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Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”
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Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— & ®: a —~P-path leading to a =& cycle
— BFS yields shortest counterexamples

e CTL counterexamples are (mostly) finite trees

— universal CTL\LTL: trees or proof-like counterexample
— existential CTL: witnesses, annotated counterexample

e This talk: PCTL counterexamples for DTMCs
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Discrete-time Markov Chain

S0 S1 t1

0.667, 0.9
0.1

to
0.2 1

a DTMC is atriple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P (s, s") = one-step probability to jump from s to s’
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Pl‘ObabI“StIC CTL (Hansson & Jonsson, 1994)

e Fora € AP, J C |0, 1] an interval with rational bounds, and h € N:

O i=a |[PAD | D | Py(p)

p = PUD | U@

® 505152... = ® USM W if ® holds until ¥ holds within h steps

e s =P ;(p) if probability of set of p-paths starting in s lies in J

abbreviate P(g o 51(¢) by P<0.5(¢) and Pyg 1)(¢) by P>0(¢) and so on
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This talk

e What is a PCTL counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK



%
University of Twente
The Metherlands

This talk

e What is a PCTL counterexample? [Han & Katoen, TACAS'07]]

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics
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This talk

e What is a PCTL counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

[This QEST’08 paper]
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PCTL counterexamples for s = P, (¢)

e A counterexample C'is a set of finite paths satisfying

. VO
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = > .- P(o) exceeds p
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PCTL counterexamples for s = P, (¢)

e A counterexample C'is a set of finite paths satisfying

. VO
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = >, .o P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite

S ~®1
@@ {a}

2

N

A DTMC with infinite counterexample for s = P-1(< a)
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PCTL counterexamples for s = P, (¢)

e A counterexample C'Is a set of finite paths satisfying
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = > .o P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite
e Cis minimal if |C| < |C’| for any counterexample C”

e (Is smallest if:

C'is minimal, and Pr(C) > Pr(C") for any minimal counterexample C’

© JPK
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Evidences for so £ P

S0 S1 4 :

evidences prob.

01 = 850 81 tl 0.2

02 =— S50 S1 Sztl 0.2

0.667 7 0.9
0.1 O3 = Sp S2 11 0.15
o4 = S0 S1 82 19 0.12
u t =
5 U 03 U 2 x5 S So to 0.09
0.8 0.2 1
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Strongest evidences (SEs)

50 S1 t :

evidences prob.

o1 = 80 $1 tl 0.2

O9 = 809 S1S8211 0.2

0.667, 0.9
0.1 O3 = Sp S211 0.15
o4 = 80851 82 t2 0.12
u 12 O5 = S S2 b9 0.09
0 D
0.8 0.2 1
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Counterexamples for sg (%= Pg%(a Ub)
50 51 i1
evidences prob.
o1 =— S50 51 tl 0.2
0.667,70.9 - o2 = Sgs182t1 | 0.2
| 03 =— S0 S2 tl 0.15
U t O4 = S0 S1 S92 t2 0.12
0.3
S2U U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{0'1,0'2,0'4} 3 0.52
{o1,00,03} | 3 0.55
© JPK 16



Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,7 0.9 - o2 = sps182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
minimal — { 01,092,004} | 3 0.52
minimal — { o1, 092,03} | 3 0.55
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Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,70.9 - o2 = Sgs182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{01,02,04} | 3 0.52
smallest — { o1, 02,03} | 3 0.55
© JPK 18



Obtaining smallest counterexamples
Step 1: make all W-states and all =& A —W-states absorbing
© JPK 19
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Adapting a bit more

Step 2: insert a sink state and redirect all outgoing edges of W-states to it

© JPK
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A weighted digraph
S0 S1 t1
0
0 log 5
. : : : / 1
Step 3: turn it into a weighted digraph with w(s, s') = log ( B(s, )>
© JPK 21



A simple derivation
For finite path o0 = sg s1 82 ... Sy:

w(o) = w(sg,s1) +w(s1,s2) + ...+ w(Sp_1,5n)

