensional scheme whose span contains the given polynomial
we are dealing with, there is a more intrinsic problem. We cannot use the same
technique for classifying the ranks in the case of σ5(νd(Pn)). In fact there is a
famous contra-example due to W. Buczyńska, J. Buczyśki (see [14]) that shows
that in σ5(ν3(P4)) there is at least a polynomial for which it doesn’t exist any 0-
dimensional scheme contained in ν3(P4) whose span contains it. The example is
the following:



WARING PROBLEMS, SECANT VARIETIES AND SYLVESTER ALGORITHM 25

Example 7. The following polynomial has border rank ≤ 5 but smoothable rank
≥ 6:

f = x2
0x2 + 6x2

1x3 − 3 (x0 + x1)2x4.

One can easily check that the following polynomial

fε = (x0 + εx2)3 + 6(x1 + εx3)3 − 3(x0 + x1 + εx4)3 + 3(x0 + 2x1)3 − (x0 + 3x1)3

has rank 5 for ε > 0, and that limε→0
1
3εfε = f .

Therefore rσ(f) ≤ 5.
An explicit computation of (f⊥) yields to the following Hilbert function for

HR/(f⊥) = [1, 5, 5, 1, 0, . . .]. Let us prove, by contradiction, that there is no sat-
urated ideal I ⊂ (f⊥) of degree ≤ 5. Suppose on the contrary that I is such
an ideal. Then HR/I(n) ≥ HR/(f⊥)(n) for all n ∈ N. As HR/I(n) is an in-
creasing function of n ∈ N with HR/(f⊥)(n) ≤ HR/I(n) ≤ 5, we deduce that
HR/I = [1, 5, 5, 5, . . .]. This shows that I1 = {0} and that I2 = (f⊥)2. As I is
saturated, I2 : (x0, . . . , x4) = I1 = {0} since HR/(f⊥)(1) = 5. But an explicit
computation of ((f⊥)2 : (x0, . . . , x4)) gives 〈x2, x3, x4〉. We obtain a contradiction,
so that there is no saturated ideal of degree ≤ 5 such that I ⊂ (f⊥). Consequently,
rsmooth0(f) ≥ 6 so that rσ(f) < rsmooth0(f).

On our knowledge the tow main results that are nowadays available to treat
these “wild” cases are the following.

Proposition 7 ([11]). Let X ⊂ PN be a non degenerate smooth variety. Let Hr

be the irreducible component of the Hilbert scheme of 0-dimensional schemes of
degree r of X containing r distinct points, and assume that for each y ∈ Hr, the
corresponding subscheme Y of X imposes independent conditions to linear forms.
Then for each P ∈ σr(X) \σ0

r(X) there exist a 0-dimensional scheme Z ⊂ X of
degree r such that P ∈< Z >∼= Pr−1.

Conversely if there exists Z ∈ Hr such that P ∈< Z >, then P ∈ σr(X).

Proof. Let us consider the map φ : Hr → G(r − 1,PN ), φ(y) =< Y >; φ is well
defined since dim < Y >= r − 1 for all y ∈ Hr by assumption. Hence φ(Hr) is
closed in G(r − 1,PN ).

Now let I ⊂ PN×G(r−1,PN ) be the incidence variety, and p, q its projections on
PN , G(r − 1,PN ) respectively; then, A := pq−1(φ(Hr)) is closed in PN . Moreover,
A is irreducible since Hr is irreducible, so σ0

r(X) is dense in A. Hence σr(X) =
σ0
r(X) = A. �

Obviously, 5 points on a line don’t impose independent conditions to cubics in
any Pn for n ≥ 5, therefore this could be one reason why such contra-exmple is
possible.

Another reason is in the following.

Proposition 8 ([14]). Suppose there exist points x1, . . . xr ∈ X that are linearly
degenerate, that is dim〈x1, . . . xr〉 < r − 1. Then the join of the r tangent stars
at these points is contained in σr(X). In the case X is smooth at x1, . . . xr then
〈PT̂x1X, . . . ,PT̂xrX〉 ⊂ σr(X).
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Lecture 4

4. Beyond Sylvester’s Algorithm via Apolarity

We have already defined apolarity and inverse system. One crucial Lemma that
we have not introduced yet is the so called Apolarity Lemma.

