Probabilistic Model Checking (2)

GLOBAN Summerschool

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

Warsaw University, September 25, 2008

Probabilistic models

	Nondeterminism	Nondeterminism
	no	yes
Discrete time	discrete-time Markov chain (<mark>DTMC</mark>)	Markov decision process (MDP)
Continuous time	CTMC	CTMDP

Reachability probabilities

	Nondeterminism	Nondeterminism
	no	yes
Reachability	linear equation system DTMC	linear programming MDP
Timed reachability	transient analysis (+ uniformization) CTMC	greedy backward reachability uniform CTMDP

Content of this lecture

- Markov decision processes
 - motivation, definition, policies
- Reachability probabilities
 - quantitative and qualitative reachability
- Probabilistic CTL
 - syntax, semantics, model checking

Content of this lecture

- \Rightarrow Markov decision processes
 - motivation, definition, policies
 - Reachability probabilities
 - quantitative and qualitative reachability
 - Probabilistic CTL
 - syntax, semantics, model checking

The importance of nondeterminism

- Implementation freedom as a specification
 - describes what the system should do, not how it must be implemented
 - leaves freedom for implementation \Rightarrow represent choice by nondeterminism

• Scheduling freedom

- no info about relative speeds of components yields interleaving model
- scheduling freedom = which component should move next?
- External environment
 - do not stipulate how the environment will behave
- Incomplete information

Tony Hoary: "There is nothing mysterious about nondeterminism, it arises from the deliberate decision to ignore the factors which influence the selection"

Markov Decision Process

Markov Decision Process

A (labeled) MDP $\mathcal{M} = (S, \textit{Act}, \mathbf{P}, \iota_{init}, \textit{AP}, L)$ where

- S is a finite set of states
- Act is a finite set of actions
- $\mathbf{P}: S \times \textit{Act} \times \textit{Distr}(S)$, transition probability function
- $\iota_{init} \in \textit{Distr}(S)$, initial state distribution
- $L: S \to 2^{AP}$, state labeling

- Stochastic control theory
- Planning and Artificial Intelligence
 - controlled queuing systems, logistics
- Concurrency theory
 - asynchronous communication, channel systems
- Distributed algorithms
 - "local" randomness with concurrent processes

Asynchronous leader election

- An unidirectional asynchronous ring of N>2 nodes
 - each process behaves asynchronously
 - \Rightarrow this interleaved concurrency gives rise to an MDP!
- Each node is initially active and proceeds as follows:
 - flip a fair coin (0 and 1), and pass the outcome to your right neighbour
 - if you have chosen 0 while your left neighbour has passed 1, become inactive
 - send a counter around the ring: if only active node \Rightarrow become leader

(Itai & Rodeh, 1990)

Pseudo-code for a single process

$$\begin{array}{ll} \textit{mode}_i := \textit{active}; \\ \texttt{do} & :: \textit{mode}_i = \textit{active} \Rightarrow \\ & x_i := \texttt{random}(0, 1); \\ & c_{i+1}! x_i; c_i ? y_i; \\ & \texttt{if} & :: y_i = 1 \land x_i = 0 \Rightarrow \textit{mode}_i := \textit{passive}; \\ & \textit{\#active} := \textit{\#active} - 1 \\ & :: y_i = 0 \lor x_i = 1 \Rightarrow \texttt{skip} \\ & \texttt{fi} \\ & :: \textit{mode}_i = \textit{passive} \Rightarrow c_i ? y_i; c_{i+1}! y_i \\ & \texttt{od} \end{array}$$

Policies

- Decisions of a policy are either deterministic (D) or randomized (R)
- $\mathfrak{S}: S^+ \to Act$ is a history-deterministic (HD) policy with

$$\mathfrak{S}(\underbrace{s_0 \, s_1 \dots s_n}_{\text{history}}) \in \underbrace{\{\alpha \mid \exists s \in S. \, \mathbf{P}(s_n, \alpha, s) > 0\}}_{Act(s_n)}$$

note: actions are not part of the history since $\alpha_{i+1} = \mathfrak{S}(s_0 \dots s_i)$

• S is memoryless (M) if in a state always the same decision is taken every M-policy is an H-policy; not the converse

alternative terminology: adversary, scheduler, tactic, strategy, ...

