© JPK

Regular Expressions
for PCTL Counterexamples

Berteun Damman, Tingting Han, and Joost-Pieter Katoen

Software Modeling and Verification, RWTH Aachen University
and Formal Methods and Tools, University of Twente

rmirlllw l"q,"
EEEEEEEEEE LJ
HocHSCHULE))

University of Twente

The Netherlands

QEST’08, September 16, Saint Malo

University of Twente
The Metherlands

Probabilistic model checking

_ : up to 107 states
requirements inaccuracy
N
P<(.01(¢deadlock) l

Q Formalizing Modeling

property

specification system model

Y
— " |Model Checkingf«—""—

¢

insufficient
memory

© JPK 1

%
University of Twente
The Metherlands

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

© JPK 2

University of Twente
The Metherla

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

O&: a path ending in a —®-state
& @ a —P-path leading to a —P cycle
BFS yields shortest counterexamples

© JPK

%
University of Twente
The Metherlands

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— & ®: a —~P-path leading to a —® cycle
— BFS yields shortest counterexamples

e CTL counterexamples are (mostly) finite trees

— universal CTL\LTL: trees or proof-like counterexample
— existential CTL: witnesses, annotated counterexample

© JPK 4

%
University of Twente
The Metherlands

Counterexamples

e Are of utmost importance:

— diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
— fit to paradigm “model checking = bug hunting”

e LTL counterexamples are finite paths

— O®: a path ending in a —®-state
— & ®: a —~P-path leading to a =& cycle
— BFS yields shortest counterexamples

e CTL counterexamples are (mostly) finite trees

— universal CTL\LTL: trees or proof-like counterexample
— existential CTL: witnesses, annotated counterexample

e This talk: PCTL counterexamples for DTMCs

© JPK 5

%
University of Twente
The Metherlands

Discrete-time Markov Chain

S0 S1 t1

0.667, 0.9
0.1

to
0.2 1

a DTMC is atriple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P (s, s") = one-step probability to jump from s to s’

© JPK 6

Pl‘ObabI“StIC CTL (Hansson & Jonsson, 1994)

e Fora € AP, J C |0, 1] an interval with rational bounds, and h € N:

O i=a |[PAD | D | Py(p)

p = PUD | U@

® 505152... = ® USM W if ® holds until ¥ holds within h steps

e s =P ;(p) if probability of set of p-paths starting in s lies in J

abbreviate P(g o 51(¢) by P<0.5(¢) and Pyg 1)(¢) by P>0(¢) and so on

© JPK .

University of Twente
The Metherla

This talk

e What is a PCTL counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK

%
University of Twente
The Metherlands

This talk

e What is a PCTL counterexample? [Han & Katoen, TACAS'07]]

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK 9

%
University of Twente
The Metherlands

This talk

e What is a PCTL counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

[This QEST’08 paper]

© JPK

10

PCTL counterexamples for s = P, (¢)

e A counterexample C'is a set of finite paths satisfying

. VO
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = > .- P(o) exceeds p

© JPK

11

PCTL counterexamples for s = P, (¢)

e A counterexample C'is a set of finite paths satisfying

. VO
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = >, .o P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite

S ~®1
@@ {a}

2

N

A DTMC with infinite counterexample for s = P-1(< a)

© JPK 12

PCTL counterexamples for s = P, (¢)

e A counterexample C'Is a set of finite paths satisfying
evidences

— o € C'implies o startsin sand o = ¢
- Pr(C) = > .o P(o) exceeds p

e Property: counterexamples for non-strict bounds < p are finite
e Cis minimal if |C| < |C’| for any counterexample C”

e (Is smallest if:

C'is minimal, and Pr(C) > Pr(C") for any minimal counterexample C’

© JPK

13

University of Twente
The Metherla

Evidences for so £ P

S0 S1 4 :

evidences prob.