Lemma 5 (Apolarity Lemma). Let Z = {[L1], . . . , [Lr]} ⊂ P(S1V ), then f =∑r
i=1 λiL

d
i iff I(Z) ⊆ f⊥.

Proof. The implication ⇒ is obvious. The other direction can be obtained with a
dimension argument. �

With this Lemma we can rephrase Sylvester’s Algorithm.
Let f(x, y) =

∑d
i=0 ci

(
d
i

)
xd−iyi. Such an f can be decomposed as sum of r

distinct powers of linear forms iff there exists q(x, y) = q0x
r+q1x

r−1y+· · ·+qryr = 0
with 

c0 c1 · · · cr
c1 · · · cr+1

...
...

cd−r · · · cd




q0

q1

...
qr

 = 0

and q(x, y) = µΠr
k=1(βkx−αky). In this case then f(x, y) =

∑r
k=1 λk(αkx+βky)d.

This is possible because

I(Z) ⊂ (f⊥) = ker(Cat) = (G1, G2)

where the scheme Z is the scheme defined by the zeros of q and G1, G2 are the two
generators of the apolar ideal to f .

Since the Apolarity Lemma is true for any number of variables, what can we
say about a possible relation between I(Z), (f⊥) and ker(Cat)? Obviously, by
definition, we have that I(Z) ⊂ (f⊥), but in general the (f⊥) = ker(Cat) is not
true anymore. In particular rk(f) ≥ max{rkCat}.

A generalization of Sylvester’s algorithm to any number of variables that uses
this techniques is given by Iarrobino and Kanev (see [22]) only under the hypothesis
rk(f) = max{rkCat}.

Algorithm 4 (Iarrobino and Kanev, [22]).
Input: f ∈ SdV , where dimV = n+ 1.
(1) Construct the most square possible catalecticant Cmf = Cf with m =

⌈
d
2

⌉
.

(2) Compute kerCf . If rk(f) = rk(Cf ) then continue, otherwise stop here.
(3) Find the zero-set Z ′ = [L1], . . . , [Ls] of the polynomials in kerCf .
(4) Solve the linear system defined by f =

∑s
i=1 ciL

d
i in the unknowns ci.

Output: Waring decomposition of f .

This method works only if rk(f) = max{rkCat}. The idea developed in [12] is
to construct a general Henkel matrix as follows:

Hf : S∗ → S, such that ∂ 7→ ∂(f).

Such an application is linear, where the entries of an associated matrix are known,
they coincides with the entries of catalecticant matrices, but they are not all known.

Proposition 9. Ker(Hf ) is an ideal.
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Proposition 10. If rk(Hf ) = r < ∞, then dimR∗/If = r and there exist
L1, . . . Lk , gi ∈ SdiV such that f =

∑k
i=1 L

d−di
i gi and the apolar of f contains

schemes Zi with support on [L∗i ] and they have multiplicity equal to the dimension
of the vector space spanned by the inverse system generated by Ld−dii gi.

Theorem 8 (Brachat, Comon, Mourrain, Tsigaridas [12]). f =
∑r
i=1 L

d
i if and

only if rkHf = r and If := KerHf is a radical ideal.

How to do it in practice? We give here only an idea.
Given f ∈ Sd, find f∗ ∈ S which extends f with Hf∗ |Domain of Hf = Hf ,

rkHf∗ = rkf and If∗ is a radical ideal. Those f∗ are elements of the following set

Ed,0r := {[f ] ∈ P(SdV ) | ∃L ∈ S1V \ {0},∃f̃ ∈ Y m,m
′

r with

m = max{r, dd/2e},m′ = max{r − 1, bd/2c} s.t. Lm+m′−df̃∗ = f∗}
where Y i,d−ir = {[f ] ∈ P(SdV ) | rk(Ci,d−i) ≤ r}. If f ∈ Ed,0r we say that f has a
generalized affine decomposition of size r.

Now, multiplying by a linear (power of) form means introduce multiplying op-
erators in S/If = Af :

Ma : Af → Af

b 7→ a · b
and

M t
a : A∗f → A∗f

γ 7→ a ∗ γ.
Now define

(13) Ma∗f := M t
a ◦Hf .

Theorem 9. If dimAf <∞ then f =
∑k
i=1 L

d−di
i gi and

• the eigenvalues of the operators Ma and M t
a are given by {a(L∗i ), . . . , a(L∗r)},

• the common eigenvectors of the operators (M t
xi)1≤i≤n are up ti scalar Li.