Policies

- Decisions of a policy are either deterministic (D) or randomized (R)
- $\mathfrak{S} : (S \times Act)^* \times S \rightarrow \textit{Distr}(Act)$ is a history-randomized (HR) policy

where
$$\mathfrak{S}(\underbrace{s_0 \alpha_0 s_1 \alpha_1 \dots \alpha_{n-1} s_n}_{\text{history}})(\alpha) > 0$$
 implies $\alpha \in Act(s_n)$

every D-policy is an R-policy; not the converse

• Thus: $MD \subset MR \subset HR$ and $MD \subset HD \subset HR$

Types of policies

- Distinguishing criteria:
 - Available information?
 - How to decide?
 - Fairness?

- current state (M), or history (H) deterministic (D) or randomized (R) (not today)
- The hierarchy of scheduler classes MD, MR, HD and HR:

alternative terminology: tactic, scheduler, adversary, ...

Applying a HD-Policy

Policy \mathfrak{S} on MDP $\mathcal{M} = (S, Act, \mathbf{P}, AP, L)$ with initial state s

- Basic idea: *unfold* \mathcal{M} , resolving the nondeterminism according to \mathfrak{S}
 - this yields a tree rooted at state s
- This yields the infinite Markov chain $\mathcal{M}_{\mathfrak{S}} = (S_{\mathfrak{S}}, \mathbf{P}_{\mathfrak{S}}, \iota_{init}, L_{\mathfrak{S}})$ with:
 - $S_{\mathfrak{S}} = S^+$, nonempty state sequences in MDP \mathcal{M}
 - $\mathbf{P}_{\mathfrak{S}}(\pi, \pi \to s) = \mathbf{P}(last(\pi), \mathfrak{S}(\pi), s)$ and 0 otherwise

-
$$L_{\mathfrak{S}}(\pi) = L(last(\pi))$$

Markov Decision Process

Applying a Policy

HD policy = alternate between red and green

Content of this lecture

- Markov decision processes
 - motivation, definition, policies
- \Rightarrow Reachability probabilities
 - quantitative and qualitative reachability
 - Probabilistic CTL
 - syntax, semantics, model checking

Reachability Objectives in MDPs

• Reachability probability of set $B \subseteq S$ from state s:

$$\Pr^{\mathfrak{S}}(s \models \Diamond B) = \Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in \mathsf{Paths}(s) \mid \pi \models \Diamond B \}$$

- ω -regular properties (and many more) are also measurable
- $\forall \mathfrak{S}. \Pr^{\mathfrak{S}}(s \models \Diamond B) \leq \varepsilon \text{ implies } \forall \mathfrak{S}. \Pr^{\mathfrak{S}}(s \models \Box \neg B) \geq 1 \varepsilon$

Reachability Objectives in MDPs

• Reachability probability of set $B \subseteq S$ from state s:

$$\Pr^{\mathfrak{S}}(s \models \Diamond B) = \Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in \mathsf{Paths}(s) \mid \pi \models \Diamond B \}$$

- ω -regular properties (and many more) are also measurable
- $\forall \mathfrak{S}. \operatorname{Pr}^{\mathfrak{S}}(s \models \Diamond B) \leq \varepsilon \text{ implies } \forall \mathfrak{S}. \operatorname{Pr}^{\mathfrak{S}}(s \models \Box \neg B) \geq 1 \varepsilon$
- Analysis focuses on obtaining lower- and upperbounds, e.g.,

$$\Pr^{\max}(s \models \Diamond B) = \sup_{\mathfrak{S}} \Pr^{\mathfrak{S}}(s \models \Diamond B)$$

note: S ranges over all, potentially infinitely many, policies

• And on determining policies (MD, HD, ...) for these bounds

Constrained reachability

- Let $B, C \subseteq S$ and consider the property $C \cup B$ in MDP \mathcal{M}
- Remove all outgoing transitions from states in B, and $S \setminus (B \cup C)$
 - i.e., equip such state t with α_t with $\mathbf{P}(t, \alpha_t, t) = 1$
 - this ylelds the MDP \mathcal{M}^\prime
- Then, it holds:

$$\Pr_{\mathcal{M}}^{\max}(s \models C \cup B) = \Pr_{\mathcal{M}'}^{\max}(s \models \Diamond B)$$
$$\Pr_{\mathcal{M}}^{\min}(s \models C \cup B) = \Pr_{\mathcal{M}'}^{\min}(s \models \Diamond B)$$

