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Model checking
• Automated model-based verification and debugging technique

– model of system = Kripke structure ≈ labeled transition system
– properties expressed in temporal logic like LTL or CTL
– provides counterexamples in case of property refutation

• Various striking examples

– Needham-Schroeder protocol, cache coherence, storm surge barrier, C code

• 2008: Pioneers awarded prestigious ACM Turing Award

• Today: model checking of probabilistic models
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Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany,
and

University of Twente, the Netherlands

“This book offers one of the most comprehensive introductions to logic model checking techniques

available today. The authors have found a way to explain both basic concepts and foundational theory

thoroughly and in crystal clear prose. Highly recommended for anyone who wants to learn about this

important new field, or brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)
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Content of this lecture

• Introduction

– why probabilities?, history, tools + applications

• Markov chains

– paths, measurability, reachability probabilities

• Probabilistic CTL

– syntax, semantics, model checking, PCTL versus CTL

• Abstraction

– bisimulation, correctness, minimization
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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify imprecisions in system inputs
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When certain problems are undecidable deterministically

– reachability in communicating finite-state machines
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP
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Breakthroughs

• Zero-one probabilities for Markov decision processes (Vardi 1985)

– does an LTL formula hold with probability zero?

• Markov decision processes (Courcoubetis & Yannakakis 1988)

– does the maximal probability for an LTL formula equal p?

• Discrete-time Markov chains (Hansson & Jonsson 1990)

– does the probability of a CTL formula equal p?

• Markov decision processes (Bianco & de Alfaro 1995)

– does the maximal probability for a CTL formula equal p?

• Continuous-time Markov chains (Baier, Katoen & Hermanns 1999)

– does the probability of a timed CTL formula equal p?
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Reachability probabilities

Nondeterminism Nondeterminism
no yes

Reachability linear equation system linear programming
DTMC MDP

Timed reachability transient analysis greedy backward
(+ uniformization) reachability

CTMC uniform CTMDP
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What is probabilistic model checking?
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P�0.01(�deadlock)
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Characteristics

• What is inside?

– temporal logics and model checking
– numerical and optimisation techniques from performance and OR

• What can be checked?

– time-bounded reachability, long-run averages, safety and liveness

• What is its usage?

– powerful tools: PRISM (4,000 downloads), MRMC, Petri net tools, Probmela
– applications: distributed systems, biology, avionics, . . .
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Probability elsewhere

• In performance modelling (Erlang, 1907)

– models: typically continuous-time Markov chains

– emphasis on steady-state and transient measures

• In stochastic control theory and operations research (Bellman, 1957)

– models: typically discrete-time Markov decision models

– emphasis on finding optimal policies for average measures

• Our focus: model checking Markov chains

– temporal logic ⇒ unambiguous and precise measure-specification
– model-checking techniques ⇒ no expert algorithmic knowledge needed
– complex (new) measures are concisely specified and automatically verified
– exchanging techniques with the other two areas
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Illustrating examples

• Security: Crowds protocol

– analysis of probability of anonymity

• IEEE 1394 Firewire protocol

– proof that biased delay is optimal

• Systems biology

– probability that enzymes are absent within the deadline

• Software in next generation of satellites

– mission time probability (ESA project)
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A synchronous leader election protocol
[Itai & Rodeh, 1990]

• A round-based protocol in a synchronous ring of N > 2 nodes

– the nodes proceed in a lock-step fashion
– each slot = 1 message is read + 1 state change + 1 message is sent

⇒ this synchronous computation yields a Markov chain

• Each round starts by each node choosing a uniform id ∈ { 1, . . . , K }

• Nodes pass their selected id around the ring

• If there is a unique id, the node with the maximum unique id is leader

• If not, start another round and try again . . .
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Leader election

choose 7choose 1

choose 7

choose 5

choose 5

choose 7
choose 1

probabilistically choose an id from [1...K]
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Leader election