01 = 850 81 tl 0.2

02 =— S50 S1 Sztl 0.2

0.667 7 0.9
0.1 O3 = Sp S2 11 0.15
o4 = S0 S1 82 19 0.12
u t =
5 U 03 U 2 x5 S So to 0.09
0.8 0.2 1
© JPK 14

University of Twente
The Metherla

Strongest evidences (SEs)

50 S1 t :

evidences prob.

o1 = 80 $1 tl 0.2

O9 = 809 S1S8211 0.2

0.667, 0.9
0.1 O3 = Sp S211 0.15
o4 = 80851 82 t2 0.12
u 12 O5 = S S2 b9 0.09
0 D
0.8 0.2 1
© JPK 15

Counterexamples for sg (%= Pg%(a Ub)
50 51 i1
evidences prob.
o1 =— S50 51 tl 0.2
0.667,70.9 - o2 = Sgs182t1 | 0.2
| 03 =— S0 S2 tl 0.15
U t O4 = S0 S1 S92 t2 0.12
0.3
S2U U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{0'1,0'2,0'4} 3 0.52
{o1,00,03} | 3 0.55
© JPK 16

Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,7 0.9 - o2 = sps182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
minimal — { 01,092,004} | 3 0.52
minimal — { o1, 092,03} | 3 0.55
© JPK 17

Counterexamples for sg = Pg%(a Ub)
S0 Sq 131
evidences prob.
o1 =— S50 51 tl 0.2
0.667,70.9 - o2 = Sgs182t1 | 0.2
| 03 =— S0 S2 tl 0.15
to O4 = S0 S1 S92 t2 0.12
0.3
SzU U O =— S0 S2 t2 0.09
0.8 0.2 1
counterexample | card. | prob.
{0'1,...,0'5} 5 0.76
{0'10r0'2,...,0'5} 4 0.56
{01,02,04} | 3 0.52
smallest — { o1, 02,03} | 3 0.55
© JPK 18

Obtaining smallest counterexamples
Step 1: make all W-states and all =& A —W-states absorbing
© JPK 19

University of Twente
The Metherla

Adapting a bit more

Step 2: insert a sink state and redirect all outgoing edges of W-states to it

© JPK

20

A weighted digraph
S0 S1 t1
0
0 log 5
. : : : / 1
Step 3: turn it into a weighted digraph with w(s, s') = log (B(s,)>
© JPK 21

A simple derivation
For finite path o0 = sg s1 82 ... Sy:

w(o) = w(sg,s1) +w(s1,s2) + ...+ w(Sp_1,5n)

1

1 1
= lOg P(s0,51) + lOg P(51,52) + ..t log P(sp—_1,8n)

1
log P(s0,51)-P(s1,52)-...-P(sp—1,5n)

— logﬁo_)

Pr(c) > Pr(o) ifandonlyif w(o) < w(o)

G 7 G 7

in DTMC D in digra?o?l G (D)

© JPK

22

What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity

© JPK 23

What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity

e Finding a shortest counterex Is a k-shortest path (KSP) problem

— dynamically determine k: generate C incrementally and halt when Pr(C) > p

© JPK 24

What does this mean?

e Finding a strongest evidence is a shortest path (SP) problem

— apply standard SP algorithms, or Viterbi's algorithm = linear time complexity

e Finding a shortest counterex is a k-shortest path (KSP) problem

— dynamically determine k: generate C incrementally and halt when Pr(C) > p
e This also applies to P-,(¢) properties, as

Pop(PUT) = Po (@ A-T) W (=D A —D))

WV VO
o* \I’*

= P p(@"U (¥ V atpsee(ar)))

© JPK 25

University of Twente
The Metherla

Time complexity

counterexample | shortest path algorithm time complexity
problem problem
unbounded SE SP Dijkstra O(M + N-log N)
bounded h SE HSP Bellman-Ford / Viterbi O(h-M)
unbounded SC KSP Eppstein O(M + N-log N + k)
bounded h SC HKSP adapted REA O (h-M + h-k-log N)

