
Probabilistic Model Checking (2)
GLOBAN Summerschool

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

Warsaw University, September 25, 2008

c© JPK

Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

c© JPK 1

Reachability probabilities

Nondeterminism Nondeterminism
no yes

Reachability linear equation system linear programming
DTMC MDP

Timed reachability transient analysis greedy backward
(+ uniformization) reachability

CTMC uniform CTMDP

c© JPK 2

Content of this lecture

• Markov decision processes

– motivation, definition, policies

• Reachability probabilities

– quantitative and qualitative reachability

• Probabilistic CTL

– syntax, semantics, model checking

c© JPK 3

Content of this lecture

⇒ Markov decision processes

– motivation, definition, policies

• Reachability probabilities

– quantitative and qualitative reachability

• Probabilistic CTL

– syntax, semantics, model checking

c© JPK 4

The importance of nondeterminism

• Implementation freedom as a specification

– describes what the system should do, not how it must be implemented
– leaves freedom for implementation ⇒ represent choice by nondeterminism

• Scheduling freedom

– no info about relative speeds of components yields interleaving model
– scheduling freedom = which component should move next?

• External environment

– do not stipulate how the environment will behave

• Incomplete information

Tony Hoary: “There is nothing mysterious about nondeterminism, it arises from
the deliberate decision to ignore the factors which influence the selection”

c© JPK 5

Markov Decision Process

s

1
2

t u

1
4

1
2

v

1
4

1
2

1
2

1
2

1

1

c© JPK 6

Markov Decision Process

A (labeled) MDP M = (S, Act,P, ιinit , AP, L) where

• S is a finite set of states

• Act is a finite set of actions

• P : S × Act × Distr(S), transition probability function

• ιinit ∈ Distr(S), initial state distribution

• L : S → 2AP, state labeling

c© JPK 7

Motivation

• Stochastic control theory

• Planning and Artificial Intelligence

– controlled queuing systems, logistics

• Concurrency theory

– asynchronous communication, channel systems

• Distributed algorithms

– “local” randomness with concurrent processes

c© JPK 8

Asynchronous leader election

• An unidirectional asynchronous ring of N > 2 nodes

– each process behaves asynchronously
⇒ this interleaved concurrency gives rise to an MDP!

• Each node is initially active and proceeds as follows:

– flip a fair coin (0 and 1), and pass the outcome to your right neighbour
– if you have chosen 0 while your left neighbour has passed 1, become inactive
– send a counter around the ring: if only active node ⇒ become leader

(Itai & Rodeh, 1990)

c© JPK 9

Pseudo-code for a single process

modei := active;
do :: modei = active ⇒

xi := random(0, 1);
ci+1!xi; ci?yi;
if :: yi = 1 ∧ xi = 0 ⇒ modei := passive;

#active := #active − 1
:: yi = 0 ∨ xi = 1 ⇒ skip

fi
:: modei = passive ⇒ ci?yi; ci+1!yi

od

c© JPK 10

Policies

• Decisions of a policy are either deterministic (D) or randomized (R)

• S : S+ → Act is a history-deterministic (HD) policy with

S(s0 s1 . . . sn︸ ︷︷ ︸
history

) ∈ {α | ∃s ∈ S.P(sn, α, s) > 0 }︸ ︷︷ ︸
Act(sn)

note: actions are not part of the history since αi+1 = S(s0 . . . si)

• S is memoryless (M) if in a state always the same decision is taken

every M-policy is an H-policy; not the converse

alternative terminology: adversary, scheduler, tactic, strategy, . . .

c© JPK 11

Policies

• Decisions of a policy are either deterministic (D) or randomized (R)

• S : (S × Act)∗ × S → Distr(Act) is a history-randomized (HR) policy

where S(s0 α0 s1 α1 . . . αn−1 sn︸ ︷︷ ︸
history

)(α) > 0 implies α ∈ Act(sn)

every D-policy is an R-policy; not the converse

• Thus: MD ⊂ MR ⊂ HR and MD ⊂ HD ⊂ HR

c© JPK 12

Types of policies
• Distinguishing criteria:

– Available information? current state (M), or history (H)
– How to decide? deterministic (D) or randomized (R)
– Fairness? (not today)

• The hierarchy of scheduler classes MD, MR, HD and HR:

MD

HD

HR

MR

alternative terminology: tactic, scheduler, adversary, . . .

c© JPK 13

Applying a HD-Policy

Policy S on MDP M = (S, Act,P, AP, L) with initial state s

• Basic idea: unfold M, resolving the nondeterminism according to S

– this yields a tree rooted at state s

• This yields the infinite Markov chain MS = (SS,PS, ιinit, LS) with:

– SS = S+, nonempty state sequences in MDP M

– PS(π, π → s) = P(last(π), S(π), s) and 0 otherwise

– LS(π) = L(last(π))

c© JPK 14

Markov Decision Process

s

1
2

t u

1
4

1
2

v

1
4

1
2

1
2

1
2

1

1

c© JPK 15

Applying a Policy

s

su suu

st

sts

stv

stsu

stss

stsv

stsuu

stssu

stsst

stsvv

stssuu

stssts

stsstv stsstvv

stsstsu

stsstss

stsstsv

...

stvv ...

...

...

...

...

...

...
1/2

1 1

1/2
1/2

1/2

1 1

1/4

1/2

1/4

1 1

1/2

1/2

1 1

1

1/2

1/2

1/2

1/4

...1

1 ...

1/4

...

...

...

HD policy = alternate between red and green

c© JPK 16

Content of this lecture

• Markov decision processes

– motivation, definition, policies

⇒ Reachability probabilities

– quantitative and qualitative reachability

• Probabilistic CTL

– syntax, semantics, model checking

c© JPK 17

Reachability Objectives in MDPs
• Reachability probability of set B ⊆ S from state s:

PrS(s |= �B) = PrMS
s {π ∈ Paths(s) | π |= �B }

– ω-regular properties (and many more) are also measurable
– ∀S. PrS(s |= �B) � ε implies ∀S. PrS(s |= �¬B) � 1 − ε

c© JPK 18

Reachability Objectives in MDPs

• Reachability probability of set B ⊆ S from state s:

PrS(s |= �B) = PrMS
s {π ∈ Paths(s) | π |= �B }

– ω-regular properties (and many more) are also measurable
– ∀S. PrS(s |= �B) � ε implies ∀S. PrS(s |= �¬B) � 1 − ε

• Analysis focuses on obtaining lower- and upperbounds, e.g.,

Prmax(s |= �B) = supS PrS(s |= �B)

note: S ranges over all, potentially infinitely many, policies

• And on determining policies (MD, HD, . . .) for these bounds

c© JPK 19

Constrained reachability

• Let B, C ⊆ S and consider the property C UB in MDP M

• Remove all outgoing transitions from states in B, and S \ (B ∪ C)

– i.e., equip such state t with αt with P(t, αt, t) = 1

– this ylelds the MDP M′

• Then, it holds:

Prmax
M (s |= C UB) = Prmax

M′ (s |= �B)

Prmin
M (s |= C UB) = Prmin

M′ (s |= �B)

⇒ constrained reachability objectives can be reduced to simple reachability

c© JPK 20

Reachability probabilities in finite MDPs

• Let variable xs = Prmax(s |= �B) for any state s

• xs is the unique solution of the set of equations:

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Sat(∃�B) \ B:

xs = max

{ ∑
t∈S

P(s, α, t) · xt | α ∈ Act(s)

}

for minimal probabilities similar equations are obtained

c© JPK 21

Example

s

1
2

t u

1
4

1
2

v

1
4

1
2

1
2

1
2

1

1

equation system for reachability objective �{u } is:

xu = 1 and xv = 0

xs = max{ 1
2xs + 1

4xu + 1
4xv,

1
2xu + 1

2xt } and xt = 1
2xs + 1

2xv

c© JPK 22

Reachability objectives

there exists an MD-policy S with:

PrS(s |= �B) = Prmax(s |= �B)

• For ��nB with n ∈ N, finite-memory policies are optimal

• Maximal reachability probabilities are obtained by a linear program

– or, alternatively, by means of value iteration

⇒ Values Prmax(s |= �B) can be computed in polytime

c© JPK 23

Linear program

• Let variable xs = Prmax(s |= �B) for any state s

• xs is the unique solution of the set of equations:

– if s �|= ∃�B then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Sat(∃�B) \ B:

xs �
∑
t∈S

P(s, α, t) · xt for any α ∈ Act(s)

• Such that
∑
s∈S

xs is minimal

c© JPK 24

Example

s

1
2

t u

1
4

1
2

v

1
4

1
2

1
2

1
2

1

1

LP problem for reachability objective �{u } is:

minimize
P

t∈S xt such that xu = 1 and xv = 0

xs � 1
2xs + 1

4xu + 1
4xv and xs � 1

2xu + 1
2xt and xt � 1

2xs + 1
2xv

c© JPK 25

Asynchronous leader election

• An unidirectional asynchronous ring of N > 2 nodes

– each process behaves asynchronously
⇒ this interleaved concurrency gives rise to an MDP!