1

7
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5

7

5

send 5

send 5

send 7

send 7

send 1

send 7

send 1

7

send your selected id to your neighbour
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Leader election
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pass 7

pass 1

pass 7

7

pass the received id, and check uniqueness own id
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Leader election
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pass the received id, and check uniqueness own id

c© JPK 18



End of 1st round

1

1

7

7

5

7

5

no unique leader has been elected
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Start a new round

choose 1choose 1

choose 3

choose 51

choose 1

choose 3
choose 1

new round and new chances!
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Properties of leader election

• Almost surely eventually a leader will be elected:

P=1(� leader elected)

• With probability � 4
5, eventually a leader is elected :

P�0.8(� leader elected)

• . . . . . . within k steps:

P�0.8(��k leader elected)
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Probability to elect a leader within L rounds

P�q(�
�(N+1)·L leader elected) (Itai & Rodeh’s algorithm)
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Content of this lecture
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• Probabilistic CTL

– syntax, semantics, model checking, PCTL versus CTL

• Abstraction
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Discrete-time Markov chains

A DTMC M is a tuple (S,P, ιinit, AP,L) with:

• S is a countable nonempty set of states

• P : S × S → [0, 1], transition probability function s.t.
∑

s′ P(s, s′) = 1

– P(s, s′) is the probability to jump from s to s′ in one step

• ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

– ιinit(s) is the probability that system starts in state s

– state s for which ιinit(s) > 0 is an initial state

• L : S → 2AP , the labelling function

⇒ a DTMC is a transition system with probabilistic transitions
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Craps
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Craps

• Roll two dice and bet on outcome

• Come-out roll (“pass line” wager):

– outcome 7 or 11: win
– outcome 2, 3, or 12: loss (“craps”)
– any other outcome: roll again (outcome is “point”)

• Repeat until 7 or the “point” is thrown:

– outcome 7: loss (“seven-out”)
– outcome the point: win
– any other outcome: roll again
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A DTMC model of Craps

• Come-out roll:

– 7 or 11: win
– 2, 3, or 12: loss
– else: roll again

• Next roll(s):

– 7: loss
– point: win
– else: roll again
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Paths

• State graph of DTMC M
– vertices are states of M, and (s, s′) is an edge iff P(s, s′) > 0

• Paths in M are maximal (i.e., infinite) paths in its state graph

– Paths(M) and Pathsfin(M) denote the set of (finite) paths in M

• Post(s) = {s′ ∈ S | P(s, s′) > 0} and Pre(s) = {s′ ∈ S | P(s′, s) > 0}
– Post∗(s) is the set of states reachable from s via a finite path fragment
– Pre∗(s) = { s′ ∈ S | s ∈ Post∗(s′) }
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Probability measure on DTMCs

• Events are infinite paths in the DTMC M, i.e., Ω = Paths(M)

• σ-algebra on M is generated by cylinder sets of finite paths π̂:

Cyl(π̂) =
{

π ∈ Paths(M) | π̂ is a prefix of π
}

– cylinder sets serve as basis events of the smallest σ-algebra on Paths(M)

• Pr is the probability measure on the σ-algebra on Paths(M):

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 . . . sn)

– where P(s0 s1 . . . sn) =
Q

0�i<n

P(si, si+1) and P(s0) = 1
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Reachability probabilities

• What is the probability to reach a set of states B ⊆ S in DTMC M?

• Which event does �B mean formally?

