
Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Flemming Nielson

Technical University of Denmark

GLOBAN 2008

1 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Abstract

Static Analysis has its origins in improving the efficiency of
interpreters and compiled code but is gaining increased importance
due to its ability to validate important aspects of systems
behaviour. For several years static analysis have been used to
analyse process algebras for a variety of communication and mobility
paradigms in order to establish communication invariants and
correctness of communication protocols.

A new challenge arises from the use of process algebras for
modelling services - ensuring for example that service invocations do
not interfere with each other. In these lectures we provide the
foundations for performing static analysis for proces algebras
including considerations of correctness, adequacy and complexity
and touching upon the distinction between compositionality and
global characteristic features.

Thanks to Hanne Riis Nielson, Henrik Pilegaard, Han Gao.

2 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Overview:

The Grand View

3 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

Eventually we want to analyse service oriented systems written in
suitable programming languages for certain properties of interest.

There are at least two approches to doing so:

(1) The traditional approach is to perform the analysis
directly on the programming language – think
optimizing compilers.

(2a) A more modern way first extracts a behaviour from
the programming language, perhaps in the form of a
term in a process calculus,

(2b) that is then analysed for the properties of interest.

4 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) we can do so directly

(2a) we can extract a summary ...

(2b)... that is then analysed

5 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

These lectures focus on the more modern approach while briefly
illustrating the other:

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) Part 6:

Flow Logic for CML

(2a) Part 5: From CML to Behaviours

(2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, π-calculus, COWS

6 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

The more modern approach works well with modern software
development:
As shown in the DEGAS EU-project (leading up to SENSORIA)
one can extract process calculi descriptions from UML diagrams,
analyse them, and reflect the results back into the UML diagram.

UML Diagram

Process Calculi

Properties of Interest

6

?

?

(1) Reflection

(2a) Extraction

(2b) Analysis

7 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 1:

Flow Logic for Mobile Ambients

8 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Mobile Ambients

Overview: the ambient view of computation

Syntax: processes and capabilities

Semantics: structural congruence and transition relation

9 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The ambient view of computation

An ambient is a bounded place where computations take place

the boundary determines what is inside and what is outside

the ambient moves as a whole

example ambients: applets, agents, laptops, · · ·

Site A

packet

Site B

x

x

.
...........
......

............
....

.............
..

.................
....................

..................
.................

.................

...................

.....................

......................

10 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The ambient hierarchy

Ambients can be nested inside oneanother forming a tree structure

mobility is represented as navigation within this hierarchy of
ambients

example: to move a packet from one site to another we must first
remove it from the enclosing ambient and then insert it in the new
enclosing ambient

Site A

packet

Site B

x

x

.
...........
......

............
....

.............
..

.................
....................

..................
.................

.................

...................

.....................

......................

11 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling the ambients

Each ambient contains a number of multi-threaded running
processes

the top-level processes of an ambient have direct control over it and
can instruct it to move and thereby change the future behaviour of
its processes and subambients

the processes of subambients have no control over the parent

processes continue running while being moved

Site A

packet

Site B

x

x

.
...........
......

............
....

.............
..

.................
....................

..................
.................

.................

...................

.....................

......................

12 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Naming ambients

Each ambient has a name

only the name can be used to control the access to the ambient:
entry, exit, communication, etc.

ambient names are unforgeable

Site A

packet

Site B

x

x

.
...........
......

............
....

.............
..

.................
....................

..................
.................

.................

...................

.....................

......................

13 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Mobility primitives

Move into an ambient:

n

in m.P Q
m

R −→

m

R

n
P | Q

Move out of an ambient:

m

R

n

outm.P | Q −→
n
P | Q

m
R

Dissolve an ambient: open n.P
n
Q −→ P Q

14 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: a packet on a network

out A. in B.· · · | · · · | open p. · · · | · · ·
p
A B

the packet p moves out of site A

· · · | in B. · · · | open p. · · · | · · ·→

A
p

B

... and then into site B

→ · · · | · · · | open p. · · · | · · ·

A
p

B

... where it is dissolved

→ · · · | · · · | · · · | · · ·

A B

15 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: kidnapping an ambient

(ν k)(| go (in n). in k)
k

P

n

the ambient in k moves into n

→ (ν k) ()in k | P
k n

the ambient n moves into k

→ (ν k) ()P

k
n

the name k is private so
nobody can interact with n

16 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Syntax of Mobile Ambients

Processes:

P ::= (ν n : µ) P a process with private name n in group µ
| (ν µ) P a new group named µ with its scope
| 0 inactive process
| P1 p P2 two concurrent processes
| !P any number of occurrences of P

| n [P] ambient named n P
n

-

| M.P a capability M followed by P

Capabilities

M ::= in n move the enclosing ambient into a sibling named n
| out n move the enclosing ambient out of a parent named n
| open n dissolve a sibling ambient named n

17 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of Mobile Ambients

Structural congruence relation: P ≡ Q

Examples: !P ≡ !P | P
P ≡ Q ⇒ n [P] ≡ n [Q]

Transition relation: P → Q

Examples: n [inm.P | Q] | m [R] → m [n [P | Q] | R]

P ≡ P ′ ∧ P ′ → Q ′ ∧ Q ′ ≡ Q ⇒ P → Q

18 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Structural congruence relation

P ≡ P
P ≡ Q ∧ Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ Q ≡ P

P ≡ Q ⇒ (ν n : µ) P ≡ (ν n : µ) Q
P ≡ Q ⇒ (ν µ) P ≡ (ν µ) Q
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ !P ≡ !Q
P ≡ Q ⇒ n [P] ≡ n [Q]
P ≡ Q ⇒ m. P ≡ m. Q

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
P | 0 ≡ P

!P ≡ P | !P
!0 ≡ 0
(ν n : µ) 0 ≡ 0
(ν µ) 0 ≡ 0

(ν n : µ) (ν n′: µ′) P ≡ (ν n′: µ′) (ν n : µ) P if n 6= n′

(ν µ) (ν µ′) P ≡ (ν µ′) (ν µ) P
(ν n : µ) (ν µ′) P ≡ (ν µ′) (ν n : µ) P if µ 6= µ′

(ν n : µ) (P | Q) ≡ P | (ν n : µ) Q if n /∈ fn(P)
(ν µ) (P | Q) ≡ P | (ν µ) Q if µ /∈ fg(P)

(ν n′ : µ) (n [P]) ≡ n [(ν n′ : µ) P] if n 6= n′

(ν µ) (n [P]) ≡ n [(ν µ) P]

(ν n : µ) P ≡ (ν n′ : µ) (P{n← n′}) if n′ /∈ fn(P)
AVOID (ν µ) P ≡ (ν µ′) (P{µ← µ′}) if µ′ /∈ fg(P)

19 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Transition relation

P → Q ⇒ (ν n : µ) P → (ν n : µ) Q

P → Q ⇒ (ν µ) P → (ν µ) Q

P → Q ⇒ n [P]→ n [Q]

P → Q ⇒ P | R → Q | R

P ≡ P′ ∧ P′ → Q′ ∧ Q′ ≡ Q ⇒ P → Q

n [in m. P | Q] | m [R] → m [n [P | Q] | R]

m [n [outm. P | Q] | R] → n [P | Q] | m [R]

open n. P | n [Q] → P | Q

20 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis for Mobile Ambients

The aims of the analysis

The nature of approximation

21 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The aims of the analysis

1. Which ambients may
turn up inside other
ambients during the
execution?

2. Which capabilities
might be possessed by
an ambient during the
execution?

Example:

out A. in B.· · · | · · · | open p. · · · | · · ·
p
A B

The exact answer (for 1):

– p will turn up inside A — holds initially
– p will turn up inside B — holds after two steps
but
– A and B never turns up inside p

22 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The analysis in terms of groups

out A. in B.· · · | · · · | open p. · · · | · · ·
p
A B Groups:

p: Packet

A, B: Site

The exact answer:
– p may turn up inside A
– p may turn up inside B
but
– A and B never turns up inside p

The analysis result with groups:

– P may turn up inside S
but
– S never turns up inside P

Assumptions

groups cannot be renamed — they carry the analysis information

groups are only allowed at the top-level — they are global

23 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The nature of approximation

out A. in B.· · · | · · · | open p. · · · | · · ·
p
A B

An acceptable and
precise analysis result

– P may turn up inside S
but
– S never turns up inside P

An acceptable but
imprecise analysis
result

– P may turn up inside S
– S may turn up inside P

An unacceptable
analysis result

– S may turn up inside P
but
– P never turns up inside S

24 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The nature of approximation

The exact world Over-approximation Under-approximation

...............

...............

..............
..............

.........................
.......................

......................
....................

.....................
..

..................
.......

..............
............
..

...........
....

..........

.....

..........

.....

...........
....

............
..

..............
..................

.......
.....................

..
..

......................
.......................

.........................
..............

..............

...............

...............

universe

��	

@
@I exact set of

configurations

or behaviours

..............
........
.....

...............

...............

..............
..............

.........................
.......................

