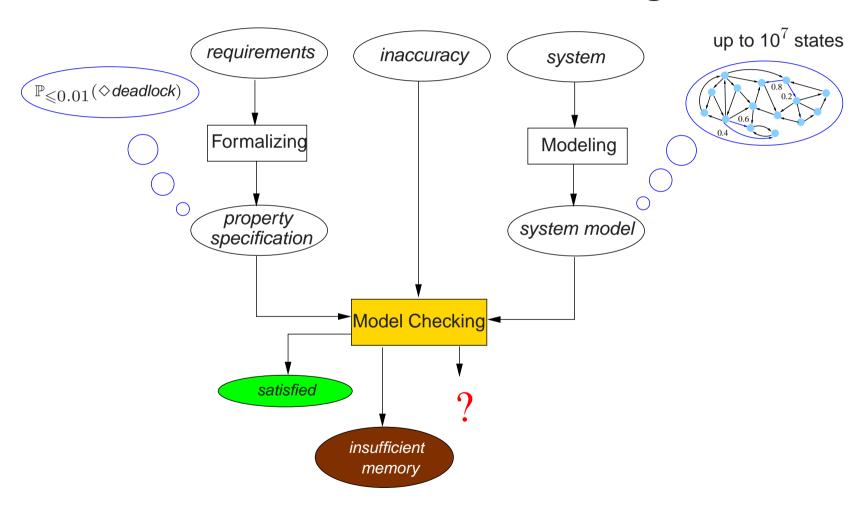
Regular Expressions for PCTL Counterexamples

Berteun Damman, Tingting Han, and Joost-Pieter Katoen

Software Modeling and Verification, RWTH Aachen University and Formal Methods and Tools, University of Twente

QEST'08, September 16, Saint Malo

Probabilistic model checking



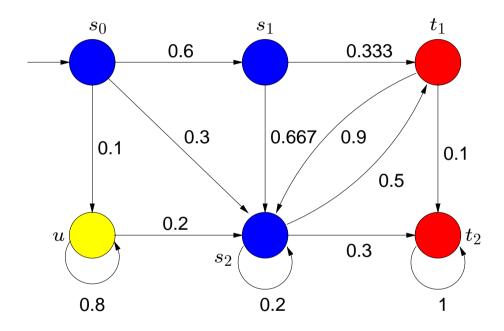
- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - \Box Φ: a path ending in a \neg Φ-state
 - \Diamond Φ : a $\neg \Phi$ -path leading to a $\neg \Phi$ cycle
 - BFS yields shortest counterexamples

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - \Box Φ: a path ending in a \neg Φ-state
 - \Diamond Φ : a $\neg \Phi$ -path leading to a $\neg \Phi$ cycle
 - BFS yields shortest counterexamples
- CTL counterexamples are (mostly) finite trees
 - universal CTL\LTL: trees or proof-like counterexample
 - existential CTL: witnesses, annotated counterexample

- Are of utmost importance:
 - diagnostic feedback, key to abstraction-refinement, schedule synthesis . . .
 - fit to paradigm "model checking = bug hunting"
- LTL counterexamples are finite paths
 - \Box Φ: a path ending in a \neg Φ-state
 - \Diamond Φ : a $\neg \Phi$ -path leading to a $\neg \Phi$ cycle
 - BFS yields shortest counterexamples
- CTL counterexamples are (mostly) finite trees
 - universal CTL\LTL: trees or proof-like counterexample
 - existential CTL: witnesses, annotated counterexample
- This talk: PCTL counterexamples for DTMCs

Discrete-time Markov Chain



a DTMC is a triple (S,\mathbf{P},L) with state space S and state-labelling L and \mathbf{P} a stochastic matrix with $\mathbf{P}(s,s')=$ one-step probability to jump from s to s'

Probabilistic CTL (Hansson & Jonsson, 1994)

• For $a \in AP$, $J \subseteq [0,1]$ an interval with rational bounds, and $h \in \mathbb{N}$:

$$\Phi ::= a \mid \Phi \wedge \Phi \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$$

$$\varphi ::= \Phi \cup \Phi \mid \Phi \cup^{\leqslant h} \Phi$$

- $s_0 s_1 s_2 \dots \models \Phi \cup^{\leqslant h} \Psi$ if Φ holds until Ψ holds within h steps
- $s \models \mathbb{P}_{J}(\varphi)$ if probability of set of φ -paths starting in s lies in J

abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leqslant 0.5}(\varphi)$ and $\mathbb{P}_{[0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$ and so on

This talk

- What is a PCTL counterexample?
 - a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?
 - well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

This talk

What is a PCTL counterexample?