\Rightarrow constrained reachability objectives can be reduced to simple reachability

Reachability probabilities in finite MDPs

- Let variable $x_s = \Pr^{\max}(s \models \Diamond B)$ for any state s
- x_s is the unique solution of the set of equations:
 - if **B** is not reachable from s then $x_s = 0$
 - if $s \in B$ then $x_s = 1$
- For any state $s \in Sat(\exists \diamondsuit B) \setminus B$:

$$x_s = \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in \mathit{Act}(s)\right\}$$

for minimal probabilities similar equations are obtained

Reachability objectives

there exists an MD-policy \mathfrak{S} with: $\Pr^{\mathfrak{S}}(s \models \Diamond B) = \Pr^{\max}(s \models \Diamond B)$

- For $\Diamond^{\leq n} B$ with $n \in \mathbb{N}$, finite-memory policies are optimal
- Maximal reachability probabilities are obtained by a linear program
 - or, alternatively, by means of value iteration
- \Rightarrow Values $Pr^{max}(s \models \Diamond B)$ can be computed in polytime

Linear program

- Let variable $x_s = \Pr^{\max}(s \models \Diamond B)$ for any state s
- x_s is the unique solution of the set of equations:
 - if $s \not\models \exists \diamondsuit B$ then $x_s = 0$
 - if $s \in \mathbf{B}$ then $x_s = 1$
- For any state $s \in Sat(\exists \diamondsuit B) \setminus B$:

$$x_s \ge \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$
 for any $\alpha \in Act(s)$

• Such that $\sum_{s \in S} x_s$ is minimal

Asynchronous leader election

- An unidirectional asynchronous ring of N>2 nodes
 - each process behaves asynchronously
 - \Rightarrow this interleaved concurrency gives rise to an MDP!
- Each node is initially active and proceeds as follows:
 - flip a fair coin (0 and 1), and pass the outcome to your right neighbour
 - if you have chosen 0 while your left neighbour has passed 1, become inactive
 - send a counter around the ring: if only active node \Rightarrow become leader

(Itai & Rodeh, 1990)

Probability to elect a leader within *k* **steps**

Probability of electing a leader within k steps

 $\mathbb{P}_{\leqslant q}(\diamondsuit^{\leqslant k} \textit{leader elected})$ © PRISM web-page

maximum and minimum probabilities coincide in this case

Content of this lecture

- Markov decision processes
 - motivation, definition, policies
- Reachability probabilities
 - quantitative and qualitative reachability
- \Rightarrow Probabilistic CTL
 - syntax, semantics, model checking

PCTL Syntax

• For $a \in AP$, $J \subseteq [0, 1]$ an interval with rational bounds, and natural n:

$$\Phi ::= \mathsf{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$$
$$\varphi ::= \bigcirc \Phi \mid \Phi_{1} \lor \Phi_{2} \mid \Phi_{1} \lor^{\leqslant n} \Phi_{2}$$

- $s_0 \alpha_0 s_1 \alpha_1 s_2 \ldots \models \Phi \cup \mathbb{V}^{\leq n} \Psi$ if Φ holds until Ψ holds within n steps
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J for all policies

Derived operators

 $\Diamond \Phi \,=\, {\rm true}\, {\rm U}\, \Phi$

 $\diamondsuit^{\leqslant n}\Phi\,=\,{\rm true}\,{\rm U}^{\leqslant n}\,\Phi$

 $\mathbb{P}_{\leqslant p}(\Box \Phi) = \mathbb{P}_{\geqslant 1-p}(\Diamond \neg \Phi)$

$$\mathbb{P}_{]p,q]}(\Box^{\leqslant n}\Phi) = \mathbb{P}_{[1-q,1-p[}(\diamondsuit^{\leqslant n}\neg\Phi)$$

operators like weak until W or release R can be derived analogously

PCTL semantics (1)

 $\mathcal{M}, s \models \Phi$ if and only if formula Φ holds in state *s* of MDP \mathcal{M}