......................
....................

.....................
..

..................
.......

..............
............
..

...........
....

..........

.....

..........

.....

...........
....

............
..

..............
..................

.......
.....................

..
..

......................
.......................

.........................
..............

..............

...............

...............

..............

..............

..............
.............

.............
..............

...
............
.

...........
...

..........
....

..........

....

..........

....

..........
....

...........
...
............

.
.............

..............
.............
.............
..............

..............

..............

over-
approximation

..............
........
.....

���

...............

...............

..............
..............

.........................
.......................

......................
....................

.....................
..

..................
.......

..............
............
..

...........
....

..........

.....

..........

.....

...........
....

............
..

..............
..................

.......
.....................

..
..

......................
.......................

.........................
..............

..............

...............

............... ����
under-

approximation

..............
........
.....

�
��

Our analysis of mobile ambients: over-approximation

25 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Flow Logic for Mobile Ambients

Analysis estimates

Analysis judgements

The Flow Logic approach

Syntax-directed definition

of the analysis of processes
of the analysis of capabilities: in, out, and open

26 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis estimates

The analysis estimate

I : Group → P(Group ∪ Cap)

tells us for each ambient group µ ∈ Group:

which ambient groups may be inside an ambient in group µ

which group capabilities may be possessed by an ambient in group µ

A group capability M ∈ Cap is given by

M ::= inµ | outµ | openµ

27 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis judgements

I |=µ
Γ P

means that
I : Group → P(Group ∪ Cap)

is an acceptable analysis estimate for the process P when it occurs
inside an ambient from the group µ and when the ambients are in
the groups specified by the group environment

Γ : Name → Group

Hence I |=µ
Γ P is either true or false.

28 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example

I |=?
Γ A [p [out A. in B]] | B [open p]

holds for

Γ Name→ Group
A S
B S
p P

I Group→ P(Group ∪ Cap)
? {S, P}
S {P, S, in S, out S, open P}
P {in S, out S}

The analysis result shows that

P may turn up inside S — and so may S

S will never turn up inside P — and neither will P

29 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Flow Logic approach

Specification Implementation

clauses specifying
acceptability of

analysis estimates

extract
constraints from

the program

compute the
least solution

to the constraints

-

?

?

?

30 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Acceptable analysis results

• Each acceptable analysis estimate for
a composite program must also be
an acceptable analysis estimate for its
sub-programs; perhaps more impre-
cise than need be.

syntax directed
analysis of processes

• Each acceptable analysis estimate
must mimick the semantics: if the se-
mantics maps one configuration into
another then it must be reflected in
the analysis estimate.

analysis of
capabilities

31 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of processes

I |=?
Γ (ν n : µ) P iff I |=?

Γ[n 7→µ] P update group environment; check process

I |=?
Γ (ν µ) P iff I |=?

Γ P check process

I |=?
Γ 0 iff true nothing to check

I |=?
Γ P1 | P2 iff I |=?

Γ P1 ∧ I |=?
Γ P2 check both branches

I |=?
Γ !P iff I |=?

Γ P check process; ignore multiplicity

I |=?
Γ n [P] iff µ ∈ I(?) ∧ I |=µ

Γ P µ is inside ?; check process

where µ = Γ(n)

32 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: subambient

Checking
I |=?

Γ A [p [out A. in B]] | B [open p]

involves checking

S ∈ I(?) and I |=S
Γ p [out A. in B]

Γ Name→ Group
A S
B S
p P

I Group→ P(Group ∪ Cap)
? {S, P}
S {P, S, in S, out S, open P}
P {in S, out S}

33 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of in-capability

I |=?
Γ in n. P iff in µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µa, µp : in µ ∈ I(µa) ∧ µa has the capability in µ

µa ∈ I(µp) ∧ µp is parent of µa

µ ∈ I(µp) µa has a sibling in group µ

⇒ µa ∈ I(µ) µa may move into µ

where µ = Γ(n)
Mimicking the semantics:

· : µa

in n.P

n : µ

· : µp

−→

n : µ
· : µa

P

· : µp

34 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: in-capability

Checking
I |=?

Γ A [p [out A. in B]] | B [open p]

involves checking
I |=P

Γ in B

Γ Name→ Group
A S
B S
p P

I Group→ P(Group ∪ Cap)
? {S, P}
S {P, S, in S, out S, open P}
P {in S, out S}

which holds because in S ∈ I(P) and

in S ∈ I(µa) ∧ µa ∈ I(µp) ∧ S ∈ I(µp)⇒ µa ∈ I(S)

holds for all (µa, µp) ∈ {(S, ?), (S, S), (P, ?), (P, S)}

35 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of out-capability

I |=?
Γ out n. P iff out µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µa, µg : out µ ∈ I(µa)∧ µa has the capability out µ

µa ∈ I(µ) ∧ µ is parent of µa

µ ∈ I(µg) µg is grandparent of µ

⇒ µa ∈ I(µg) µa may move out of µ

where µ = Γ(n)

Mimicking the semantics:

· : µa

P

n : µ

· : µg

−→

n : µ
· : µa

out n.P

· : µg

36 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: out-capability

Checking
I |=?

Γ A [p [out A. in B]] | B [open p]

involves checking
I |=P

Γ out A. in B

Γ Name→ Group
A S
B S
p P

I Group→ P(Group ∪ Cap)
? {S, P}
S {P, S, in S, out S, open P}
P {in S, out S}

which holds because I |=P
Γ in B and out S ∈ I(P) and

out S ∈ I(µa) ∧ µa ∈ I(S) ∧ S ∈ I(µg)⇒ µa ∈ I(µg)

holds for all (µa, µg) ∈ {(S, ?), (S, S), (P, ?), (P, S)}

37 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of open-capability

I |=?
Γ open n. P iff open µ ∈ I(?) ∧ I |=?

Γ P ∧
∀ µp : open µ ∈ I(µp) ∧ µp has the capability open µ

µ ∈ I(µp) µ is sibling

⇒ I(µ) ⊆ I(µp) anything in µ may appear in µp

where µ = Γ(n)

Mimicking the semantics:

P

· : µp

−→open n.P

n : µ

· : µp

38 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: open-capability

Checking
I |=?

Γ A [p [out A. in B]] | B [open p]

involves checking
I |=S

Γ open p

Γ Name→ Group
A S
B S
p P

I Group→ P(Group ∪ Cap)
? {S, P}
S {P, S, in S, out S, open P}
P {in S, out S}

which holds because open P ∈ I(S) and

open P ∈ I(µp) ∧ P ∈ I(S)⇒ I(P) ⊆ I(µp)

holds for µp = S

39 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Properties of the analysis

Semantic correctness

We err on the safe side!

Moore family property

We have best analysis results!

40 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

The analysis estimate is preserved during the execution:

P1 → P2 → · · · → Pi → · · ·
↑ ↑ ↑| |=?

Γ | |=?
Γ | |=?

Γ↓ ↓ ↓
I I · · · I · · ·

Subject reduction result:
If I |=?

Γ P and P →∗ Q then I |=?
Γ Q

Familiar from type systems

41 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Proof of subject reduction result

Lemma: The analysis is invariant under the structural congruence:

If P ≡ Q then I |=?
Γ P if and only if I |=?

Γ Q

The proof is by induction on the inference of P ≡ Q

Theorem: The analysis is preserved under the transition relation:

If P → Q and I |=?
Γ P then I |=?

Γ Q

The proof is by induction on the inference of P → Q

42 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Moore family property

All processes can be analysed and has a least (best) analysis result:

The set {I | I |=?
Γ P} is a Moore family

If Y ⊆ {I | I |=?
Γ P} then uY |=?

Γ P where
(uY)(µ) =

⋂
{I(µ) | I ∈ Y}

The proof is by structural induction on P.
Corollaries:

All processes can be analysed:
— a Moore family cannot be empty

All processes has a least (best) analysis result:
— a Moore family has a least element

43 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading

H. Riis Nielson, F. Nielson, M. Buchholtz: Security for Mobility. In
Foundations of Security Analysis and Design II, SLNCS 2946, pages
207 – 266, Springer, 2004.

Section 2 contains the “semantics-directed” way of “reading off”
the Flow Logic from the Operational Semantics that was illustrated
here.

Sections 3, 4 and 5 cover Discretionary Access Control, Mandatory
Access Control and Cryptographic Protocols – all in terms of Mobile
Ambients and Flow Logic.