[Han & Katoen, TACAS'07]]

- a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?
 - well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

This talk

- What is a PCTL counterexample?
 - a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?

[This QEST'08 paper]

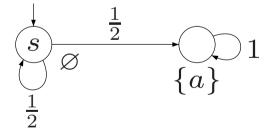
- well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- ullet A counterexample C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p

PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- A counterexample C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p
- Property: counterexamples for non-strict bounds $\leq p$ are *finite*



A DTMC with infinite counterexample for $s \not\models \mathbb{P}_{<1}(\diamondsuit a)$

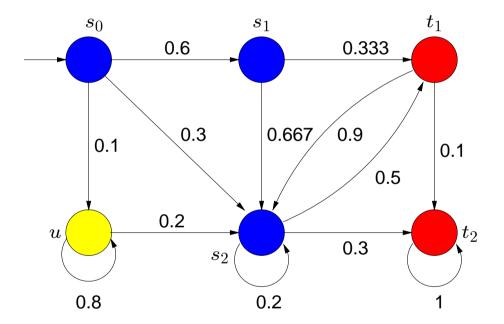
PCTL counterexamples for $s \not\models \mathbb{P}_{\leq p}(\varphi)$

- A *counterexample* C is a set of finite paths satisfying evidences
 - $\sigma \in C$ implies σ starts in s and $\sigma \models \varphi$
 - $\Pr(C) = \sum_{\sigma \in C} \mathbf{P}(\sigma)$ exceeds p
- Property: counterexamples for non-strict bounds $\leq p$ are *finite*
- C is *minimal* if $|C| \leqslant |C'|$ for any counterexample C'
- *C* is *smallest* if:

C is minimal, and $\Pr(C) \geqslant \Pr(C')$ for any minimal counterexample C'

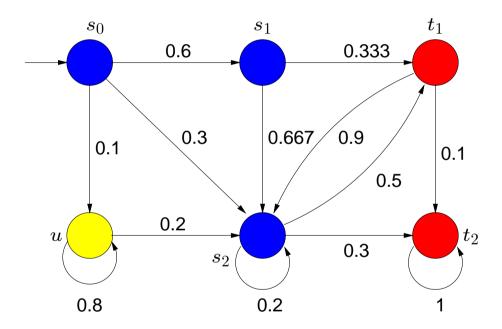
14

Evidences for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$



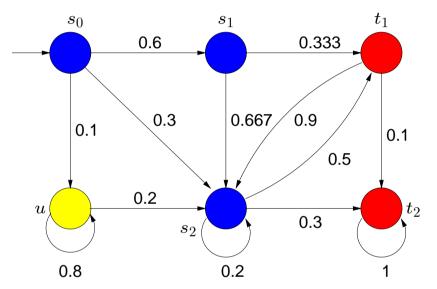
evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2=s_0s_1s_2t_1$	0.2
$\sigma_3 = s_0 s_2 t_1$	0.15
$\sigma_4 = s_0 s_1 s_2 t_2$	0.12
$\sigma_5=s_0s_2t_2$	0.09

Strongest evidences (SEs)



evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2=s_0s_1s_2t_1$	0.2
$\sigma_3 = s_0 s_2 t_1$	0.15
$\sigma_4=s_0s_1s_2t_2$	0.12
$\sigma_5 = s_0 s_2 t_2$	0.09
• • •	