N=|S

, M = # transitions, h = hop count, k = # shortest paths

including costs yields an instance of the NP-complete RSP problem

© JPK

26

University of Twente
The Metherla

On the size of counterexamples

1
0.99

ta}

A smallest counterexample for s = P<g.9999 (< @) contains paths

sut, susut,sususut,...... y SL t

k times

where k is the smallest integer such that 1 — 0.99%"! > 0.9999

The smallest counterexample has k£ = 689 evidences

© JPK

27

Synchronous leader election P 99(< leader)

=
o

—— Probability

K:2 —K:4 K:8 K :12

size of counterexample is double exponential in problem size (see paper)

© JPK 28

University of Twente b
The Metherlands

Use regular expressions!

e Size of counterexamples is mainly influenced by loops

— each loop-traversal yields another path in counterexample

e ldea: represent sets of “similar” finite paths by a regular expression

e HOwW?

— DTMC (rooted at s) —— DFA
— DFA —— most probable paths —— regular expression r

e Such that:

— probability of regular expression r exceeds p (= r is a counterexample)
— ris “minimal”’: deletion of some “branch” of » yields no counterexample

© JPK 29

University of j,.ge::g RWTH: &
From DTMCs to DFAs
alphabet X consist of symbols of the form (p, s)
© JPK 30

University of Twente b
The Metherlands

From DTMCs to DFA

For DTMC D = (S, P, L), state s, and property P(&S" ¢), DFA Ap = (S', %, §, 6, 1)

DTMC DFA
state space S S U{s}
initial state S s¢& S
goal/accepting state t t
alphabet E > C [0,1] xS
(p7 82)
transitions s1 > 59 S1 S
(1,s)

— § ——>s

© JPK 31

University of j,.ge::g RWTH:E=
Regular expressions pawsos
The set of regular expressions R (3):
r,r = € empty

| (p,s) letter
| 7|’ choice
| r.r’ catenation
| r” repetition

© JPK 32

University of Twente
The Metherla

The set of regular expressions R (X):

Regular expressions pawsos

Evaluation val : R(X) — [0, 1]:

val(e) =1
r, T 1= € empty
val((p,s)) = p
| (p,s) letter
val(r|r’) = wval(r) + val(r’)
| 7|’ choice
val(r.r') = wval(r) - val(r")
| r.r’ catenation _
1 if val(r) =1
|t repetition val(r™) = . _
Toary Otherwise
© JPK 33

Regular expressions pawsos

Evaluation val : R(X) — [0, 1]:
The set of regular expressions R (X):

val(e) =1
rr' o= ¢ empty
val((p,s)) = p
| (p,s) letter
val(r|r') = wval(r) + val(r’)
| 7|’ choice
val(r.r')y = wval(r) - val(r)
| catenation _
1 if val(r) =1
| repetition val(r®) = . _
T0al) otherwise

For regular expression r of DFA Ap with accept state t:

val(r) = PrP” {o € Paths(s) | o |= ¢t}

© JPK 34

a.(a.b)*.(a.a*.bla.b)

a.b
. Q a.a*.b]a.b=© 0

O

© JPK

35

Ordering matters
Ordering s < u < tyields (aa|b)(a|cb)” (cd|d)
Ordering s < t < wYyields (aa|b)a™c(ba™c)*(ba*d|d)|(aalb)a™d
© JPK 36

Ordering matters

Finding the optimal removal ordering takes time O(N!) where |S| = N

© JPK

37

University of Twente
The Metherla

Heu “S“C [Han & Wood’07]

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1

e the path of every word w € L(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping
o A=A, - A,.-....- A, where A, is “connected” to .A; via bridge g;

3. For each A, perform horizontal chopping
o .A@ = A¢,1|.Ai,2| ... |.Az,k;

4. For each automaton A;, 5 goto step 1.

© JPK

38

Time complexity

“eliminate all non-bridge states before bridge states”