44 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 2:

Flow Logic for π-Calculus

45 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The π-calculus

Communication model:

a number of processes exchanging names by communicating over
channels

this can change the connectivity of the processes

Initially:

P
H

H
HH

H
HHc

c

Q

R

Eventually:

P

��
��

���

H
H

HHH
HHc

c

n

Q

R

46 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Syntax and Semantics of π-calculus

Syntax:

Processes: P ::= (new n)P | P1 | P2 | !P | Σi∈Iπi .Pi

Actions: π ::= u〈~v〉︸︷︷︸
output

| u(~x)︸︷︷︸
input

| τ︸︷︷︸
internal

Semantics:
Structural congruence relation: P ≡ Q

Reduction relation: P → Q

47 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Structural congruence relation

Abelian monoid laws for parallel: (P | Q) | R ≡ P | (Q | R)
P | Q ≡ Q | P
P | 0 ≡ P

unfolding of replication: !P ≡ P | !P

summands can be permuted in Σi∈Iπi .Pi

scope laws: (new n)(new m)P ≡ (new m)(new n)P
(new n)0 ≡ 0
(new n)(P | Q) ≡ (new n)P | Q if n /∈ fn(Q)

α-renaming: (new n)P ≡ (new m)P[m/n] if m 6∈ fn(P)

48 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Reduction Relation

(n〈~m〉.P + P ′) | (n(~x).Q + Q ′) → P | Q[~m/~x] if |~m| = |~x |

OBS: stuck if |~m| 6= |~x |

τ.P + Q → P

P → P ′

(new n)P → (new n)P ′
P → P ′

P | Q → P ′ | Q

P ≡ Q Q → Q ′ Q ′ ≡ P ′

P → P ′

49 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Successful example

P creates the channel n and
distributes it to Q and R using the
channel c

Q sends the message m to R using
the new channel n

P

���
����

HHH
HHHHc

c

n

Q

R

((new n)c〈n〉. c〈n〉)︸ ︷︷ ︸
P

| c(x). ((new m)x〈m〉)︸ ︷︷ ︸
Q

| c(y). y(x)︸ ︷︷ ︸
R

→ (new n)(c〈n〉 | (new m)n〈m〉) | c(y). y(x)

→ (new n)(0 | (new m)n〈m〉 | n(x))

→ (new n)(0 | (new m) 0 | 0)

50 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Unsuccessful example

P creates the channel n and
distributes it to Q and R ′ using the
channel c – but R ′ fails to receive it

P
H

HHHH
HHc

c

Q

R ′

((new n)c〈n〉. c〈n〉)︸ ︷︷ ︸
P

| c(x). ((new m)x〈m〉)︸ ︷︷ ︸
Q

| c(x , y). x(y)︸ ︷︷ ︸
R′

→ (new n)(c〈n〉 | (new m)(n〈m〉)) | c(x , y). x(y)

6→ stuck!

51 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The aims of the analysis

Can we guarantee that the process will never encounter a
configuration where a communication fails because of arity
mismatch?

which sequences of names can be communicated over the various
channels?

which names may be bound to which variables?

52 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis estimates

The analysis estimate has three components

ρ : Var → ℘(Name) is the abstract environment that maps a

variable to the set of names that it might be bound to.

κ : Name → ℘(Name∗) is the abstract channel environment

that maps a (channel) name to the set of sequences of names that
may be communicated over it.

ψ : ℘(Name) is the error component that records the set of

(channel) names where there may be an arity mismatch in a
communication.

53 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis judgements

For processes:
ρ, κ `P P : ψ

means that ρ, κ and ψ is an acceptable analysis estimate for the
process P.

For actions:
ρ, κ `A π : ψ

means that ρ, κ and ψ is an acceptable analysis estimate for the
action π.

54 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of processes

ρ, κ `P (new n)P : ψ iff ρ, κ `P P : ψ

ρ, κ `P P1 | P2 : ψ iff ρ, κ `P P1 : ψ1 ∧ ρ, κ `P P2 : ψ2 ∧
ψ1 ∪ ψ2 ⊆ ψ

ρ, κ `P !P : ψ iff ρ, κ `P P : ψ

ρ, κ `P Σi∈Iπi .Pi : ψ iff ∀i ∈ I : (ρ, κ `A πi : ψ′i ∧ ψ′i ⊆ ψ ∧
ρ, κ `P Pi : ψi ∧ ψi ⊆ ψ)

Special case for prefixed actions:

ρ, κ `P π.P : ψ iff ρ, κ `A π : ψ′ ∧ ψ′ ⊆ ψ ∧
ρ, κ `P P : ψ′′ ∧ ψ′′ ⊆ ψ

55 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis of actions

ρ, κ `A u〈~v〉 : ψ iff ∀n ∈ ρ(u) : ρ(~v) ⊆ κ(n)

if n is a possible value of u then

all values of ~v may be communicated over n

ρ, κ `A u(~x) : ψ iff ∀n ∈ ρ(u) : κ(n) ∩ Name|~x | ⊆ ρ(~x) ∧
κ(n) \ Name|~x | 6= ∅ ⇒ n ∈ ψ

if n is a possible value of u then

all sequences recorded in κ of length |~x |
are possible values for ~x and

if there are sequences of different lengths

then there might be an error

ρ, κ `A τ : ψ iff true

56 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Examples

Successful process:

((new n)c〈n〉. c〈n〉) | c(x). ((new m)x〈m〉) | c(y). y(x)

Acceptable analysis result:

ρ =
x y

{n,m} {n} κ =
c n m
{n} {m} {m} ψ = ∅

Unsuccessful process:

((new n)c〈n〉. c〈n〉) | c(x). ((new m)x〈m〉) | c(x , y). x(y)

Acceptable analysis result:

ρ =
x y
{n} {m} κ =

c n m
{n} {m} ∅ ψ = {c}

57 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Properties of the analysis

Semantic correctness

we err on the safe side

Adequacy results

Well-behaved processes
Well-sorted processes
Non-leaking processes

Moore family property

we have best analysis results

58 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic Correctness

Idea: ρ, κ and ψ must capture the behaviour of P and all the
processes it may evolve into.

Disciplined α-renaming:

(new n)P ≡α (new m)P[m/n] if m 6∈ fn(P) ∧ bnc = bmc

Canonical name: bnc is the equivalence class for n

59 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic Correctness

Structural Congruence Lemma:
If P ≡ Q then ρ, κ `P bPc : ψ if and only if ρ, κ `P bQc : ψ.

The proof is by induction on the inference of P ≡ Q.

Substitution Lemma:
If ρ, κ `P bPc : ψ then ρ, κ `P bP[m/y]c : ψ provided that
bmc ∈ ρ(y).

The proof is by structural induction on P.

Subject Reduction Theorem:
Assume P → Q and ρ, κ `P bPc : ψ. Then ρ, κ `P bQc : ψ.

The proof is by induction on the inference of P → Q.

60 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Adequacy Result: Well-behaved processes

P? is dynamically well-behaved if whenever P? →∗ P and
P ≡ C [(n〈~m〉.R + R ′) | (n(~x).Q + Q ′)] for some C then |~m| = |~x |.
Here C is a characteristic context:

C ::= (new n)C | C | P | [·]

P? is statically well-behaved if there exists ρ and κ such that
ρ, κ `P P? : ∅.

Adequacy Theorem for Well-behaved Processes:
If P? is statically well-behaved then it is also dynamically
well-behaved.

61 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Well-sorted processes

Idea:

each name n has a sort σ(n) ∈ Sort

a sorting is a mapping

Σ : Sort → Sort∗

that for each sort specifies a sequence of sorts describing

the arity of the names with that sort and
the sorts of the names that may be communicated over it.

62 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Adequacy Result: Well-sorted processes

P? is dynamically well-sorted if whenever P? →∗ P and
P ≡ C [(n〈~m〉.R + R ′) | (n(~x).Q + Q ′)] for some C then |~m| = |~x |
as well as Σ(σ(n)) = σ(~m).

P? is statically well-sorted if there exists ρ and κ such that
ρ, κ `P P? : ∅ and furthermore σ(κ(n)) ⊆ {Σ(σ(n))} for all n.

Adequacy for well-sorted processes
If the process P? is statically well-sorted then it is also dynamically
well-sorted.

63 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Non-leaking processes

Idea:

Level = {low, high} is a set of security levels ordered by
low v high.

a mapping
Λ : Name → Level

assigns a security level to each name; we require that if bnc = bmc
then Λ(n) = Λ(m)

Confidentiality policy: processes are not allowed to send names
with higher security level on channels with lower security level

64 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Adequacy Result: Non-leaking processes

P? is dynamically non-leaking if whenever P? →∗ P and
P ≡ C [(n〈~m〉.R + R ′) | (n(~x).Q + Q ′)] for some C then |~m| = |~x |
as well as Λ(m) v Λ(n)|~m|.

P? is statically non-leaking if there exists ρ and κ such that
ρ, κ `P P? : ∅ and furthermore ∀~m ∈ κ(n) : Λ(~m) v Λ(n)|~m| for all
n.

Adequacy for non-leaking processes
If the process P? is statically non-leaking then it is also
dynamically non-leaking.

65 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Moore family property

All processes can be analysed and has a least (best) analysis result:

The set {(ρ, κ, ψ) | ρ, κ `P P : ψ} is a Moore family

If Y ⊆ {I | I |=?
Γ P} then uY |=?

Γ P where
(uY)(µ) =

⋂
{I(µ) | I ∈ Y}

The proof is by structural induction on P.