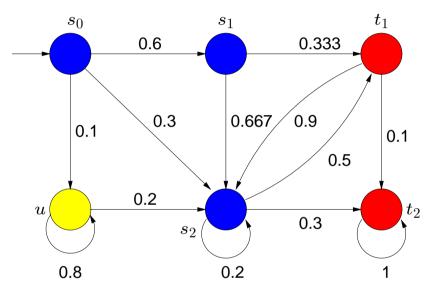
Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$



evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2 = s_0 s_1 s_2 t_1$	0.2
$\sigma_3=s_0s_2t_1$	0.15
$\sigma_4 = s_0 s_1 s_2 t_2$	0.12
$\sigma_5=s_0s_2t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$\set{\sigma_1,\sigma_2,\sigma_4}$	3	0.52
$\set{\sigma_1,\sigma_2,\sigma_3}$	3	0.55

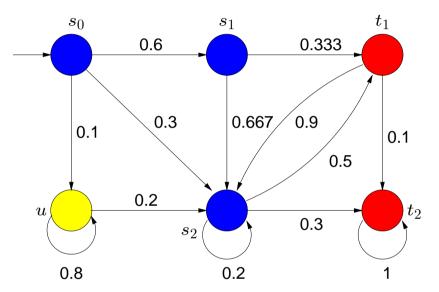
Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$



evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2=s_0s_1s_2t_1$	0.2
$\sigma_3=s_0s_2t_1$	0.15
$\sigma_4=s_0s_1s_2t_2$	0.12
$\sigma_5=s_0s_2t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$minimal \longrightarrow \set{\sigma_1, \sigma_2, \sigma_4}$	3	0.52
$minimal \longrightarrow \set{\sigma_1, \sigma_2, \sigma_3}$	3	0.55

Counterexamples for $s_0 \not\models \mathbb{P}_{\leqslant \frac{1}{2}}(\boldsymbol{a} \cup \boldsymbol{b})$

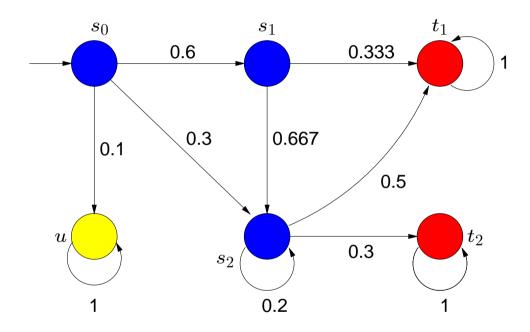


evidences	prob.
$\sigma_1 = s_0 s_1 t_1$	0.2
$\sigma_2 = s_0 s_1 s_2 t_1$	0.2
$\sigma_3=s_0s_2t_1$	0.15
$\sigma_4 = s_0 s_1 s_2 t_2$	0.12
$\sigma_5 = s_0s_2t_2$	0.09

counterexample	card.	prob.
$\set{\sigma_1,\ldots,\sigma_5}$	5	0.76
$\set{\sigma_1 \text{ or } \sigma_2, \ldots, \sigma_5}$	4	0.56
$\Set{\sigma_1,\sigma_2,\sigma_4}$	3	0.52
$smallest \longrightarrow \set{\sigma_1, \sigma_2, \sigma_3}$	3	0.55