– the union of all cylinders Cyl(s0 . . . sn) where
– s0 . . . sn is an initial path fragment in M with s0, . . . , sn−1 /∈ B and sn ∈ B

Pr(�B) =
∑

s0...sn∈Pathsfin(M)∩(S\B)∗B

Pr
(
Cyl(s0 . . . sn)

)

=
∑

s0...sn∈Pathsfin(M)∩(S\B)∗B

ιinit(s0) · P(s0 . . . sn)
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Reachability probabilities in finite DTMCs

• Let Pr(s |= �B) = Prs(�B) = Prs{π ∈ Paths(s) | π |= �B}
– where Prs is the probability measure in M with single initial state s

• Let variable xs = Pr(s |= �B) for any state s

– if B is not reachable from s then xs = 0

– if s ∈ B then xs = 1

• For any state s ∈ Pre∗(B) \ B:

xs =
∑

t∈S\B

P(s, t) · xt

︸ ︷︷ ︸
reach B via t

+
∑
u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step
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Remark: expansion law

• Recall in CTL: ∃(C UB) is the least solution of expansion law:

∃(C UB) ≡ B ∨ (C ∧∃© ∃(C UB))

• That is: the set X = Sat(∃(C UB)) is the smallest set such that:

B ∪ { s ∈ C \ B | Post(s) ∩ X �= ∅ } ⊆ X

• Previous slide “replaces” s ∈ X by values xs in [0, 1]

– if s ∈ B then xs = 1 (compare: s ∈ B implies s ∈ X)
– if s ∈ S \ (C ∪ B) then xs = 0 (compare: s /∈ C ∪ B implies s /∈ X)

• If s ∈ C \ B then xs =
∑

t∈C\B P(s, t) · xt +
∑

t∈B P(s, t)

– compare: s ∈ C \ B and Post(s) ∩ X �= ∅ implies s ∈ X
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Linear equation system

• These equations can be rewritten into the following form:

x = Ax + b

– where vector x = (xs)s∈S̃ with S̃ = Pre∗(B) \ B

– A =
“

P(s, t)
”

s,t∈S̃
, the transition probabilities in S̃

– b =
“

bs

”
s∈S̃

contains the probabilities to reach B within one step

• Linear equation system: (I− A)x = b

– note: more than one solution may exist if I − A has no inverse (i.e., is singular)
⇒ characterize the desired probability as least fixed point
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Unique solution
Let M be a finite DTMC with state space S partitioned into:

• S=0 = Sat(¬∃(C UB))

• S=1 a subset of {s ∈ S | Pr(s |= C UB) = 1} that contains B

• S? = S \ (S=0 ∪ S=1)

The vector
(
Pr(s |= C UB)

)
s∈S?

is the unique solution of the linear equation system:

x = Ax+b where A =
(
P(s, t)

)
s,t∈S?

and b =
(
P(s, S=1)

)
s∈S?
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Computing reachability probabilities

• The probabilities of the events C U�n B can be obtained iteratively:

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n

• where A =
(
P(s, t)

)
s,t∈C\B

and b =
(
P(s, B)

)
s∈C\B

• Then: x(n)(s) = Pr(s |= C U �nB) for s ∈ C \ B
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Example: Craps game

• Pr(start |= C U�n B)

• S=0 = { 8, 9, 10, lost }

• S=1 = {won }

• S? = { start, 4, 5, 6 }
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Example: Craps game

• start < 4 < 5 < 6

• A = 1
36

0
BB@

0 3 4 5

0 27 0 0

0 0 26 0

0 0 0 25

1
CCA

• b = 1
36

0
BB@

8

3

4

5

1
CCA

1
9

1 1

3
8

13
18

13
18

25
36

25
36

1
12

1
12 5

36
5
36

1
9

1
9

4 10 5 9 6 8

1
12

1
12

1
9

1
9

5
36

5
36

1
6

1
6

1
6

1
6 1

6 1
6

3
8

2
9

x(0) = 0 and x(i+1) = Ax(i) + b for 0 � i < n.
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Example: Craps game
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Content of this lecture
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• Abstraction

– bisimulation, correctness, minimization
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PCTL Syntax

• For a ∈ AP, J ⊆ [0, 1] an interval with rational bounds, and natural n:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ PJ(ϕ)

ϕ ::= ©Φ
∣∣ Φ1 UΦ2

∣∣ Φ1 U�n Φ2

• s0s1s2 . . . |= Φ U�n Ψ if Φ holds until Ψ holds within n steps

• s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J

abbreviate P[0,0.5](ϕ) by P�0.5(ϕ) and P]0,1](ϕ) by P>0(ϕ) and so on
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Derived operators