Corollaries:

All processes can be analysed:
— a Moore family cannot be empty

All processes has a least (best) analysis result:
— a Moore family has a least element

66 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Interaction points

Observation: two actions only interact when in different threads

This is not captured in the analysis:

ρ, κ `P π1.P1 + π2.P2 : ψ iff ρ, κ `P π1.P1 | π2.P2 : ψ

Example: for n〈m〉.n(x) we get m ∈ κ(n)

Extended syntax: adds labels to output and input actions:

π ::= u〈~v〉` | u(~x)` | τ

Semantics:

unchanged — the labels are just pointers into the syntax

67 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Set of interaction points

Output labels: Labo(P)

Input labels: Labi (P)

Interaction points: IP(P) contains pairs (`o , `i) of (labels of)
output and input actions that may interact

IP((new n)P) = IP(P)

IP(P1 | P2) = IP(P1) ∪ IP(P2)∪
(Labo(P1)× Labi (P2)) ∪ (Labo(P2)× Labi (P1))

IP(!P) = IP(P) ∪ (Labo(P)× Labi (P))

IP(Σi∈Iπi .Pi) =
⋃

i∈I IP(Pi)

68 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Revised analysis domains

We can improve the precision of the analysis by taking:

ρ : Var → ℘(Name) is as before: it maps a variable to the set of
names that it might be bound to.

κ : Name× Lab → ℘(Name∗) is extended to record which sequences
of names that are communicated over a given (channel) name at a
given output label.

ψ : ℘(Name× Lab× Lab) is extended to record the set of triples of
(channel) names and interaction points where there may be an arity
mismatch in a communication.

69 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Revised analysis

Actions:

ρ, κ `A u〈~v〉`o : ψ iff ∀n ∈ ρ(u) : ρ(~v) ⊆ κ(n, `o)

ρ, κ `A u(~x)`i : ψ iff ∀n ∈ ρ(u) : ∀`o :(`o , `i) ∈ IP(P?) ⇒
(κ(n, `o) ∩ Name|~x | ⊆ ρ(~x) ∧
κ(n, `o) \ Name|~x | 6= ∅ ⇒

(n, `o , `i) ∈ ψ)
ρ, κ `A τ : ψ iff true

Processes:

ρ, κ `P P : ψ as before

70 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Tests

Extended syntax:

P ::= (new n)P | P1 | P2 | !P | Σi∈Iπi .Pi | [u = v]P

Extended semantics:
[n = n]P → P

Extended analysis:

ρ, κ `P [u = v]P : ψ iff ρ(u) ∩ ρ(v) 6= ∅ ⇒ ρ, κ `P P : ψ

Note:

the continuation P is only analysed if it may be executed

when P is analysed it is not enforced that ρ(u) = ρ(v)

71 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Localised environment

Extended syntax: add labels to tests and input actions

P ::= (new n)P | P1 | P2 | !P | Σi∈Iπi .Pi | [u = v]`P

π ::= u〈~v〉 | u(~x)` | τ

Notation:

lab(π, `) =


` if π = u〈~v〉
`i if π = u(~x)`i

` if π = τ

Semantics: unchanged — the labels are just pointers into the
syntax

72 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Revised analysis domains

We can improve the precision of the analysis by taking:

ρ : Lab× Var → ℘(Name) is the localised abstract environment
that given a label maps a variable to the set of names that it can be
bound to in the context described by the label.

κ : Name → ℘(Name∗) is as before: it maps a (channel) name to
the set of sequences of names that may be communicated over it.

ψ : ℘(Name× Lab) is the error component that now records set of
pairs of (channel) names and (input) labels indicating where an
arity mismatch may occur.

73 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Revised analysis

Processes: ρ, κ ``
P P : ψ

ρ, κ ``
P (new n)P : ψ iff ρ, κ ``

P P : ψ

ρ, κ ``
P P1 | P2 : ψ iff ρ, κ ``

P P1 : ψ1 ∧ ρ, κ ``
P P2 : ψ2 ∧

ψ1 ∪ ψ2 ⊆ ψ

ρ, κ ``
P !P : ψ iff ρ, κ ``

P P : ψ

ρ, κ ``
P Σi∈Iπi .Pi : ψ iff ∀i ∈ I : (ρ, κ ``

A πi : ψ′i ∧ ψ′i ⊆ ψ ∧
ρ, κ `lab(πi ,`)

P Pi : ψi ∧ ψi ⊆ ψ)

ρ, κ ``
P [u = v]`tP : ψ iff ρ(u, `) ∩ ρ(v , `) 6= ∅ ⇒

∀x /∈ {u, v} : ρ(x , `) ⊆ ρ(x , `t) ∧
∀x ∈ {u, v} : ρ(u, `) ∩ ρ(v , `) ⊆ ρ(x , `t) ∧
ρ, κ ``t

P P : ψ

74 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Revised analysis

Actions: ρ, κ ``
A π : ψ

ρ, κ ``
A u〈~v〉 : ψ iff ∀n ∈ ρ(u, `) : ρ(~v , `) ⊆ κ(n)

ρ, κ ``
A u(~x)`i : ψ iff ∀n ∈ ρ(u, `) :

κ(n) ∩ Name|~x | ⊆ ρ(~x , `i) ∧
κ(n) \ Name|~x | 6= ∅ ⇒ (n, `i) ∈ ψ ∧
∀y /∈ {~x} : ρ(y , `) ⊆ ρ(y , `i)

ρ, κ ``
A τ : ψ iff true

75 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading

H. Riis Nielson, F. Nielson, H. Pilegaard: Flow Logic for Process
Calculi: a Tutorial.

Section 2 develops a Flow Logic for the π-calculus.

Sections 3 and 4 gives an overview of stronger analysis techniques
as well as other calculi — not in your hand-out.

76 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 3:

An Executive Summary of Flow Logic

77 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The setting for Flow Logic

Programs P in some programming language or process algebra

Semantics P → P ′ often in the form of a Structural Operational
Semantics or Reaction Semantics

Analysis estimates I ususally elements of some complete lattice
(L,v)

A validity judgement I |= P defined by clauses

A subject reduction result I |= P ∧ P → P ′ ⇒ I |= P ′ indicating
that the validity is preserved under reduction

A Moore Family result showing that I? = u{I | I |= P?} defines a
unique least solution

78 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The validity judgement

Usually there is one clause for each syntactic construct φ of the
programming language to which P belongs

Each clause takes the form

I |= φ(· · ·Pi · · ·) iff (some formula Ψ with I |= P ′)

for various subprograms P ′

The first challenge is to ensure that this constitutes a well-defined
definition.

Sometimes an inductive definition suffices; this is the case if each P ′

is some Pi (see above).
Otherwise a coinducitive definition is called for; this works if the
formula Ψ gives rise to a monotonic functional F .

79 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The structure of fixed points (Tarski)

..
.......................

......................

.....................

.....................

.......................

.........................

...........................

.............................

...............................

.................................

...................................

.

...................................

.................................

...............................

.............................

...........................

.........................

.......................

.....................

.....................

......................
.......................

.......................

.
.......................

......................

.....................

.....................

.......................

.........................

...........................

.............................

...............................

.................................

...................................

.

...................................

.................................

...............................

.............................

...........................

.........................

.......................

.....................

.....................

......................
.......................

...

....................
...................

..................
.................

....................

......................

........................

...........................

.............................

.

.............................

...........................

........................

......................

....................

.................
..................

...................
...................

.
...................

..................
.................

....................

......................

........................

...........................

.............................

.

.............................

...........................

........................

......................

....................

.................
..................

...................
...................

....................
...................

..................
.................

....................

......................

........................

...........................

.............................

.

.............................

...........................

........................

......................

....................

.................
..................

...................
...................

.
...................

..................
.................

....................

......................

........................

...........................

.............................

.

.............................

...........................

........................

......................

....................

.................
..................

...................
...................

•

•

•

•

•

•

⊥

F n(⊥)

lfp(F)

gfp(F)

F n(>)

>

Induction

Coinduction

-

-

80 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Induction versus Coinduction

Sometimes induction and coinduction agrees. Then a clause

I |= φ(P1,P2) iff (Ψ ∧ I |= P1 ∧ I |= P1)

may be written in a more familiar form as an inference rule

Ψ
I |= P1

I |= P2

I |= φ(P1,P2)

When induction and coinduction differs we always take the
coinductive definition of the validity judgement.

This is not so often the case for process algebras.

81 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

Lemma: The analysis is invariant under the structural congruence:

If P ≡ Q then I |= P if and only if I |= Q

The proof is by induction on the inference of P ≡ Q:

Using the iff form of the definition of |= to freely fold and unfold
formulae (regardles of which fixpoint used).

Using a notion of canonical names (invariant under α-conversion) if
names are collected in the analysis (I).

Sometimes the unfolding of recursion allowed by A(y) ≡ P[y/x] (if

we have A(x)
∆
= P) creates severe complications!

82 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction result

Theorem: The analysis is preserved under the transition relation:

If P → Q and I |= P then I |= Q

The proof is by induction on the inference of P → Q:

Using the iff form of the definition of |= to freely fold and unfold
formulae (regardles of which fixpoint used).