• Each node is initially active and proceeds as follows:

– flip a fair coin (0 and 1), and pass the outcome to your right neighbour
– if you have chosen 0 while your left neighbour has passed 1, become inactive
– send a counter around the ring: if only active node ⇒ become leader

(Itai & Rodeh, 1990)

c© JPK 26

Probability to elect a leader within k steps

P�q(�
�k leader elected) c© PRISM web-page

maximum and minimum probabilities coincide in this case

c© JPK 27

Content of this lecture

• Markov decision processes

– motivation, definition, policies

• Reachability probabilities

– quantitative and qualitative reachability

⇒ Probabilistic CTL

– syntax, semantics, model checking

c© JPK 28

PCTL Syntax

• For a ∈ AP, J ⊆ [0, 1] an interval with rational bounds, and natural n:

Φ ::= true
˛̨
˛ a

˛̨
˛ Φ ∧ Φ

˛̨
˛ ¬Φ

˛̨
˛ PJ(ϕ)

ϕ ::= ©Φ
˛̨
˛ Φ1 U Φ2

˛̨
˛ Φ1 U�n Φ2

• s0α0s1α1s2 . . . |= Φ U�n Ψ if Φ holds until Ψ holds within n steps

• s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J for all policies

c© JPK 29

Derived operators

�Φ = true UΦ

��nΦ = true U�n Φ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��n Φ) = P[1−q,1−p[(��n ¬Φ)

operators like weak until W or release R can be derived analogously

c© JPK 30

PCTL semantics (1)

M, s |= Φ if and only if formula Φ holds in state s of MDP M

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= PJ(ϕ) iff PrS(s |= ϕ) ∈ J for all policies S

where PrS(s |= ϕ) = PrS
s {π ∈ Paths(s) | π |= ϕ}

c© JPK 31

Remarks

s |= PJ(ϕ) iff PrS(s |= ϕ) ∈ J for all policies S

so:

s |= P�p(ϕ) iff Prmax(s |= ϕ) � p

s |= P�p(ϕ) iff Prmin(s |= ϕ) � p

note that: P�p(ϕ) �≡ ¬P>p(ϕ)

c© JPK 32

PCTL semantics (2)

A path is an infinite sequence s0
α0−−→ s1

α1−−→ . . . with P(si, αi, si+1) > 0

Semantics of path-formulas is defined as for DTMCs:

π |= ©Φ iff s1 |= Φ

π |= Φ UΨ iff ∃n � 0.(sn |= Ψ ∧ ∀0 � i < n. si |= Φ)

π |= Φ U�n Ψ iff ∃k � 0.(k � n ∧ sk |= Ψ∧
∀0 � i < k. si |= Φ)

c© JPK 33

PCTL model checking

• Given a finite MDP M and PCTL formula Φ, how to check M |= Φ?

• Check whether state s in a MDP satisfies a PCTL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
– check whether state s belongs to Sat(Φ)
⇒ bottom-up traversal of the parse tree of Φ (like for CTL)

• For the propositional fragment: as for CTL

• How to compute Sat(Φ) for the probabilistic operators?

c© JPK 34

Checking probabilistic reachability

• s |= PJ(Φ UΨ) if and only if Prmax(s |= Φ UΨ) ∈ J

• Pr(s |= Φ UΨ) is the unique solution of: (Bianco & de Alfaro, 1998)

– 1 if s |= Ψ

– for s |= Φ∧¬Ψ:

maxα

8<
:

X
s′∈S

P(s, α, s′) · Pr(s′ |= Φ U Ψ)

9=
;

– 0 otherwise

• Possible efficiency improvement by graph-theoretical pre-computation

c© JPK 35

Time complexity

For finite MDP M and PCTL formula Φ, M |= Φ can be solved in time

O(
poly(|M|) · nmax · |Φ|)

where nmax = max{n | Ψ1 U�n Ψ2 occurs in Φ } with max ∅ = 1

c© JPK 36

Extensions

• LTL model checking

• Costs

• Abstraction

– bisimulation minimization, partial-order reduction, MTBDDs,
. . .

• Continuous time

• Fairness

c© JPK 37

Probabilistic model checking

• is a mature automated technique

• has a broad range of applications

• is supported by powerful software tools

• recent significant efficiency gain

• offers many interesting challenges!

more information: moves.rwth-aachen.de/˜katoen

c© JPK 38