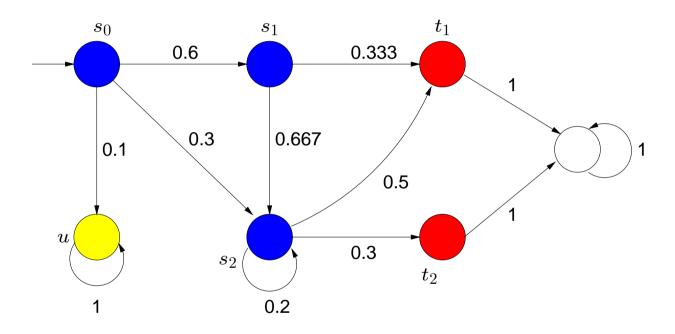
19

Obtaining smallest counterexamples



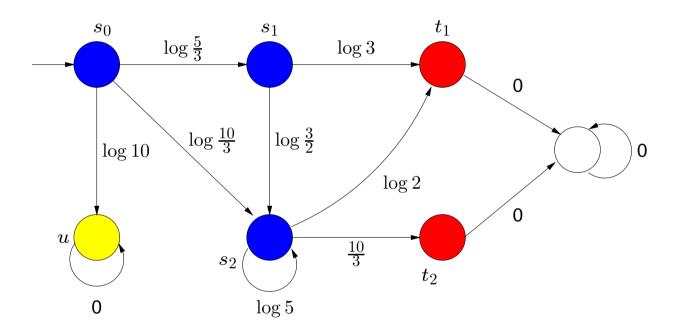
Step 1: make all Ψ -states and all $\neg \Phi \land \neg \Psi$ -states absorbing

Adapting a bit more



Step 2: insert a sink state and redirect all outgoing edges of Ψ -states to it

A weighted digraph



Step 3: turn it into a weighted digraph with $w(s,s') = \log\left(\frac{1}{\mathbf{P}(s,s')}\right)$

A simple derivation

For finite path $\sigma = s_0 s_1 s_2 \dots s_n$:

$$w(\sigma) = w(s_0, s_1) + w(s_1, s_2) + \dots + w(s_{n-1}, s_n)$$

$$= \log \frac{1}{\mathbf{P}(s_0, s_1)} + \log \frac{1}{\mathbf{P}(s_1, s_2)} + \dots + \log \frac{1}{\mathbf{P}(s_{n-1}, s_n)}$$

$$= \log \frac{1}{\mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2) \cdot \dots \cdot \mathbf{P}(s_{n-1}, s_n)}$$

$$= \log \frac{1}{\mathbf{Pr}(\sigma)}$$

$$\underbrace{\Pr(\widehat{\sigma}) \, \geqslant \, \Pr(\sigma)}_{\text{in DTMC } \mathcal{D}} \quad \text{if and only if} \quad \underbrace{w(\widehat{\sigma}) \, \leqslant \, w(\sigma)}_{\text{in digraph } G(\mathcal{D})}$$

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity
- Finding a shortest counterex is a k-shortest path (KSP) problem
 - dynamically determine k: generate C incrementally and halt when Pr(C) > p

What does this mean?

- Finding a strongest evidence is a shortest path (SP) problem
 - apply standard SP algorithms, or Viterbi's algorithm ⇒ linear time complexity
- Finding a shortest counterex is a k-shortest path (KSP) problem
 - dynamically determine k: generate C incrementally and halt when $\Pr(C)>p$
- This also applies to $\mathbb{P}_{\geqslant p}(\varphi)$ properties, as

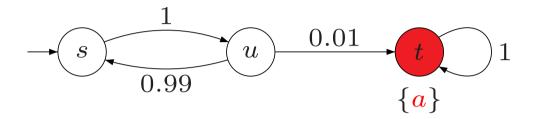
Time complexity

counterexample problem	shortest path problem	algorithm	time complexity
unbounded SE	SP HSP	Dijkstra Bellman-Ford / Viterbi	$\mathcal{O}(M + N \cdot \log N)$ $\mathcal{O}(h \cdot M)$
unbounded SC bounded h SC	KSP HKSP	Eppstein adapted REA	$\mathcal{O}(M + N \cdot \log N + k)$ $\mathcal{O}(h \cdot M + h \cdot k \cdot \log N)$