Being careful with substitution to get placeholder labels to work
correctly (if present): x l [ym/x] = y l .

83 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Moore family property

Theorem: The set {I | I |=?
Γ P} is a Moore family

This means that uY |=?
Γ P whenever Y ⊆ {I | I |=?

Γ P} where

(uY)(µ)
∆
=

⋂
{I(µ) | I ∈ Y}

The proof is by strutural induction on P.

It follows that I? = u{I | I |= P?} defines a unique least solution:

we have I? |= P?

if I |= P? then I? v I

84 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Calculating the least solution

Generate I? = u{I | I |= P?} as a formula in a suitable format:

Conditional constraints — with links to bitvector frameworks.

Horn Clauses

Datalog
Alternating Least Fixed Point Logic (“The Succinct Solver”)
The asymptotic time to check a solution equals the asymptotic time
to calculate a solution.
H3, H1, · · · solvers

85 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Ingredients for more advanced analyses

Adding context information (from 0-CFA to k-CFA):

I |=c P iff · · · I |=cc′ P ′ · · · ∧ · · · {cc ′} ⊆ I(c) · · ·

Here c indicates the dynamic context in which the process P is
encountered; this is useful for achieving more precise analyses of
programming languages and process algebras.

Making analyses data dependent.

This is mainly used for imperative and object-oriented languages.

86 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Abstract versus Compositional

One of the methodological choices of Flow Logic is when to use
abstract and when to use compositional specifications.

Abstract:

Abstract specifications place no demands on which processes may
be used on the right-hand-sides of iff .
Usually processes communicated (in a higher-order process algebra)
and recursive processes are analysed at each invocation.
This leads to treating open systems for free.
The coinductive interpretation (desired) may differ from the
inductive one.
Often more pleasant to read and easier to understand.

87 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Abstract versus Compositional

Compositional:

Compositional specifications demand that only subprocesses of the
process on the left-hand-side of an iff may be used on the
right-hand-side.
Therefore processes communicated (in a higher-order process
algebra) and recursive processes must be analysed once and for all
at their point of definition.
Unless special care is taken this leads to analysing closed systems
only.
The coinductive interpretation (desired) agrees with the inductive
one.
Ususally necessary in order to implement the analysis.

88 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Verbose versus Succinct

Another methodological choice of Flow Logic is when to use
verbose and when to use succinct specifications.

Verbose:

All the information of interest in collected in a global manner:

I, II , IO |= P
Makes some forms of implementation easier to deal with.
Often requires placeholder labels in the syntax of processes.

89 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Verbose versus Succinct

Succinct:

Only some of the information of interest is collected in a global
manner; other pieces of information may be

synthesized to describe the effect of local components:

I |= P : � Ô

which is useful for functional languages and process algebras.
record input- and output-dependencies

I |= P : Î � Ô

which is mainly useful for procedural languages.

Generally leads to simpler analysis domains.
Often more pleasant to read and easier to understand.

90 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

A word on notation

Some of the notation used has striking resemblance to (can be
considered equivalent to) other well-known notations:

Succinct Compositional Flow Logic

I |= P : Î � Ô

Hoare Logic

I ` {Î} P {Ô}

91 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading

H. Riis Nielson, F. Nielson, H. Pilegaard: Flow Logic for Process
Calculi: a Tutorial.

Section 5 gives an executive summary of what Flow Logic is –
concentrating on process calculi.

H. Riis Nielson, F. Nielson. Flow Logic: a Multi-paradigmatic
Approach to Static Analysis. In The Essence of Computation:
Complexity, Analysis, Transformation, SLNCS 2566, pages 223 -
244, Springer, 2002.

Contains a tutorial and executive summary of what Flow Logic is –
concentrating on programming languages rather than process
calculi.

92 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 4:

Flow Logic for COWS

93 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Calculus for Orchestration of Web
Services

Communication model:

Service providers and users constitute loosely coupled agents

Each service may require a number of request-response interactions
that are strung together in virtual sessions using correlations

A correlation contains (patterns of) values shared between the
service provider and the user

Correlations allow for a flexible communication model where
interactions do not have to be performed in one fixed order

Technically this is facilitated by an idea also found in the Fusion
Calculus: the positions defining the contents of variables are
seperated from the positions indicating the scope of variables

This presents a challenge to static analysis

94 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Syntax and semantics of COWS

Syntax:

Services: s ::= u • u′!v̄ ` | g | s | s | (n)s | [x]`s | ∗s

Input-guarded Choice: g ::= 0 | p • o?v̄ `.s | g + g

Semantics:
Structural congruence relation: P ≡ Q

Labelled transition relation: P
α−→ Q

95 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Structural congruence relation

Monoid laws for � ∈ {+, | }:
(P � Q)� R ≡ P � (Q � R)
P � Q ≡ Q � P
P � 0 ≡ P

Unfolding of replication:
?s ≡ s | ? s
?0 ≡ 0

Scope laws:

(n)0 ≡ 0
(n)(m)s ≡ (m)(n)s
s1 | (n)s2 ≡ (n)(s1 | s2) if n 6∈ fn(s1)
[x](n)s ≡ (n)[x]s

α-renaming:
(n)P ≡ (m)P[m/n] if m 6∈ fn(P)
[x]P ≡ [y]P[y/x] if y 6∈ fn(P)

96 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Pattern matching

Pattern matching is a Partial function:

M(n, n) = ∅ M(x , n) = {x 7→ n}

M(u1, n1) = σ1 M(ū2, n̄2) = σ2

M((u1, ū2), (n1, n̄1)) = σ1] σ2

Fails on M(n,m) !

97 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Transition labels

The semantic transitions are labelled as follows:

α ::= (p • o) � n̄` | (p • o) � ū` | p • obσcū`i n̄`o

where σ ⊆M(ū`i , n̄`o).

98 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Labelled transition relation

Rules that change transition labels:

p • o!n̄` -(p•o)�n̄`
0 p • o?ū`.s -(p•o)�ū`

s

s1 -(p•o)�ū`i s ′1 s2 -(p•o)�n̄`o s ′2 M(ū, n̄) = σ

s1 | s2 -p•obσcū`i n̄`os ′1 | s ′2

s -p•obσ][x 7→n]cū`i n̄`os ′

[x]`s -p•obσcū`i n̄`o s ′ · [x 7→ n]

A completed semantic transition has label p • ob∅cū`i n̄`o

99 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Labelled transition relation

Rules that propagate transition labels:

g1
α−→ s

g1 + g2
α−→ s

s1
α−→ s

s1 | s2
α−→ s | s2

s
α−→ s ′ n /∈ d(α)

(n)s
α−→ (n)s ′

s
α−→ s ′ x /∈ d(α)

(x)s
α−→ (x)s ′

s ≡ s1 s1
α−→ s2 s2 ≡ s ′

s
α−→ s ′

where d(α) contains all names and variables addressed by the σ of
α, if any.

100 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: a car accident service

Cars

∗(self) ∗(gps) ∗(sid)
ps • oalarm!〈acc, self, sid〉1

| (self • oconfirm?〈sid〉2.ps • oconfirm!〈ok, self, sid〉3 +
self • oconfirm?〈sid〉4.ps • oconfirm!〈ko, gps, sid〉5)

Service provider

∗[xinfo]
6 [xid]

7 [xreply]
8 [xsid]

9

ps • oalarm?〈acc, xid, xsid〉10.xid • oconfirm!〈xsid〉11
| ps • oconfirm?〈xreply, xinfo, xsid〉12.ps • oSos!〈xreply, xinfo, xsid〉13
| ps • oSos?〈ko, xinfo, xsid〉14.pamb • oSos!〈xinfo, xsid〉15
| ps • oSos?〈ok, xinfo, xsid〉16.0

101 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: a car accident service

Car

(self) (gps) (sid)

ps • oalarm!〈acc, self, sid〉1

| (self • oconfirm?〈sid〉2.ps • oconfirm!〈ok, self, sid〉3 +
self • oconfirm?〈sid〉4.ps • oconfirm!〈ko, gps, sid〉5)

Service instance

[xinfo]
6 [xid]

7 [xreply]
8 [xsid]

9

ps • oalarm?〈acc, xid, xsid〉10. xid • oconfirm!〈xsid〉11

| ps • oconfirm?〈xreply, xinfo, xsid〉12.ps • oSos!〈xreply, xinfo, xsid〉13
| ps • oSos?〈ko, xinfo, xsid〉14.pamb • oSos!〈xinfo, xsid〉15
| ps • oSos?〈ok, xinfo, xsid〉16.0

102 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: a car accident service

Car

(self) (gps) (sid)
(self • oconfirm?〈sid〉2.ps • oconfirm!〈ok, self, sid〉3 +

self • oconfirm?〈sid〉4.ps • oconfirm!〈ko, gps, sid〉5)

Service instance

[xinfo]
6 [xreply]

8

self • oconfirm!〈sid〉11
| ps • oconfirm?〈xreply, xinfo, sid〉12.ps • oSos!〈xreply, xinfo, sid〉13
| ps • oSos?〈ko, xinfo, sid〉14.pamb • oSos!〈xinfo, sid〉15
| ps • oSos?〈ok, xinfo, sid〉16.0

103 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: a car accident service

Car

(self) (gps) (sid)

(self • oconfirm?〈sid〉2. ps • oconfirm!〈ok, self, sid〉3 +

self • oconfirm?〈sid〉4. ps • oconfirm!〈ko, gps, sid〉5)

Service instance

[xinfo]
6 [xreply]

8

self • oconfirm!〈sid〉11

| ps • oconfirm?〈xreply, xinfo, sid〉12.ps • oSos!〈xreply, xinfo, sid〉13
| ps • oSos?〈ko, xinfo, sid〉14.pamb • oSos!〈xinfo, sid〉15
| ps • oSos?〈ok, xinfo, sid〉16.0

104 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The aims of the analysis

Can we guarantee that the correlation of messages is strong
enough to ensure correct message delivery?