1

1 1
= lOg P(s0,51) + lOg P(51,52) + ..t log P(sp—_1,8n)

1
log P(s0,51)-P(s1,52)-...-P(sp—1,5n)

— logﬁo_)

Pr(c) > Pr(o) ifandonlyif w(o) < w(o)

G 7 G 7

in DTMC D in digra?o?l G (D)

© JPK
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What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity
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What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity

e Finding a shortest counterex Is a k-shortest path (KSP) problem

— dynamically determine k: generate C incrementally and halt when Pr(C) > p
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What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity

e Finding a shortest counterex is a k-shortest path (KSP) problem

— dynamically determine k: generate C incrementally and halt when Pr(C) > p
e This also applies to P-,(¢) properties, as

Pop(PUT) = Po (@ A-T) W (=D A —D))

WV VO
o* \I’*

= P p(@"U (¥ V atpsee(ar)))

© JPK 25
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Time complexity

counterexample | shortest path algorithm time complexity
problem problem
unbounded SE SP Dijkstra O(M + N-log N)
bounded h SE HSP Bellman-Ford / Viterbi O(h-M)
unbounded SC KSP Eppstein O(M + N-log N + k)
bounded h SC HKSP adapted REA O (h-M + h-k-log N)

N=|S

, M = # transitions, h = hop count, k = # shortest paths

including costs yields an instance of the NP-complete RSP problem

© JPK
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On the size of counterexamples

1
0.99

ta}

A smallest counterexample for s = P<g.9999 (< @) contains paths

sut, susut,sususut,...... y SL t

k times

where k is the smallest integer such that 1 — 0.99%"! > 0.9999

The smallest counterexample has k£ = 689 evidences

© JPK
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Synchronous leader election P 99(< leader)

=
o

—— Probability

K:2 —K:4 K:8 .......... K :12 ........................

size of counterexample is double exponential in problem size (see paper)

© JPK 28
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Use regular expressions!

e Size of counterexamples is mainly influenced by loops

— each loop-traversal yields another path in counterexample

e ldea: represent sets of “similar” finite paths by a regular expression

e HOwW?

— DTMC (rooted at s) —— DFA
— DFA —— most probable paths —— regular expression r

e Such that:

— probability of regular expression r exceeds p (= r is a counterexample)
— ris “minimal”’: deletion of some “branch” of » yields no counterexample

© JPK 29
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From DTMCs to DFAs
alphabet X consist of symbols of the form (p, s)
© JPK 30
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From DTMCs to DFA

For DTMC D = (S, P, L), state s, and property P(&S" ¢), DFA Ap = (S', %, §, 6, 1)

DTMC DFA
state space S S U{s}
initial state S s¢& S
goal/accepting state t t
alphabet E > C [0,1] xS
(p7 82)
transitions s1 > 59 S1 S
(1,s)

— § ——>s

© JPK 31
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Regular expressions pawsos
The set of regular expressions R (3):
r,r = € empty

| (p,s) letter
| 7|’ choice
| r.r’  catenation
| r” repetition

© JPK 32
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The set of regular expressions R (X):

Regular expressions pawsos

Evaluation val : R(X) — [0, 1]:

val(e) =1
r, T 1= € empty
val((p,s)) = p
| (p,s) letter
val(r|r’) = wval(r) + val(r’)
| 7|’ choice
val(r.r') = wval(r) - val(r")
| r.r’  catenation _
1 if val(r) =1
|t repetition val(r™) = . _
Toary  Otherwise
© JPK 33



Regular expressions pawsos

Evaluation val : R(X) — [0, 1]:
The set of regular expressions R (X):

val(e) =1
rr' o= ¢ empty
val((p,s)) = p
| (p,s) letter
val(r|r') = wval(r) + val(r’)
| 7|’ choice
val(r.r')y = wval(r) - val(r)
| catenation _
1 if val(r) =1
| repetition val(r®) = . _
T0al) otherwise