Relation \models is defined by:

$$\begin{split} s &\models a & \text{iff} \quad a \in L(s) \\ s &\models \neg \Phi & \text{iff} \quad \mathsf{not} \ (s \models \Phi) \\ s &\models \Phi \lor \Psi & \text{iff} \quad (s \models \Phi) \text{ or } (s \models \Psi) \\ s &\models \mathbb{P}_{J}(\varphi) & \text{iff} \quad \Pr^{\mathfrak{S}}(s \models \varphi) \in J \text{ for all policies } \mathfrak{S} \end{split}$$

where
$$\Pr^{\mathfrak{S}}(s \models \varphi) = \Pr^{\mathfrak{S}}_{s} \{ \pi \in \mathsf{Paths}(s) \mid \pi \models \varphi \}$$

Remarks

 $s \models \mathbb{P}_{J}(\varphi)$ iff $\Pr^{\mathfrak{S}}(s \models \varphi) \in J$ for all policies \mathfrak{S}

SO:

$$\begin{split} s &\models \mathbb{P}_{\leqslant p}(\varphi) & \text{iff} \quad \Pr^{\max}(s \models \varphi) \leqslant p \\ s &\models \mathbb{P}_{\geqslant p}(\varphi) & \text{iff} \quad \Pr^{\min}(s \models \varphi) \geqslant p \end{split}$$

note that: $\mathbb{P}_{\leqslant p}(\varphi) \not\equiv \neg \mathbb{P}_{>p}(\varphi)$

PCTL semantics (2)

A *path* is an infinite sequence $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ with $\mathbf{P}(s_i, \alpha_i, s_{i+1}) > 0$ Semantics of path-formulas is defined as for DTMCs:

$$\begin{aligned} \pi &\models \bigcirc \Phi & \text{iff} \quad s_1 \models \Phi \\ \pi &\models \Phi \cup \Psi & \text{iff} \quad \exists n \ge 0.(s_n \models \Psi \land \forall 0 \leqslant i < n. s_i \models \Phi) \\ \pi &\models \Phi \cup^{\leqslant n} \Psi & \text{iff} \quad \exists k \ge 0.(k \leqslant n \land s_k \models \Psi \land \forall 0 \leqslant i < k. s_i \models \Phi) \\ \forall 0 \leqslant i < k. s_i \models \Phi) \end{aligned}$$

PCTL model checking

- Given a finite MDP \mathcal{M} and PCTL formula Φ , how to check $\mathcal{M} \models \Phi$?
- Check whether state s in a MDP satisfies a PCTL formula:
 - compute recursively the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether state s belongs to $Sat(\Phi)$
 - \Rightarrow bottom-up traversal of the parse tree of Φ (like for CTL)
- For the propositional fragment: as for CTL
- How to compute $Sat(\Phi)$ for the probabilistic operators?

Checking probabilistic reachability

- $s \models \mathbb{P}_J(\Phi \cup \Psi)$ if and only if $\Pr^{\max}(s \models \Phi \cup \Psi) \in J$
- $\Pr(s \models \Phi \cup \Psi)$ is the unique solution of:

(Bianco & de Alfaro, 1998)

- 1 if $s \models \Psi$

- for
$$s \models \Phi \land \neg \Psi$$
:

$$\max_{\alpha} \left\{ \sum_{s' \in S} \mathbf{P}(s, \alpha, s') \cdot \Pr(s' \models \Phi \cup \Psi) \right\}$$

- 0 otherwise

• Possible efficiency improvement by graph-theoretical pre-computation

Time complexity

For finite MDP \mathcal{M} and PCTL formula Φ , $\mathcal{M} \models \Phi$ can be solved in time

 $\mathcal{O}(poly(|\mathcal{M}|) \cdot n_{\max} \cdot |\Phi|)$

where $n_{\max} = \max\{ n \mid \Psi_1 \cup U^{\leq n} \Psi_2 \text{ occurs in } \Phi \}$ with $\max \emptyset = 1$

Extensions

- LTL model checking
- Costs
- Abstraction
 - bisimulation minimization, partial-order reduction, MTBDDs,

•••

- Continuous time
- Fairness

Probabilistic model checking

- is a mature automated technique
- has a broad range of applications
- is supported by powerful software tools
- recent significant efficiency gain
- offers many interesting challenges!

more information: moves.rwth-aachen.de/~katoen