Which tuples may be communicated between the various
endpoints?

Which tuples of values may be bound at the various program
points?

105 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

A note on correlation

A service instance often engages in multiple concurrent
conversations in order to orchestrate sub-services

A correlation set is a set of message properties that allows each
message to be uniquely associated with the appropriate instance

Uses are often security critical but the concept is fragile

Similar in purpose to nonces in security protocols, yet more powerful
and complicated to use
Similar in function to keys in relational databases, yet more dynamic
and harder to control

Formal verification is definitely worthwhile...

106 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Auxiliary relations

The analysis relies on two auxiliary static relations

F : Lab → P(Lab) is the flow relation that maps maps a program

point label, `, to the labels of program points that may follow.

L : Lab → (Var × Lab)∗ is the label environment that maps a

program point label, `, to the variable scope that encloses it.

E.g. [xid]
1 [xsid]

2ps • oalarm?〈acc, xid, xsid〉3.xid • oconfirm!〈xsid〉4
where L.1 = 〈〉, L.2 = 〈x1

id〉, and L.3 = L.4 = 〈x1
id, x

2
sid〉

Label lookup x#〈x`1 , . . . , x`k 〉 = `t if t = max{i | xi = x}
E.g. xsid#L.3 = 2

107 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis estimates

The analysis estimate has three components

K̂ : (Name×Name) → P(Name∗) is the abstract

communication cache that maps an endpoint, p • o, to the set of
tuples of names that may be send to it.

R̂ : Lab → P(Name∗⊥) , where Name⊥ = Name ∪ {⊥}, is the

abstract environment that maps a program point, `, to the set of
tuples that may instantiate the variable scope, L.`, enclosing it.

E.g. if w̄ = 〈n1,⊥〉 ∈ R̂.3 (corresponding to L.3 = 〈x1
id, x

2
sid〉) there

may be an instance where xid is bound to n1 and xsid is unbound.

Value lookup Π
x@〈x`1

1 ,...,x
`k
k 〉(〈w1, . . . ,wk〉) = wt if t = max{i | xi = x}

E.g. Πxid@L.3(w̄) = n1

Note Πxidxsid@L.3(w̄) = 〈n1,⊥〉 and Πxidxsid@L.3({w̄}) = {〈n1,⊥〉}

108 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis judgements

Given a service s, with flow relation F and label environment L, the
judgement

R̂, K̂ `L,F s

expresses that R̂ and K̂ constitute an acceptable analysis estimate
for s.

109 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis clauses

Recall Judgement defined by single clause for each syntactic
construct.

The clauses for unlabelled constructs are particularly simple:

R̂, K̂ `L,F 0 iff true

R̂, K̂ `L,F ?s iff R̂, K̂ `L,F s

R̂, K̂ `L,F (n)s iff R̂, K̂ `L,F s

R̂, K̂ `L,F s1 | s2 iff R̂, K̂ `L,F s1 ∧ R̂, K̂ `L,F s2

R̂, K̂ `L,F s1 + s2 iff R̂, K̂ `L,F s1 ∧ R̂, K̂ `L,F s2

110 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis clauses

The labelled constructs are much more interesting:

R̂, K̂ `L,F [x]`s iff R̂, K̂ `L,F s ∧
∀`′ ∈ F.` : R̂.`× {⊥} ⊆ R̂.`′

If `′ follows ` then every scope
instantiation recorded for ` is
extended by ⊥ and recorded for `′

R̂, K̂ `L,F u • u′!v̄ ` iff Πuu′v̄@L.`(R̂.`) ∩Name∗ ⊆ K̂

Every suitable (⊥-free) instantiation,
〈n, n′, n̄〉, of u, u′, and v̄ recorded for `

is recorded in K̂ as a potential
communication

111 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis clauses

R̂, K̂ `L,F p • o?ū`.s iff (X 6= ∅ ⇒ R̂, K̂ `L,F s) ∧
(∀`′ ∈ F.` : X ⊆ R̂.`′) ∧
(∀x ∈ {ū} : ∀`x ∈ (F.(x#L.`)) : Yx ⊆ R̂.`x)

For any variable, x , bound by the input pattern, Yx records the
names, n, that may be bound to x by a communication that
matches the pattern. This information flows to all labels, `x , that
follow immediately after the introduction of the scope of x

Yx = {w̄n ∈ Name∗⊥ | w̄ ∈ R̂.(x#L.`) ∧
∃w̄ ′ ∈ Name∗⊥ : Πpoū@L.`(w̄nw̄ ′) ∈ K̂ }

All scope instantiations at the communication point, `, that agree
with a communicated tuple are recorded by X . This information
flows to all labels that follow immediate after `

X = {w̄ ∈ R̂.` | Πpoū@L.`(w̄) ∈ K̂}
112 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Properties of the analysis

Semantic correctness

we err on the safe side

Adequacy result

capture of observable transitions

Moore family property

we have best analysis results

113 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

Idea: R̂ and K̂ must capture the behaviour of s and all the services
it may evolve into.

Problem: The acceptability of analysis results is NOT preserved by
semantic transitions.

Reason: The use of X for filtering that is natural in the context of
localised environments and pattern matching becomes less
restrictive as variables are bound:

An analysis estimate with R̂.4 = {a,⊥} and R̂.5 = {a} is
acceptable before, but not after, the transition.

114 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

Idea: Define a sensible notion of correctness and ensure that this is
preserved by semantic transitions.

exposed actions exposed labels
E(0) = ∅
E(∗s) = E(s)
E((n)s) = E(s)
E([x]`s) = E(s)
E(s1 | s2) = E(s1) ∪ E(s2)
E(s1 + s2) = E(s1) ∪ E(s2)
E(u • u′!v̄ `) = {u • u′!v̄ `}
E(p • o?v̄ `.s) = {p • o?v̄ `.s}

E(0) = ∅
E(∗s) = E(s)
E((n)s) = E(s)
E([x]`s) = {`}
E(s1 | s2) = E(s1) ∪ E(s2)
E(s1 + s2) = E(s1) ∪ E(s2)
E(u • u′!v̄ `) = {`}
E(p • o?v̄ `.s) = {`}

115 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

In the context of a distinguished initial service, s?, an estimate,
(R̂, K̂), is correct for a service, s, written R̂, K̂ |=s? s, iff:

1 R̂, K̂ `L,F s?

2 ∀` ∈ E(s?) : ε ∈ R̂.`

3 For all p • o?ū`.s ′ ∈ E(s) there is a subexpression p • o?v̄ `.s ′′ of s?

s.t.

R̂, K̂ `L,F p • o?v̄ `.s ′′ and
∃w̄ ∈ R̂.` : p • o?ū`.s ′ ≡ p • o?v̄ `.s ′′[w̄/L.`]

4 For all v • v ′!v̄ ` ∈ E(s) there is a subexpression u • u′!ū` of s? s.t.

R̂, K̂ `L,F u • u′!ū` and
∃w̄ ∈ R̂.` : v • v ′!v̄ ` ≡ u • u′!ū`[w̄/L.`]

116 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantic correctness

Structural Congruence Lemma:
If s ≡ s ′ then R̂, K̂ |=s? s if and only if R̂, K̂ |=s? s ′.

The proof is by induction on the inference of s ≡ s ′.

Subject Reduction Theorem:
Assume R̂, K̂ |=s? s and s -p•ob∅cū`i n̄`o s ′.
Then R̂, K̂ |=s? s ′.

The proof is by induction on the inference of s -p•ob∅cū`i n̄`o s ′.

Adequacy Result: Capture of Observable Transitions:
If (R̂, K̂) is an acceptable analysis of s?
and if s? →∗ s -p•ob∅cū`o n̄`i s ′

then 〈pon̄〉 ∈ K̂ and n̄ ∈ Πū@L.`i
(R̂.`i).

117 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Moore family property

All processes can be analysed and has a least (best) analysis result:

The set {(R̂, K̂) | R̂, K̂ `L,F s} is a Moore family

If Y ⊆ {I | I |=?
Γ s} then uY |=?