N = |S|, M = # transitions, h = hop count, k = # shortest paths

including costs yields an instance of the NP-complete RSP problem

On the size of counterexamples



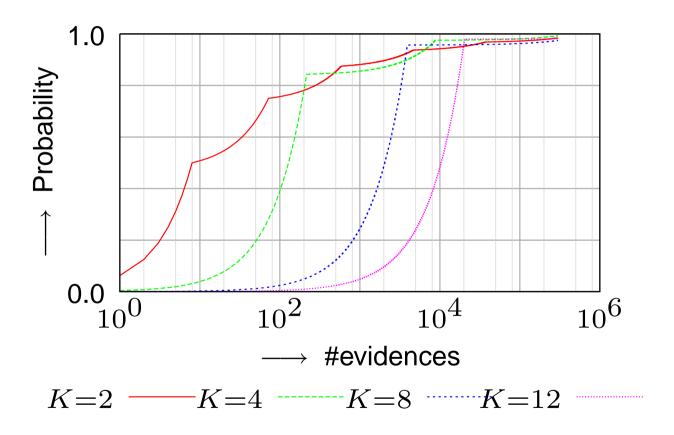
A smallest counterexample for $s \not\models \mathbb{P}_{\leq 0.9999}(\diamondsuit a)$ contains paths

$$sut, susut, sususut, \ldots, \underbrace{su}_{k \text{ times}} t$$

where k is the smallest integer such that $1 - 0.99^{k-1} > 0.9999$

The smallest counterexample has k=689 evidences

Synchronous leader election $\mathbb{P}_{\leq 0.99}(\lozenge leader)$

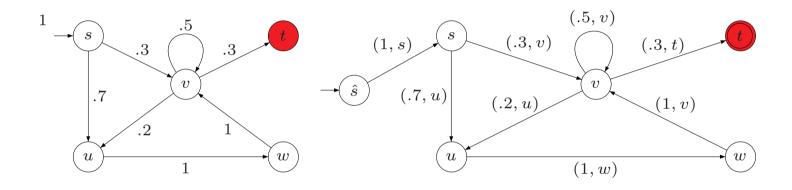


size of counterexample is double exponential in problem size (see paper)

Use regular expressions!

- Size of counterexamples is mainly influenced by loops
 - each loop-traversal yields another path in counterexample
- Idea: represent sets of "similar" finite paths by a regular expression
- How?
 - DTMC (rooted at s) \longrightarrow DFA
 - DFA \longrightarrow most probable paths \longrightarrow regular expression r
- Such that:
 - probability of regular expression r exceeds p (= r is a counterexample)
 - r is "minimal": deletion of some "branch" of r yields no counterexample

From DTMCs to DFAs



alphabet Σ consist of symbols of the form (p, s)

From DTMCs to DFA

For DTMC $\mathcal{D}=(S,\mathbf{P},L)$, state s, and property $\mathbb{P}(\diamondsuit^{\leqslant h}\mathbf{t})$, DFA $\mathcal{A}_{\mathcal{D}}=(S',\Sigma,\tilde{\mathbf{s}},\delta,\mathbf{t})$

	DTMC	DFA
state space	S	$S \cup \{ ilde{m{s}}\}$
initial state	s	$ ilde{m{s}} otin S$
goal/accepting state	t	t
alphabet	_	$\Sigma \subset \boxed{[0,1] imes S}$
transitions	$s_1 \xrightarrow{p} s_2$	$s_1 \xrightarrow{(p,s_2)} s_2$
	_	$ ilde{s} \xrightarrow{(1,s)} s$

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

$$\begin{array}{cccc} r,r' & ::= & \varepsilon & \text{ empty} \\ & | & (p,s) & \text{ letter} \\ & | & r|r' & \text{ choice} \\ & | & r.r' & \text{ catenation} \\ & | & r^* & \text{ repetition} \end{array}$$

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

$$\begin{array}{cccc} r,r' & ::= & \varepsilon & \text{ empty} \\ & | & (p,s) & \text{ letter} \\ & | & r|r' & \text{ choice} \\ & | & r.r' & \text{ catenation} \\ & | & r^* & \text{ repetition} \end{array}$$

Evaluation $val: \mathcal{R}(\Sigma) \to [0, 1]$:

$$\begin{array}{lll} val(\varepsilon) & = & 1 \\ val((p,s)) & = & p \\ val(r|r') & = & val(r) + val(r') \\ val(r.r') & = & val(r) \cdot val(r') \\ val(r^*) & = & \begin{cases} & 1 & \text{if } val(r) = 1 \\ & \frac{1}{1-val(r)} & \text{otherwise} \end{cases} \end{array}$$