�Φ = true UΦ

��nΦ = true U�n Φ

P�p(�Φ) = P�1−p(�¬Φ)

P]p,q](��n Φ) = P[1−q,1−p[(��n ¬Φ)

operators like weak until W or release R can be derived analogously
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Example properties

• With probability � 0.92, a goal state is reached via legal ones:

P� 0.92 (¬ illegal U goal)

• . . . in maximally 137 steps: P� 0.92

(¬ illegal U� 137 goal
)

• . . . once there, remain there almost surely for the next 31 steps:

P� 0.92

(
¬ illegal U � 137 P=1(�[0,31] goal)

)
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PCTL semantics (1)

M, s |= Φ if and only if formula Φ holds in state s of DTMC M

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ}
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PCTL semantics (2)

A path in M is an infinite sequence s0 s1 s2 . . . with P(si, si+1) > 0

Semantics of path-formulas is defined as in CTL:

π |= ©Φ iff s1 |= Φ

π |= Φ UΨ iff ∃n � 0.( sn |= Ψ ∧ ∀0 � i < n. si |= Φ )

π |= Φ U�n Ψ iff ∃k � 0.( k � n ∧ sk |= Ψ∧
∀0 � i < k. si |= Φ )
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Measurability

For any PCTL path formula ϕ and state s of DTMC M
the set {π ∈ Paths(s) | π |= ϕ } is measurable
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PCTL model checking

• Given a finite DTMC M and PCTL formula Φ, how to check M |= Φ?

• Check whether state s in a DTMC satisfies a PCTL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
– check whether state s belongs to Sat(Φ)
⇒ bottom-up traversal of the parse tree of Φ (like for CTL)

• For the propositional fragment: as for CTL

• How to compute Sat(Φ) for the probabilistic operators?
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PCTL model checking

• Alternative formulation: s |= PJ(©Φ) if and only if Pr(s |= ©Φ) ∈ J

• Next: Pr(s |= ©Φ) equals
∑

s′∈Sat(Φ)

P(s, s′)

• Matrix-vector multiplication:

(
Pr(s |= ©Φ)

)
s∈S

= P · ιΦ

where ιΦ is the characteristic vector of Sat(Φ), i.e., ιΦ(s) = 1 iff s ∈ Sat(Φ)
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Checking probabilistic reachability

• s |= PJ(Φ U�h Ψ) if and only if Pr(s |= Φ U�h Ψ) ∈ J

• Pr(s |= Φ U�h Ψ) is the least solution of: (Hansson & Jonsson, 1990)

– 1 if s |= Ψ

– for h > 0 and s |= Φ∧¬Ψ:

X
s′∈S

P(s, s′) · Pr(s′ |= Φ U�h−1 Ψ)

– 0 otherwise

• Standard reachability for P>0(Φ U�h Ψ) and P�1(Φ U�h Ψ)

– for efficiency reasons (avoiding solving system of linear equations)
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Reduction to transient analysis

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in M

• Check �=h Ψ in the obtained DTMC M′

• This is a standard transient analysis in M′:
X
s′|=Ψ

Pr
s
{π ∈ Paths(s) | σ[h] = s

′}

– compute by (P′)h·ιΨ where ιΨ is the characteristic vector of Sat(Ψ)

⇒ Matrix-vector multiplication
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Time complexity

For finite DTMC M and PCTL formula Φ, M |= Φ can be solved in time

O(
poly(|M|) · nmax · |Φ| )

where nmax = max{n | Ψ1 U�n Ψ2 occurs in Φ } with max ∅ = 1
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Verification times
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Workstation cluster (CTMC)

Tandem queue (CTMC)

verification time (in ms)

state space size

command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop
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The qualitative fragment of PCTL

• For a ∈ AP:

Φ ::= true
∣∣ a

∣∣ Φ ∧ Φ
∣∣ ¬Φ

∣∣ P>0(ϕ)
∣∣ P=1(ϕ)

ϕ ::= ©Φ
∣∣ Φ1 UΦ2

• The probability bounds = 0 and < 1 can be derived:

P=0(ϕ) ≡ ¬P>0(ϕ) and P<1(ϕ) ≡ ¬P=1(ϕ)

• No bounded until, and only > 0, = 0, > 1 and = 1 intervals

so: P=1(�P>0(©a)) and P<1(P>0(�a) U b) are qualitative PCTL formulas
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Qualitative PCTL = CTL?

• PCTL-formula Φ is equivalent to CTL-formula Ψ:

– Φ ≡ Ψ if and only if SatM(Φ) = SatTS(M)(Ψ) for each DTMC M

• ∃ϕ requires ϕ on some paths, P>0(ϕ) with positive probability

– P>0(©a) ≡ ∃ © a and P>0(�a) ≡ ∃�a and P>0(a U b) ≡ ∃a U b

• ∀ϕ requires ϕ to hold for all paths, P=1(ϕ) for almost all

– P=1(©a) ≡ ∀ © a and P=1(�a) ≡ ∀�a

• But: P>0(ϕ) ≡ ∃ϕ and P=1(ϕ) ≡ ∀ϕ do not hold in general!
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Qualitative PCTL versus CTL

• There is no CTL-formula that is equivalent to P=1(�a)

• There is no CTL-formula that is equivalent to P>0(�a)

• There is no qualitative PCTL-formula that is equivalent to ∀�a

• There is no qualitative PCTL-formula that is equivalent to ∃�a

⇒ PCTL with ∀ϕ and ∃ϕ is more expressive than PCTL
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Content of this lecture

• Introduction

– why probabilities?, history, tools + applications

• Markov chains

– paths, measurability, reachability probabilities

• Probabilistic CTL

– syntax, semantics, model checking, PCTL versus CTL

⇒ Abstraction

– bisimulation, correctness, minimization
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Probabilistic bisimulation: intuition

• Strong bisimulation is used to compare labeled transition systems

• Strongly bisimilar states exhibit the same step-wise behaviour

• We like to adapt bisimulation to DTMCs

• This yields a probabilistic variant of strong bisimulation

• When do two DTMC states exhibit the same step-wise behaviour?

• Key: if their transition probability for each equivalence class coincides

for simplicity, assume a unique initial state
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Probabilistic bisimulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S an equivalence

• R is a probabilistic bisimulation on S if for any (s, s′) ∈ R:

L(s) = L(s′) and P(s, C) = P(s′, C) for all C in S/R

where P(s, C) =
∑

s′∈C P(s, s′) [Larsen & Skou, 1989]

• s ∼ s′ if ∃ a probabilistic bisimulation R with (s, s′) ∈ R
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Example
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2
9

1 1
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Quotient DTMC under ∼

M/∼ = (S′,P′, AP, L′), the quotient of M = (S,P, AP, L) under ∼:

• S′ = S/∼= { [s]∼ | s ∈ S }

• P′([s]∼, C) = P(s, C)

• L′([s]∼) = L(s)

get M/∼ by partition-refinement in time O(M · log N + |AP|·N) [Derisavi et al., 2001]
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A DTMC model of Craps
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Minimizing Craps
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initial partitioning for the atomic propositions AP = { loss }
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A first refinement
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A second refinement
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Quotient DTMC
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Preservation of PCTL

s ∼ s′ ⇔ (∀Φ ∈ PCTL : s |= Φ if and only if s′ |= Φ)

c© JPK 65



IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2

20 231525 1590329 50133 10627 5431 21.8 9.2

28 804837 5750873 195086 35961 24716 22.4 7.9

36 2076773 15187833 5103900 91391 77694 22.7 6.6

40 3101445 22871849 7725041 135752 127489 22.9 6.1
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Weak probabilistic bisimulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S an equivalence