Γ s where
(uY)(µ) =

⋂
{I(µ) | I ∈ Y}

The proof is by structural induction on P.

Corollaries:

All processes can be analysed:
— a Moore family cannot be empty

All processes has a least (best) analysis result:
— a Moore family has a least element

118 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading

F. Nielson, H. Riis Nielson, J. Bauer, C. R. Nielsen, H. Pilegaard:
Relational Analysis for Delivery of Services. In TGC 2007, SLNCS
4912, pages 73-89, Springer, 2008.

Performs a relational analysis for the π-calculus.

J. Bauer, F. Nielson, H. Riis Nielson, H. Pilegaard: Relational
analysis of Correlation. In Proc. SAS’08, SLNCS 5079, pages
32-46, Springer, 2008.

Performs a relational analysis for COWS.

119 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 5:

Extracting Process Calculus from Concurrent ML

120 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

Recall what we are doing:

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) Part 6:

Flow Logic

for CML

(2a) Part 5: From CML to Behaviours

(2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, π-calculus, COWS

121 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Motivation

Concurrent ML

functions and synchronous operations are first class values

typed channels and processes are created dynamically

Hardware

a finite number of channels and processors

Program analyses

does the program have a finite communication topology

what is the cost of the individual processors in static process
allocation

what is the cost of the individual processes in dynamic process
allocation

122 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

CML subset
Expressions
e ::= c | x | fn x => e | e1 e2

| let x = e1 in e2

| rec f x => e

| if e then e1 else e2

Constants:
c ::= () | true | false | n

| pair | fst | snd
| nil | cons | hd | tl | isnil
| + | * | = | · · ·
| send | receive | sync
| forkπ | channell

| choose | wrap

123 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: pictorially

pipe [f1, f2, f3] in out

f1

f2

f3

id

?

?

?

?

?

-

-

-

-

in

out

fail

124 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: CML program

let node =
fn f => fn in => fn out =>
forkπ

(rec loop d =>
sync (choose

[wrap (receive in,
fn x =>
sync (send (out,

f x));
loop d),

send(fail,())]))

in rec pipe fs =>

fn in => fn out =>
if isnil fs
then node (fn x => x) in out
else let ch = channelch ()

in (node (hd fs) in ch;
pipe (tl fs) ch out)

125 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour

Assumptions:
f : t1 →b t2

fail : unit chan r0
in : t1 chan r1

out : t2 chan r2

node f in out: FORKπ (REC β. (r1?t1; b; r2!t2; β + r0!unit))

Fork a process that will

- read a value of type t1 on a channel in r1
- do the computation f with behaviour b

- write a value of type t2 on a channel in r2, and

- recurse

or

- write a value of type unit on a channel in r0, and

- terminate

126 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour

Assumptions:
fs : (t →b t) list

fail : unit chan r0
in : t chan r1

out : t chan r2

pipe fs in out:

RECβ′. (FORKπ (REC β.(r1?t; ε; r2!t; β + r0!unit))
+ t CHANr1 ;

FORKπ (REC β.(r1?t; b; r2!t; β + r0!unit));
β′)

- fork a process that . . . or

- allocate a new channel,

- fork a process that . . . and

- recurse

127 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Typing system

Behaviours:
b ::= ε | r !t | r?t | t CHANr

| FORKπ b | b1;b2 | b1+b2

| RECβ.b | β

Types:
t ::= unit | bool | int | α

| t1 →b t2 | t1 × t2 | t list

| t chan r | t com b

Regions:
r ::= l | r1 + r2 (sets of labels)

| ρ

Type schemes:
ts ::= t | ∀β.ts | ∀α.ts | ∀ρ.ts

128 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

TypeOf(c)
send ∀α, ρ. (α chan ρ)× α →ε (α com ρ!α)

receive ∀α, ρ. (α chan ρ) →ε (α com ρ?α)

sync ∀α, β. (α com β) →β α

forkπ ∀α, β. (unit→β α) →FORKπ β unit

channell ∀α. unit→α CHANl (α chan l)

choose ∀α, β. (α com β) list →ε (α com β)

wrap ∀α1, α2, β1, β2.(α1 com β1)× (α1 →β2 α2)
→ε (α2 com β1; β2)

To allow enlarging the behaviour:

replace t1 →b t2 by t1 →β t2 [β ≥ b].

129 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

` e : type & behaviour
` c : t & ε if TypeOf(c) � t

[x 7→ ts] ` x : t & ε if ts � t

[x 7→ t] ` e : t ′ & b

` fn x ⇒ e : t →b t ′ & ε

` e1 : t →b t ′ & b1 ` e2 : t & b2

` e1 e2 : t ′ & b1; b2; b

` e1 : t1 & b1 [x 7→ ts] ` e2 : t2 & b2

` let x=e1 in e2 : t2 & b1; b2
if ts = gen(,b1)t1

` e : t & b

` e : t & b′
if b v b′

Ignoring the type environment.

130 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Ordering on behaviours
Axioms and rules that formally state:

v is a pre-order

v is a pre-congruence

sequencing is associative

sequencing distributes over join

(b1 + b2); b3 v b1; b3 + b2; b3

b1; b3 + b2; b3 v (b1 + b2); b3

ε is left and right identity for sequencing

join is least upper bound operation

recursion can be unfolded

REC β.b v b[β 7→ REC β.b]

b[β 7→ REC β.b] v REC β.b

131 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example (1)

let node = fnF f => fnI inp => fnO out =>
spawn ((funH h d => let v = receive inp

in send (f v) on out; h d) ())
in · · ·

Type for node:

∀ ′a, ′b, ′1, ′′1, ′′2. (′a
′1→ ′b)︸ ︷︷ ︸
f

Λ→ (′a chan ′′1)︸ ︷︷ ︸
inp

Λ→ (′b chan ′′2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ = spawn(rec ′2. (′′1?′a; ′1; ′′2!′b; ′2))

132 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example (2)

let node = · · ·
in funP pipe fs => fnI inp => fnO out =>

if isnil fs then node (fnX x => x) inp out
else let ch = channelC

in (node (hd fs) inp ch; pipe (tl fs) ch out)

Type for pipe:

∀ ′a, ′1, ′′1, ′′2.

((′a
′1→ ′a) list)︸ ︷︷ ︸
fs

Λ→ (′a chan (′′1 ∪ {C}))︸ ︷︷ ︸
inp, ch

Λ→ (′a chan ′′2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ =

rec ′2. (spawn(rec ′3.((′′1 ∪ {C})?′a; Λ; ′′2!′a; ′3))︸ ︷︷ ︸
node (fn x => x) ...

+ ′a chan C; spawn(rec ′4. ((′′1 ∪ {C})?′a; ′1; C!′a; ′4))︸ ︷︷ ︸
node (hd fs) ...

; ′2)

133 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Theory: overview

Structural operational semantics for

CML

behaviours

Subject Reduction Theorem:

types are preserved by CML-evaluation steps

steps in CML-semantics can be mimicked in behaviour semantics

134 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of CML: Expressions

(fnπ x => e) v → e[x 7→ v]

let x = v in e → e[x 7→ v]

v1 op v2 → v if v1 op v2 = v

funπ f x => e → (fnπ x => e)[f 7→ (funπ f x => e)]

if true then e1 else e2 → e1

if false then e1 else e2 → e2

v ; e → e

Evaluation contexts:

E ::= [] | E e | v E | let x = E in e | if E then e1 else e2 | E op e
| v op E | send E on e | send v on E | receive E | E ; e

135 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of CML: Threads

CP , PP[p : E [e1]] ⇒ CP , PP[p : E [e2]]

if e1 → e2

CP , PP[p : E [channelπ]] ⇒ CP ∪ {ch}, PP[p : E [ch]]

if ch 6∈ CP

CP , PP[p : E [spawn e0]] ⇒ CP , PP[p : E [()]][p0 : e0]

if p0 6∈ dom(PP) ∪ {p}

CP , PP[p1 : E1[send v on ch]][p2 : E2[receive ch]]
⇒ CP , PP[p1 : E1[()]][p2 : E2[v]]

if p1 6= p2

136 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of CML: Summary

Sequential evaluation:

E [(fn x=>e)w]→ E [e[x 7→ w]]

Concurrent evaluation:

(w1, w2)
(ci!,ci?)