One can recover the points Li by eigenvector computations: Take B a basis
|B| = rkHf , HB

a∗f = M t
aH

B
f = HB

f Ma (Ma is the matrix multiplication by a in the
basis B of Af ). The common solutions of the generalized eigenvalue problem

(Ha∗f − λHf )v = 0

for all a ∈ S yield the common eigenvectors HB
f v of M t

a that is the evaluation of
Li at the roots. Therefore these common eigenvectors HB

f v are up to scalar the
vectors [bi(L∗i ), . . . , br(L

∗
i )].

If f =
∑r
i=1 L

d
i , then the roots are simple and one eigenvector computation is

enough for a ∈ S, Ma is diagonalizable and the generalized eigenvectors HB
f v are

up to scalar the evaluations 1Li of the roots.

Theorem 10. If B and B′ are connected to 1 (i.e. m ∈ B 6= 1 then m = xi,jm
′

with m′ ∈ B) and f̃ known on B′+ × B+ and HB′,B

f̃
is invertible, then f̃ extends

uniquely to S if and only if MB′,B
i ◦ MB′B

j = MB′,B
j ◦ MB′B

i where MB′,B
i :=

HB′,xiB

f̃
(HB′,B

f̃
)−1, 1 ≤ i, j ≤ n, B ⊂ R, B+ = B ∪ x1B ∪ · · · ∪ xnB.

Algorithm 5 (Brachat, Comon, Mourrain, Tsigaridas).
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• Compute a set B of monomials of deg ≤ d connected to 1 with |B| = r.
• Find parameters h s.t. det(HB

f ) 6= 0 and the operators Mi = HB
xif

(HB
f )−1

commute.
• If there is no solution re-start the loop with r = r + 1.
• Else compute the n × r eigenvalues zi,j and the eigenvectors vj such that
Mjvj = zi,jvj , i = 1, . . . , n, j = 1, . . . , r. until the eigenvalues are simple.
• Solve the linear system in (vj)j=1,...,k, f =

∑r
j=1 vjz

d
j where zj are the

eigenvectors found above.

4.1. Exercises.

Exercise 7. Compute the rank of F = −x5 +3x4y−3x3y2 +x2y3 +2x4z−6x3yz+
6x2y2z − 2xy3z − x3z2 + 3x2yz2 − 3xy2z2 + y3z2.

Exercise 8. Let F = x2yz. Prove that 5 ≤ rk(F ) ≤ 6. (Actually rk(F ) = 6 **).
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[1] B. Ådlandsvik. Varieties with an extremal number of degenerate higher secant varieties. J.

Reine Angew. Math. 392 (1988), 16–26.
[2] J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables, J. Alg. Geom. 4

(1995), n.2, 201–222.

[3] J. Alexander, A. Hirschowitz. An asymptotic vanishing theorem for generic unions of multiple
points. Invent. Math. 140 (2000), 303–325.

[4] E. Arrondo, A. Bernardi. On the variety parametrizing completely decomposable polynomials.

J. Pure Appl. Algebra 215 (2011) pp. 201–220. DOI: 10.1016/j.jpaa.2010.04.008.
[5] E. Arrondo, R. Paoletti. 2005. Characterization of Veronese varieties via projections in Grass-

mannians. Projective varieties with unexpected properties. (eds. Ciliberto, Geramita, Mir-

Roig, Ranestad), De Gruyter, 1–12.
[6] E. Ballico, A. Bernardi. Decomposition of homogeneous polynomials with low rank. Math.

Z. (2012) 271:1141–1149. DOI : 10.1007/s00209-011-0907-6.

[7] E. Ballico, A. Bernardi. Unique decomposition for a polynomial of low rank. Ann. Polon.
Math. 108 (2013), 219–224. DOI: 10.4064/ap108-3-2.

[8] E. Ballico, A. Bernardi. Stratification of the fourth secant variety of Veronese variety via the
symmetric rank. Adv. Pure Appl. Math. In Press.

[9] A. Bernardi. Ideals of varieties parameterized by certain symmetric tensors. J. Pure Appl.

Algebra 212 (6), 2008 pp. 1542–1559. DOI: 10.1016/j.jpaa.2007.10.022.
[10] A. Bernardi, M.V. Catalisano, A. Gimigliano, M. Idà. Secant varieties to osculating
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