Regular expressions [Daws'04]

The set of regular expressions $\mathcal{R}(\Sigma)$:

Evaluation $val: \mathcal{R}(\Sigma) \to [0, 1]$:

$$val(arepsilon) = 1$$

$$val((p,s)) = p$$

$$val(r|r') = val(r) + val(r')$$

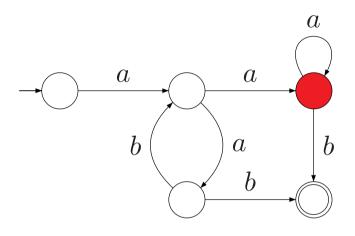
$$val(r.r') = val(r) \cdot val(r')$$

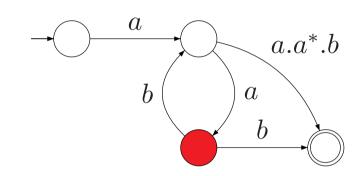
$$val(r^*) = \begin{cases} 1 & \text{if } val(r) = 1 \\ \frac{1}{1-val(r)} & \text{otherwise} \end{cases}$$

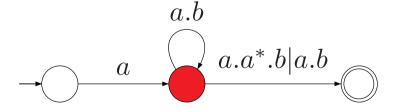
For regular expression r of DFA $\mathcal{A}_{\mathcal{D}}$ with accept state t:

$$val(r) = \Pr^{\mathcal{D}} \{ \sigma \in \textit{Paths}(s) \mid \sigma \models \Diamond t \}$$

State elimination [Brzozowski & McCluskey jr., 1962]

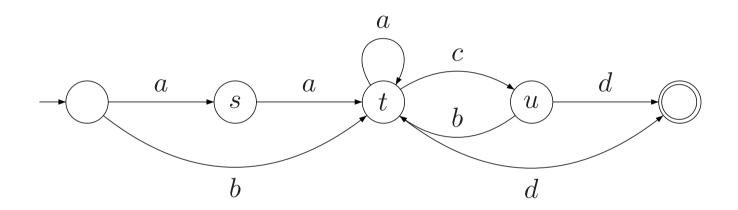






$$-\underbrace{a.(a.b)^*.(a.a^*.b|a.b)}_{}$$

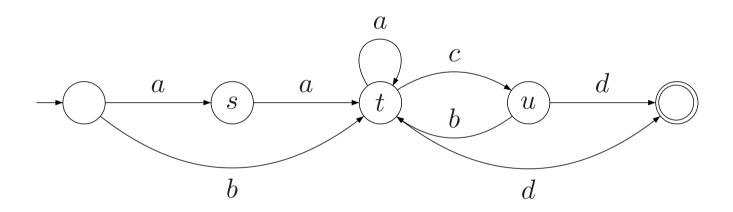
Ordering matters



Ordering s < u < t yields $(aa|b)(a|cb)^*(cd|d)$

Ordering s < t < u yields $(aa|b)a^*c(ba^*c)^*(ba^*d|d)|(aa|b)a^*d$

Ordering matters



Finding the optimal removal ordering takes time $\mathcal{O}(N!)$ where |S|=N

Heuristic [Han & Wood'07]

"eliminate all non-bridge states before bridge states"

- 1. Find all *bridge* states q_1 through q_{n-1}
 - the path of every word $w \in \mathcal{L}(\mathcal{A})$ goes through q_i
 - ullet once this path visits q_i it will not visit states visited prior to q_i
- 2. Perform vertical chopping
 - $\mathcal{A} = \mathcal{A}_1 \cdot \mathcal{A}_2 \cdot \ldots \cdot \mathcal{A}_n$ where \mathcal{A}_i is "connected" to \mathcal{A}_i via bridge q_i
- 3. For each A_i perform *horizontal chopping*
 - $\bullet \ \mathcal{A}_i = \mathcal{A}_{i,1} | \mathcal{A}_{i,2} | \dots | \mathcal{A}_{i,k}$
- 4. For each automaton A_i , j goto step 1.

