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Probabilistic models
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Reachability probabilities
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Content of this lecture

e Markov decision processes

— motivation, definition, policies

e Reachability probabilities

— quantitative and qualitative reachability

e Probabilistic CTL

— syntax, semantics, model checking
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The importance of nondeterminism

e Implementation freedom as a specification

— describes what the system should do, not how it must be implemented
— leaves freedom for implementation =- represent choice by nondeterminism

e Scheduling freedom

— no info about relative speeds of components yields interleaving model
— scheduling freedom = which component should move next?

e External environment

— do not stipulate how the environment will behave

e Incomplete information

Tony Hoary: “There is nothing mysterious about nondeterminism, it arises from
the deliberate decision to ignore the factors which influence the selection”
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Markov Decision Process
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Markov Decision Process

A (labeled) MDP M = (S, Act, P, t;,,;:, AP, L) where

e S'is a finite set of states

e Act is a finite set of actions

e P: S5 x Act x Distr(5), transition probability function
e 1,y € Distr(.5), initial state distribution

o [:S — 2°P state labeling
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Ao Motivation

e Stochastic control theory

e Planning and Artificial Intelligence

— controlled queuing systems, logistics

e Concurrency theory

— asynchronous communication, channel systems

e Distributed algorithms

— “local” randomness with concurrent processes
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Asynchronous leader election

e An unidirectional asynchronous ring of N > 2 nodes

— each process behaves asynchronously
= this interleaved concurrency gives rise to an MDP!

e Each node is initially active and proceeds as follows:

— flip a fair coin (0 and 1), and pass the outcome to your right neighbour
— if you have chosen 0 while your left neighbour has passed 1, become inactive
— send a counter around the ring: if only active node =- become leader

(Itai & Rodeh, 1990)
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Pseudo-code for a single process
mode; := active;
do :: mode; = active =
x; :=randomo,1);
Ci+1!T; ¢ Ty
if =y, =1ANxz;=0 = mode; := passive;
#active := #active — 1
cy; =0V, =1 = ski P
fi
:: mode; = passive = ¢;?y;; ¢;ii1ly;
od
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Policies

Decisions of a policy are either deterministic (D) or randomized (R)
e &:S5" — Actis a history-deterministic (HD) policy with

S(sos1---8,) € {a|3s€ S P(sy,a,8) >0}

history Actz;n)

note: actions are not part of the history since ;11 = S(sg . . . S;)

S is memoryless (M) if in a state always the same decision is taken

every M-policy is an H-policy; not the converse

alternative terminology: adversary, scheduler, tactic, strategy, . . .
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Policies
e Decisions of a policy are either deterministic (D) or randomized (R)
e G: (S xAct)* xS — Distr(Act) is a history-randomized (HR) policy

where G&(soapsiar...a,_15,)(a) >0 implies o € Act(s,)

hi;tf)ry

every D-policy is an R-policy; not the converse

e Thus: MD Cc MR Cc HR and MD c HD C HR
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Types of policies
e Distinguishing criteria:

— Available information? current state (M), or history (H)
— How to decide? deterministic (D) or randomized (R)
— Fairness? (not today)
e The hierarchy of scheduler classes MD, MR, HD and HR:
HR
HD
MR
MD

alternative terminology: tactic, scheduler, adversary, . . .
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Applying a HD-Policy

Policy G on MDP M = (S, Act, P, AP, L) with initial state s

e Basic idea: unfold M, resolving the nondeterminism according to &

— this yields a tree rooted at state s

e This yields the infinite Markov chain Mg = (Sg, Ps, tiit, Ls) With:
— Sg = ST, nonempty state sequences in MDP M
— Pg(m,m™ — s) = P(last(7), &(m), s) and O otherwise

— Le(m) = L(last(r))
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Markov Decision Process
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Reachability Objectives in MDPs
e Reachability probability of set B C S from state s:

Pr(s = OB) = PrMe{r e Paths(s) | 7 = OB}

— w-regular properties (and many more) are also measurable
~ V6.Pr%s = OB) < eimpliesVS. Pr(s = 0-B) > 1 — ¢
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18



Reachability Objectives in MDPs

Reachability probability of set B C S from state s:
Pr(s = OB) = PrMe{r e Paths(s) | 7 = OB}

— w-regular properties (and many more) are also measurable
~ V6.Pr(s |= OB) < e implies V6. Pr°(s =0-B) > 1 — ¢

Analysis focuses on obtaining lower- and upperbounds, e.g.,
Pr'"®*(s = OB) = supg Pr°(s = ¢B)
note: G ranges over all, potentially infinitely many, policies

e And on determining policies (MD, HD, ...) for these bounds
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Constrained reachability

e Let B,C C S and consider the property C'U B in MDP M

e Remove all outgoing transitions from states in B, and S \ (B U ()

— i.e., equip such state ¢ with a;; with P(¢, a,t) = 1
— this ylelds the MDP M’

e Then, it holds:

Pr™(s = CUB) = Pr%(sk= OB)
Piin(s = CUB) = Pri%s k= ©OB)

—>- constrained reachability objectives can be reduced to simple reachability
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Reachability probabilities in finite MDPs

e Letvariable z, = Pr"**(s = & B) for any state s

e 1, IS the unigue solution of the set of equations:

— if B is not reachable from s then x, = 0
— ifse Bthenxz, =1

e For any state s € Sat(3¢B) \ B:

Ts = max{ ZP(s,a,t) x| € Act(s) }

tesS

for minimal probabilities similar equations are obtained

© JPK
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equation system for reachability objective &{ w } is:
z,=1landz, =0

_ 1 1 1 1 1 1 1
v, = max{ sz, + (x, + [T, 52, + 32} and  xz; = x5 + 52,
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B

e For OS"B with n € N, finite-memory policies are optimal

Reachability objectives

there exists an MD-policy & with:
Pro(s = ©B) = Pr'™®*(s = OB)

e Maximal reachability probabilities are obtained by a linear program

— or, alternatively, by means of value iteration

= Values Pr'"**(s = &B) can be computed in polytime

© JPK
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Linear program

e Letvariable z, = Pr"**(s = & B) for any state s

e 1. IS the unigue solution of the set of equations:

— ifs £ 3¢ Bthenz, =0
— ifs€ Bthenz, =1

e For any state s € Sat(3¢B) \ B:

Ts = ZP(s,a,t) - Ty

tes

for any a € Act(s)

e Such that sz is minimal

seS
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LP problem for reachability objective &{ w '} is:

minimize >, ¢ x; suchthatz, = landz, = 0

1

1 1 1 1 1 1
Ts = 505+ g0, +gr,andxs > sz, + 5z and x> 5T+ 5T
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Asynchronous leader election

e An unidirectional asynchronous ring of N > 2 nodes

— each process behaves asynchronously
= this interleaved concurrency gives rise to an MDP!

e Each node is initially active and proceeds as follows:

— flip a fair coin (0 and 1), and pass the outcome to your right neighbour
— if you have chosen 0 while your left neighbour has passed 1, become inactive
— send a counter around the ring: if only active node =- become leader

(Itai & Rodeh, 1990)
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Probability to elect a leader within & steps

Frobability of electing a leader within  steps
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maximum and minimum probabilities coincide in this case
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e Fora € AP, J C [0, 1] an interval with rational bounds, and natural n:

o = true‘ a |<I>/\<I> ‘ oy ‘ P ()
o = O | o, U P, | &, US" @,
® 500S11Sy ... = ®US" W if ® holds until ¥ holds within n steps

PCTL Syntax

e s |= P;(y) if probability that paths starting in s fulfill  lies in J for all policies
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Derived operators
OP = truelU @
OSSP = true US" @
Pep(OP) = Po1p(O®)
IP)]19,61](D<n ¢) = IP)[1—(1,1—10[(<><n —P)
operators like weak until W or release R can be derived analogously
© JPK 30



PCTL semantics (1)

M, s = @ if and only if formula @ holds in state s of MDP M
Relation = is defined by:

s Ea iff ae L(s)

skE= P Iff not (s = @)

sE® VU iff (sE®)or(sEV)

sEP;(p) iff Pr9s =) e Jfor all policies &

where Pr°(s = ) = Pro{m € Paths(s) | 7 |= ¢}

© JPK
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Remarks
s=P;(p) iff Pro(s k= ¢) e Jfor all policies &
o}
sEPo(p) iff Pr™(s ) <p
SEP(p) iff Pr(s k) > p
note that: Pc,(¢) # —Ps,(v)
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PCTL semantics (2)

A path is an infinite sequence sqg —% s; —% ... with P(s;, a;, s;4+1) > 0

Semantics of path-formulas is defined as for DTMCs:

ke Od iff s1 =@
TEPUT iff In>0.(s, EVAVOLKi<n.s; =)
tEOUS"T iff JE>0(k<nAsgETA

V0 <i<k.os;=d)
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PCTL model checking

e Given a finite MDP M and PCTL formula ®, how to check M = ®?

e Check whether state s in a MDP satisfies a PCTL formula:

— compute recursively the set Sat(®) of states that satisfy ®
— check whether state s belongs to Sat(®)
= bottom-up traversal of the parse tree of ¢ (like for CTL)

e For the propositional fragment: as for CTL

e How to compute Sat(®) for the probabilistic operators?
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Checking probabilistic reachability

e s=P,;(®UW)ifand only if Pr"*(s =P U W) € J

° PI‘(S ’: o U \I/) IS the unique solution of: (Bianco & de Alfaro, 1998)
—1lifs =W

— fors = ® A -

s'es

max, { > P(s,a,s) - Pr(s' E2U D) }

— 0 otherwise

e Possible efficiency improvement by graph-theoretical pre-computation
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Time complexity

For finite MDP M and PCTL formula ¢, M = ® can be solved in time
O(poly(\/\/ﬂ) " Mmax - |(I)|)

where n.. = max{n | ¥; US" ¥, occursin ® } with max o = 1
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Extensions
e LTL model checking
e Costs
e Abstraction
— bisimulation minimization, partial-order reduction, MTBDDs,
e Continuous time
e Fairness
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Probabilistic model checking

IS a mature automated technique

has a broad range of applications

IS supported by powerful software tools
recent significant efficiency gain

offers many interesting challenges!

more information; noves. r wt h- aachen. de/ ~ kat oen
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