; (e1, e2)

[pi1 7→ E1[syncw1], pi2 7→ E2[syncw2]]

−→(ci!,ci?)
pi1,pi2

[pi1 7→ E1[e1], pi2 7→ E2[e2]] if pi1 6= pi2

Annotation of −→ev :
ev ::= ε | (ci !, ci?)

| CHANr ci | FORKπ pi

Matching:

(〈send〈pairci w〉〉, 〈receiveci〉)(ci!,ci?)
; (w , w)

137 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of behaviours
Sequential evolution:

b1⇒pb′1
b1; b2⇒pb′1; b2

b1⇒p
√

b1; b2⇒pb2

Annotations of ⇒p:
p ::= ε | r !t | r?t

| t CHANr | FORKπ b

Concurrent evolution:

b1⇒r !tb′1 b2⇒r?tb′2
[pi1 7→ b1, pi2 7→ b2]=⇒r !t?r

pi1,pi2
[pi1 7→ b′1, pi2 7→ b′2]

if pi1 6= pi2

Annotations on =⇒a:
a ::= ε | r !t?r

| t CHANr | FORKπ b

138 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Simulation on behaviours
S is a simulation on (closed) behaviours if

√
S b if and only if b =

√

if b1⇒p1b′1 and b1 S b2 then there exists b2 and p2 such that

− b2⇒bp2b′2,

− p1 S∂ p2

− b′1 S b′2.

where
S∂ = {(p, p) | p ∈ {ε, r !t, r?t, t CHANr}} ∪ {(FORKπ b, FORKπ b′) | b S b′}

Define <∼ as the largest simulation.

Lemma: Soundness of Ordering

v is a simulation.

The ordering <∼ is undecidable.

139 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

PP[pi 7→ e]
6

` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

PP ′[pi 7→ e ′]
6

` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

Ignoring channel identifiers and channel environments.

140 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Algorithm

The algorithm is based on Milner’s W
use unification for the types

collect constraints for the behaviours

Problem: Constraints need not have principal solutions:
incomparable solutions could be mixed.

W(e) = (s, d , C , S) where

s: simple type: only behaviour variables

d : simple behaviour: no REC behaviours

C : set of constraints

S : set of solution restrictions

141 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading (1)

T. Amtoft, H. Riis Nielson, F. Nielson: Behavior Analysis for
Validating Communication Patterns. In Journal on Software Tools
for Technology Transfer, vol.2, pages 13-28, Springer, 1998.

Gives an overview of the development and of a computer system for
carrying out the analysis.

F. Nielson, H. Riis Nielson: Type and Effect Systems. In Correct
System Design. Springer LNCS 1710, pages 114-136, Springer,
1999.

Contains a survey of type and effect systems.

142 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading (2)

F. Nielson, H. Riis Nielson, C. L. Hankin: Principles of Program
Analysis. Springer, 1999, revised 2005.

Chapter 5 contains a tutorial on Type and Effect Systems. Section
5.5 summarizes the present development.

T. Amtoft, F. Nielson, H. Riis Nielson: Type and Effect Systems:
Behaviours for Concurrency. Imperial College Press, 1999.

This book contains the full development.

143 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 6:

A Traditional Approach to

Flow Logic for Concurrent ML

144 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

Recall what we are doing:

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) Part 6:

Flow Logic

for CML

(2a) Part 5: From CML to Behaviours

(2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, π-calculus, COWS

145 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Combining paradigms: CML

e ::= c | x | fn x0 => e0 | fun f x0 => e0 | e1 e2 | if e0 then e1 else e2 | · · ·
| e1 := e2 | e1; e2 | let x = refr in e | deref e | · · ·
| send e1 on e2 | receive e | let x = chann in e | spawn e | · · ·

Judgements: (ρ̂, σ̂, κ̂) |= e : v̂

ρ̂ : Var → V̂al records the abstract values bound to variables

σ̂ : Ref → V̂al records the abstract values bound to reference cells

κ̂ : Ch → V̂al records the abstract values communicated over
channels.

Abstract values are constants �, abstract closures
〈|fn x0 => e0〉|, recursive abstract closures 〈|fun f x0 => e0〉|,
reference cells r and channels n.

146 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Functional constructs:

(ρ̂, σ̂, κ̂) |= c : v̂ iff � ∈ v̂

(ρ̂, σ̂, κ̂) |= x : v̂ iff ρ̂(x) ⊆ v̂

(ρ̂, σ̂, κ̂) |= fn x0 => e0 : v̂ iff 〈|fn x0 => e0〉| ∈ v̂

(ρ̂, σ̂, κ̂) |= fun f x0 => e0 : v̂ iff 〈|fun f x0 => e0〉| ∈ v̂

(ρ̂, σ̂, κ̂) |= e1 e2 : v̂ iff (ρ̂, σ̂, κ̂) |= e1 : v̂1 ∧ (ρ̂, σ̂, κ̂) |= e2 : v̂2 ∧
∀〈|fn x0 => e0〉| ∈ v̂1 : v̂2 6= ∅ ⇒
[v̂2 ⊆ ρ̂(x0) ∧ (ρ̂, σ̂, κ̂) |= e0 : v̂0 ∧ v̂0 ⊆ v̂]∧
∀〈|fun f x0 => e0〉| ∈ v̂1 : v̂2 6= ∅ ⇒
[〈|fun f x0 => e0〉| ∈ ρ̂(f) ∧ v̂2 ⊆ ρ̂(x0)∧
(ρ̂, σ̂, κ̂) |= e0 : v̂0 ∧ v̂0 ⊆ v̂]

147 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Functional constructs (cont.):

(ρ̂, σ̂, κ̂) |= if e0 then e1 else e2 : v̂ iff (ρ̂, σ̂, κ̂) |= e0 : v̂0∧
� ∈ v̂0 ⇒ [(ρ̂, σ̂, κ̂) |= e1 : v̂1 ∧ v̂1 v v̂∧

(ρ̂, σ̂, κ̂) |= e2 : v̂2 ∧ v̂2 v v̂]

148 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Imperative constructs:

(ρ̂, σ̂, κ̂) |= e1 := e2 : v̂ iff (ρ̂, σ̂, κ̂) |= e1 : v̂1 ∧
(ρ̂, σ̂, κ̂) |= e2 : v̂2 ∧
� ∈ v̂ ∧ ∀r ∈ v̂1 : v̂2 ⊆ σ̂(r)

(ρ̂, σ̂, κ̂) |= deref e : v̂ iff (ρ̂, σ̂, κ̂) |= e : v̂ ′ ∧
∀r ∈ v̂ ′ : σ̂(r) ⊆ v̂

(ρ̂, σ̂, κ̂) |= let x = refr in e : v̂ iff r ∈ ρ̂(x) ∧ (ρ̂, σ̂, κ̂) |= e : v̂

(ρ̂, σ̂, κ̂) |= e1; e2 : v̂ iff (ρ̂, σ̂, κ̂) |= e1 : v̂ ′ ∧
(ρ̂, σ̂, κ̂) |= e2 : v̂

149 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Concurrency constructs:

(ρ̂, σ̂, κ̂) |= send e1 on e2 : v̂ iff (ρ̂, σ̂, κ̂) |= e1 : v̂1 ∧
(ρ̂, σ̂, κ̂) |= e2 : v̂2 ∧
� ∈ v̂ ∧ ∀n ∈ v̂2 : v̂1 ⊆ κ̂(n)

(ρ̂, σ̂, κ̂) |= receive e : v̂ iff (ρ̂, σ̂, κ̂) |= e : v̂ ′ ∧
∀n ∈ v̂ ′ : κ̂(n) ⊆ v̂

(ρ̂, σ̂, κ̂) |= let x = chann in e : v̂ iff n ∈ ρ̂(x) ∧ (ρ̂, σ̂, κ̂) |= e : v̂

150 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Concurrency constructs (cont.):

(ρ̂, σ̂, κ̂) |= spawn e : v̂ iff � ∈ v̂ ∧ (ρ̂, σ̂, κ̂) |= e : v̂ ′ ∧
∀〈|fn x0 => e0〉| ∈ v̂ ′ :

� ⊆ ρ̂(x0) ∧ (ρ̂, σ̂, κ̂) |= e0 : v̂0

∀〈|fun f x0 => e0〉| ∈ v̂ ′ :
〈|fun f x0 => e0〉| ∈ ρ̂(f) ∧ � ⊆ ρ̂(x0)∧

(ρ̂, σ̂, κ̂) |= e0 : v̂0

151 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading

H. Riis Nielson and F. Nielson. Flow Logic: a Multi-paradigmatic
Approach to Static Analysis. In The Essence of Computation:
Complexity, Analysis, Transformation, SLNCS 2566, pages 223 -
244, Springer, 2002.

Section 4.3 gives a brief overview.

K. L. Solberg Gasser and F. Nielson and H. Riis Nielson. Systematic
Realisation of Control Flow Analyses for CML. In Proc. ICFP’97,
pages 38 - 51, ACM Press, 1997.

Contains the full development.

152 / 153

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

More on Flow Logic:

http://www.imm.dtu.dk/∼nielson/FlowLogic.html

MT-LAB - a VKR-Centre of Excellence:

http://www.MT-LAB.dk

153 / 153

Static Analysis of Services

	Abstract
	Grand View
	Ambients
	Syntax and Semantics
	Static Analysis
	Flow Logic
	Properties of the analysis
	Suggested reading

	PI-Calculus
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Interaction points
	Tests and local environments
	Suggested Reading

	Executive
	Suggested Reading

	COWS
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Suggested Reading

	Behaviours
	Concurrent ML
	Behaviours
	Theory
	Suggested Reading

	Traditional
	Suggested Reading

	Epilogue