Time complexity

"eliminate all non-bridge states before bridge states"

1. Find all *bridge* states q_1 through q_{n-1}

in linear time

- the path of every word $w \in \mathcal{L}(\mathcal{A})$ goes through q_i
- ullet once this path visits q_i it will not visit states visited prior to q_i
- 2. Perform vertical chopping

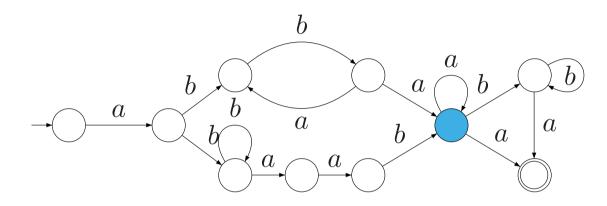
in linear time

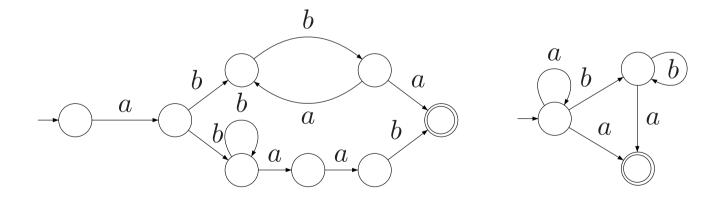
- $\mathcal{A} = \mathcal{A}_1 \cdot \mathcal{A}_2 \cdot \ldots \cdot \mathcal{A}_n$ where \mathcal{A}_i is "connected" to \mathcal{A}_i via bridge q_i
- 3. For each A_i perform *horizontal chopping*

in linear time

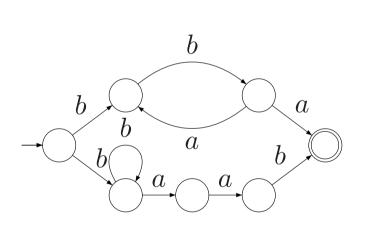
- $\bullet \ \mathcal{A}_i = \mathcal{A}_{i,1} | \mathcal{A}_{i,2} | \dots | \mathcal{A}_{i,k}$
- 4. For each automaton $A_{i,j}$ goto step 1.

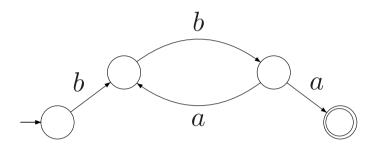
Vertical chopping

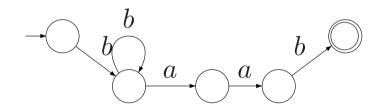




Horizontal chopping







Maximal union subexpressions

 r_1 is a maximal union subexpression (MUS) of regular expression r if:

$$r = r_1 \mid r_2$$
 modulo the congruence $(\mathbf{R_1})$ - $(\mathbf{R_3})$

where for some $r_2 \in \mathcal{R}(\Sigma)$:

$$(\mathbf{R_1}) \qquad \qquad r \equiv r \mid \varepsilon$$

$$(\mathbf{R_2}) \qquad \qquad r_1 \mid r_2 \equiv r_2 \mid r_1$$

$$(\mathbf{R_3}) \qquad \qquad r_1 \mid (r_2 \mid r_3) \equiv (r_1 \mid r_2) \mid r_3$$

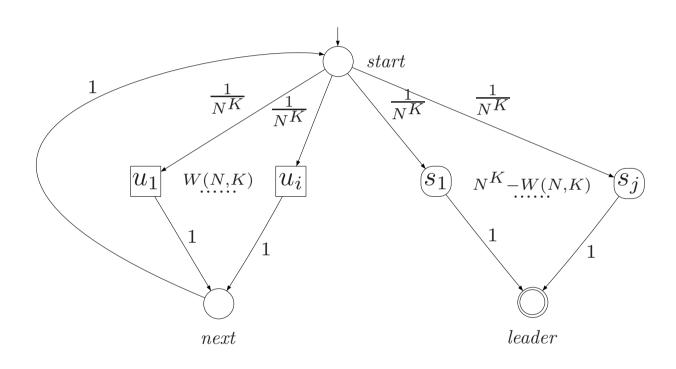
a MUS can be regarded as a main path from the initial state to a accept state