1. Find all bridge states ¢; through ¢,,_1 in linear time

e the path of every word w € L(.A) goes through g;
e once this path visits g; it will not visit states visited prior to g;

2. Perform vertical chopping in linear time
o A=A, -A,.-....- A, where A, is “connected” to .A; via bridge g;

3. For each A; perform horizontal chopping in linear time
L .A@'Z.A@',1|.Ai,2| |.A@,k;

4. For each automaton 4; ; goto step 1.

© JPK 39

Vertical chopping

© JPK

40

Horizontal chopping

© JPK

41

Maximal union subexpressions

r1 1S @ maximal union subexpression (MUS) of regular expression r if:
r = r1|re modulo the congruence (R;)-(Rj3)

where for some r, € R(%):

(Ry) r = rle
(Rz) 7“1‘7“2 — ?“2|7“1
(R3) ril(r2frs) = (ri|r2)|rs

a MUS can be regarded as a main path from the initial state to a accept state

© JPK

42

University of Twente
The Metherla

Algorithm for regular expressions

Require: DFA Ap = (S, %, s, 4, {t}), and p € [0, 1]
Ensure: regular expression » € R(X) with val(r) > p

A := Ap, pr := 0; priority queue pq := &; k := 1;
while pr < p do
o := the strongest evidence in A,
forall s € o \ {s, 5,t} do pg.enqueue(s’); end;
while pg # @ do
A :=eliminate(pq.dequeue()); 7, := the created MUS;
pr := pr + val(rg); A :=eliminate(ryg);
if (pr > p) then break elsek :=k + 1;
endwhile;
endwhile;
return rq| ... | rg.

this approach works for strict and non-strict bounds

© JPK

43

Leader election revisited
next leader
Regular expression for the counterexample:
r(N, K) = start. [(ui]| - - - |w;) -next. start]”. (s1| - |s;). leader
© JPK 44

%
University of Twente
The Metherlands

Model reduction

The size of a counterexample is determined by

e traversing the same loop for different times

— using Kleene stars in regular expressions

e large number of states
—> model reduction

1. bisimulation minimization
2. SCC minimization

Model reduction is done prior to counterexample generation

© JPK 45

%
University of Twente
The Metherlands

L eader election re-revisited

Bisimulation quotient:
1

NE _w(N,K)
o i e W
u - S >
next 1 MI%K) sﬁt = leader

N

r(N, K) = start. (u.next.start)”.s. leader

After aggregating SCCs: SCC aggregation of bisimulation quotient:
NE _w(N,K))
W (N,K NE
e G——0)
start leader
r*“(N, K) = start.start”.(s1| - - - |s;).leader — r2°°(N, K) = start.start”.s.leader

© JPK 46

%
University of Twente
The Metherlands

Counterexamples are en vogue

e Heuristic search algorithms for CTMCs (Aljazzar et al. FORMATS 2005, 2006)
e Counterexamples for CTMCs (Han & Katoen ATVA 2007)
e Counterexamples for conditional PCTL (Andres & van Rossum TACAS 2008)
e Proof refutations for probabilistic programs (Mclver et al. FM 2008)

e Counterexample-guided abstraction refinement (Hermanns et al. CAV 2008)
(Chadha & Viswamanathan TR 2008)

e Counterexamples for MDPs (Andres et al., HVC 2008, Aljazzar & Leue TR 2007)

e Bounded model checking for DTMC counterexamples (gecker et al. TR 2008)

© JPK 47

Epilogue
e What is a PCTL (or quantitative LTL) counterexample?

— a set of paths with sufficient probability mass

e How to determine smallest counterexamples?

— exploit k-shortest path algorithms

e How about the size of counterexamples?

— well, they may be excessively large and incomprehensible

e Can we do better?

— yes, represent counterexamples by regular expressions!

e How to obtain (short) regular expressions?

— use automata theory and some heuristics

© JPK

48

University of Twente

WH KR/