For regular expression r of DFA Ap with accept state t:

val(r) = PrP” {o € Paths(s) | o |= ¢t}

© JPK 34



a.(a.b)*.(a.a*.bla.b)

a.b
. Q a.a*.b]a.b=© 0

O

© JPK
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Ordering matters
Ordering s < u < tyields (aa|b)(a|cb)” (cd|d)
Ordering s < t < wYyields (aa|b)a™c(ba™c)*(ba*d|d)|(aalb)a™d
© JPK 36



Ordering matters

Finding the optimal removal ordering takes time O(N!) where |S| = N

© JPK
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Heu “S“C [Han & Wood’07]

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1

e the path of every word w € L(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping
o A=A, - A,.-....- A, where A, is “connected” to .A; via bridge g;

3. For each A, perform horizontal chopping
o .A@ = A¢,1|.Ai,2| ... |.Az,k;

4. For each automaton A;, 5 goto step 1.

© JPK
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Time complexity

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1 in linear time

e the path of every word w € L(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping in linear time
o A=A, -A,.-....- A, where A, is “connected” to .A; via bridge g;

3. For each A; perform horizontal chopping in linear time
L .A@'Z.A@',1|.Ai,2| |.A@,k;

4. For each automaton 4; ; goto step 1.

© JPK 39



Vertical chopping

© JPK
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Horizontal chopping

© JPK
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Maximal union subexpressions

r1 1S @ maximal union subexpression (MUS) of regular expression r if:
r = r1|re modulo the congruence (R;)-(Rj3)

where for some r, € R(%):

(Ry) r = rle
(Rz) 7“1‘7“2 — ?“2|7“1
(R3) ril(r2frs) = (ri|r2)|rs

a MUS can be regarded as a main path from the initial state to a accept state

© JPK
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Algorithm for regular expressions

Require: DFA Ap = (S, %, s, 4, {t}), and p € [0, 1]
Ensure: regular expression » € R(X) with val(r) > p

A := Ap, pr := 0; priority queue pq := &; k := 1;
while pr < p do
o := the strongest evidence in A,
forall s € o \ {s, 5,t} do pg.enqueue(s’); end;
while pg # @ do
A :=eliminate(pq.dequeue()); 7, := the created MUS;
pr := pr + val(rg); A :=eliminate(ryg);
if (pr > p) then break elsek :=k + 1;
endwhile;
endwhile;
return  rq| ... | rg.

this approach works for strict and non-strict bounds

© JPK
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Leader election revisited
next leader
Regular expression for the counterexample:
r(N, K) = start. [(ui]| - - - |w;) -next. start]”. (s1| - |s;). leader
© JPK 44
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Model reduction

The size of a counterexample is determined by

e traversing the same loop for different times

— using Kleene stars in regular expressions

e large number of states
—> model reduction

1. bisimulation minimization
2. SCC minimization

Model reduction is done prior to counterexample generation

© JPK 45
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L eader election re-revisited

Bisimulation quotient:
1

NE _w(N,K)
o i e W
u - S >
next 1 MI%K) sﬁt = leader

N

r(N, K) = start. (u.next.start)”.s. leader

After aggregating SCCs: SCC aggregation of bisimulation quotient:
NE _w(N,K) )
W (N,K NE
e G——0)
start leader
r*“(N, K) = start.start”.(s1| - - - |s;).leader — r2°°(N, K) = start.start”.s.leader

© JPK 46
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Counterexamples are en vogue

e Heuristic search algorithms for CTMCs (Aljazzar et al. FORMATS 2005, 2006)
e Counterexamples for CTMCs (Han & Katoen ATVA 2007)
e Counterexamples for conditional PCTL (Andres & van Rossum TACAS 2008)
e Proof refutations for probabilistic programs (Mclver et al. FM 2008)

e Counterexample-guided abstraction refinement (Hermanns et al. CAV 2008)
(Chadha & Viswamanathan TR 2008)

e Counterexamples for MDPs (Andres et al., HVC 2008, Aljazzar & Leue TR 2007)

e Bounded model checking for DTMC counterexamples (gecker et al. TR 2008)

© JPK 47



Epilogue
e What is a PCTL (or quantitative LTL) counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK
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