Algorithm for regular expressions

```
Require: DFA \mathcal{A}_{\mathcal{D}} = (S, \Sigma, s, \delta, \{t\}), \text{ and } p \in [0, 1]
Ensure: regular expression r \in \mathcal{R}(\Sigma) with val(r) > p
   \mathcal{A} := \mathcal{A}_{\mathcal{D}}, \ pr := 0; \ \text{priority queue} \ pq := \emptyset; \ k := 1;
   while pr \leqslant p do
      \sigma := the strongest evidence in \mathcal{A};
      forall s' \in \sigma \setminus \{s, \hat{s}, t\} do pq.enqueue(s'); end;
      while pq \neq \emptyset do
          \mathcal{A} := \text{eliminate}(pq.\text{dequeue}()); \quad r_k := \text{the created MUS};
         pr := pr + val(r_k); \quad \mathcal{A} := \mathsf{eliminate}(r_k);
         if (pr > p) then break else k := k + 1;
      endwhile:
   endwhile:
   return r_1 \mid \ldots \mid r_k.
```

this approach works for strict and non-strict bounds

Leader election revisited



Regular expression for the counterexample:

$$r(N,K) = start. [(u_1|\cdots|u_i).next. start]^*. (s_1|\cdots|s_j). leader$$

Model reduction

The size of a counterexample is determined by

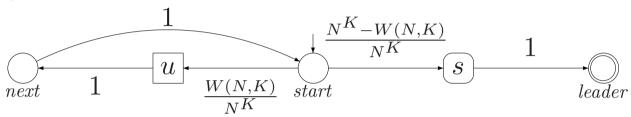
- traversing the same loop for different times
 - ⇒ using Kleene stars in regular expressions

- large number of states
 - → model reduction
 - 1. bisimulation minimization
 - 2. SCC minimization

Model reduction is done prior to counterexample generation

Leader election re-revisited

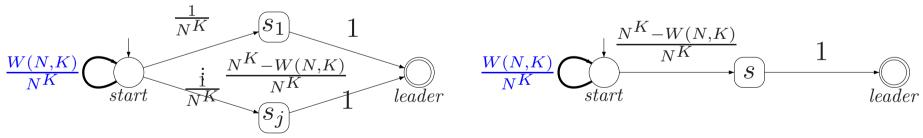
Bisimulation quotient:



$$r_{\sim}(N,K) = start. (u.next.start)^*.s. leader$$

After aggregating SCCs:

SCC aggregation of bisimulation quotient:



$$r^{scc}(N,K) = start.start^*.(s_1|\cdots|s_j).leader \qquad r^{scc}_{\sim}(N,K) = start.start^*.s.leader$$

Counterexamples are en vogue

Heuristic search algorithms for CTMCs

(Aljazzar et al. FORMATS 2005, 2006)

Counterexamples for CTMCs

(Han & Katoen ATVA 2007)

Counterexamples for conditional PCTL

(Andres & van Rossum TACAS 2008)

Proof refutations for probabilistic programs

(McIver et al. FM 2008)

Counterexample-guided abstraction refinement

(Hermanns et al. CAV 2008)

(Chadha & Viswamanathan TR 2008)

Counterexamples for MDPs

(Andres et al., HVC 2008, Aljazzar & Leue TR 2007)

Bounded model checking for DTMC counterexamples (Becker et al. TR 2008)

Epilogue

- What is a PCTL (or quantitative LTL) counterexample?
 - a set of paths with sufficient probability mass
- How to determine smallest counterexamples?
 - exploit k-shortest path algorithms
- How about the size of counterexamples?
 - well, they may be excessively large and incomprehensible
- Can we do better?
 - yes, represent counterexamples by regular expressions!
- How to obtain (short) regular expressions?
 - use automata theory and some heuristics

谢谢大家!