• R is a weak probabilistic bisimulation on S if for any (s1, s2) ∈ R:

– L(s1) = L(s2)
– s1 can reach a state outside [s1]R iff s2 can do so
– if P(si, [si]R) < 1 for i=1, 2 then:

P(s1, C)
1 − P(s1, [s1]R)

=
P(s2, C)

1 − P(s2, [s2]R)
for all C ∈ S/R,C �= [s1]R

• s ≈ s′ if ∃ a weak probabilistic bisimulation R with (s, s′) ∈ R
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Logical characterization

s ≈ s′ ⇔ (∀Φ ∈ PCTL\© : s |= Φ if and only if s′ |= Φ
)
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Probabilistic simulation

• For transition systems, state s′ simulates state s if

– for each successor t of s there is a one-step successor t′ of s′ that simulates t

⇒ simulation of two states is defined in terms of simulation of successor states

• What are successor states in the probabilistic setting?

– the target of a transition is in fact a probability distribution

⇒ the simulation relation � needs to be lifted from states to distributions
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Weight function ∆

• ∆ “distributes” a distribution µ over set X to one µ′ over set Y

– such that the total probability assigned by ∆ to y ∈ Y

. . . equals the original probability µ′(y) on Y

– and symmetrically for the total probability mass of x ∈ X assigned by ∆

• ∆ is a distribution on R ⊆ X × Y such that:

– the probability to select (x, y) with (x, y) ∈ R is one, and
– the probability to select (x, ·) ∈ R equals µ(x), and
– the probability to select (·, y) ∈ R equals µ′(y)
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Weight function

• Let R ⊆ S × S, and µ, µ′ ∈ Distr(S)

• ∆ ∈ Distr(S × S) is a weight function for (µ, µ′) and R whenever:

∆(s, s′) > 0 implies (s, s′) ∈ R and

µ(s) =
∑
s′∈S

∆(s, s′) and µ′(s′) =
∑
s∈S

∆(s, s′) for any s, s′ ∈ S

• µ �R µ′ iff there exists a weight function for (µ, µ′) and R
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Weight function example
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Probabilistic simulation

• Let M = (S,P, AP, L) be a DTMC and R ⊆ S × S

• R is a probabilistic simulation on S if for all (s, s′) ∈ R:

L(s) = L(s′) and P(s, ·) �R P(s′, ·)

• s �p s′ if there exists a probabilistic simulation R with (s, s′) ∈ R
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Probabilistic simulation example

s1

s t

w1

2
9

5
9

1
2

s2

u v w

w3w2

1
3 4

9

1
9

2
3 1

R =
{

(s1, s2), (s, u), (t, u), (t, v), (w1, w2), (w1, w3)
}

is a probabilistic simulation (cf. weight function before)
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Simulation equivalence = bisimulation

For any DTMC:

probabilistic simulation equivalence

coincides with

probabilistic bisimulation

this does only hold for deterministic labeled transition systems
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Logical characterization

s � s′ ⇔ (∀Φ ∈ safePCTL : s′ |= Φ implies s |= Φ)

The syntax of the safe fragment of PCTL is given by:

Φ ::= true
˛̨̨

a
˛̨̨
¬a

˛̨̨
Φ ∧ Φ

˛̨̨
Φ ∨ Φ

˛̨̨
P�p(Φ W Φ)

˛̨̨
P�p(Φ W�nΦ)

A typical safe PCTL formula: P�0.99(�
�100¬ error)
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Overview

strong weak strong weak
bisimulation bisimulation simulation simulation

∼ ≈ � �

logical PCTL PCTL\© safePCTL safePCTL\©
preservation

checking partition partition parametric maximal parametric maximal
equivalence refinement refinement flow problem flow problem

O(m log n) O(n3) O(m2·n) O(m2·n3)

graph
minimization O(m log n) O(n3) – –
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Thank you for the attendance
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