GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Foundations of Model Transformations:
A Lambda Calculus for MDD?

University of

Leicester

Foundations of Model Transformations:

A Lambda Calculus for MDD?

Reiko Heckel
University of Leicester, UK

GLOBAN Summer School, Warsaw, 22-26 Sept. 2008

A “lambda calculus” for
Model-driven Engineering?

% Focus and primary
artifacts are models
instead of programs

% Core activities include

= maintaining consistency
= evolution

= translation

= execution

of models

% These are examples of
model transformations

»* A math. foundation is
needed for studying

expressiveness and

complexity

execution and

optimisation

well-definedness

= preservation of semantics

of transformations

% Graph transformations
as one such foundation

Why it is fun: Programming By Example

StageCast (www.stagecast.com): a visual programming
environment for kids (from 8 years on), based on
= behavioral rules associated to graphical objects
= visual pattern matching
= simple control structures (priorities, sequence, choice, ...)
= external keyboard control

= intuitive rule-based behavior modelling

Next: abstract from concrete visual presentation

States of the PacMan Game:
Graph-Based Presentation

instance graph

PacMan

marbles:int type graph

Rules of the PacMan Game:
Graph-Based Presentation, PacMan

;

pm:PacMan
marbles=m+1

marbles=m

Reiko Heckel, Univ. of Leicester

Rules of the PacMan Game:
Graph-Based Presentation, Ghost

(et al
aT>

moveGhost

T

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

ey a
T

pm:PacMan movePM pm:PacMan

T

Graph Transformation

:PacMan .
» collect ;
:Field kill

PacMan
marbles:int

Outline

% Graph Transformation
» why it is fun
= how it works

* Semantics-preserving
Model Transformation

A Basic Formalism: Typed Graphs

Directed graphs
= multiple parallel edges
= undirected edges as pairs
of directed ones
Graph homomorphism as
mappings preserving
source and target

Typed graphs given by
= fixed &ype graph TG
» /nstance graphs G
typed over TG by
homomorphismg ~— teemeemesTmmmeemmamaoT

i
I
PacMan |,
marbles:int |1
'

|

I

I

Rules

p: L > Rwith Ln R well-defined, in different
presentations
» like above (cf. PacMan example)
» With L n R explicit [DPO]: L € K> R

Rules

p: L > Rwith Ln R well-defined, in different
presentations
» like above (cf. PacMan example)
» with L n R explicit [DPO]: L& K> R
= with L, R integrated [UML, Fujaba]:
L u R and marking
+ L-R as destroyed
+R-L as new

movePM:

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:

GLOBAN Summer School
A Lambda Calculus for MDD?

Warsaw, 22-26 Sept. 2008

Transformation Step

____________________________________ Semantic Questions: Dangling Edges
ml:MarbIe‘

marbles=m

e IENEEad |

------------------------- 4 -

Lo Lo [oa{a] :
[rFeld | mMarie || G H {[i:Fied | [pmiPachtan |
marbles=4

% conservative solution: application is forbidden
» invertible transformations, no side-effects

% radical solution: delete dangling edges
= more complex behavior, requires explicit control

marbles=.

1. selectrulep: L> R; occurrenceo: L> G
2. remove from G the occurrence of L\ R
3. addtoresulta copyof R\ L

Semantic Questions: Conflicts Advanced Features
o ™ s : Dealing with unknown context
latA|la2A [at:A :
= ‘ ' ! = set-nodes (multi-objects): match all nodes with the required
ﬂ_ _______ connections
: ? = explicit (negative) context conditions
* conservative solution: application is forbidden (turns f1 into a trap by reversing all outgoing edges to Field
= invertible transformations, no side-effects vertices, but only i? thire is no (g;host) 90ing 49
% radical solution: give priority to deletion
= more complex behavior, requires explicit control Control Structures
= priorities
. p:al.')gnrallmmed transformation
Exercise 1: Packman
A bit of History ... a) be a (slightly) more clever player!
Chomsky Term Petri Extend the movePM rule so that Pacrman does
Grammars Rewriting Nets

not move next to a Ghost.

| | 1

- pm:PacMan pm:PacMan
Graph Transformation and Graph Grammars movert
a
Diagram Models of Behaviour
Languages Computation Modelling and

Visual Programming

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Exercise 1: Packman
b) Give Pacman another chance

Let Pacrman have a counter for his lives.

PacMan
marbles:int

Next: Refine the rule i/ to remove Pacman
only if he has run out of lives. Otherwise
decrease the counter and remove the Ghost.

Refine rule i/

(oot [zam]
T

ill

Exercise 2: Roots of GT
a) Chomsky Grammars

Production A - aAb as (context-free: one
vertex or edge in L) graphical production rule

Exercise 2: Roots of GT
b) Petri Nets

A PT net transition as graph transformation rule

A
C
B

Exercise 2: Roots of GT
¢) Term Rewriting

Rule f(s(s(x))) = f(s(x)) + f(x)
as graph rewrite rule (tree or DAG)

Outline

v Graph Transformation
~ why it is fun iy
+ how it works

v Model Transformation transformation
+ behavior modeling P ?

» operational semantics
. . denotational
= denotational semantics ? semantics

Semantic
Domain

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:

GLOBAN Summer School
A Lambda Calculus for MDD?

Warsaw, 22-26 Sept. 2008

Modelling Change in the Network:

Case Study A Graph Transformation System
new
Problem: -_'-
= no central infrastructure @ m
= unreliable components
> removing nodes kill

may disconnect network

br] 4

Idea: introduce redundancy!

Question: Which links should be added to guarantee a
certain level of reliability ?

clamo
a) atrandom, up to a limit of n links W
b) so that deletion of node does not increase distance

shortcut

a= !

Which shortcuts? Which shortcuts?

a) At random (limit here: n = 3 links)

b) So that deletion of node does not increase
distance

L. Mariani. Fault-tolerant routing for p2p systems with unstructured topology.
Proc. International Symposium on Applications and the Internet (SAINT 2005),
Trento, Italy.

Modelling Time: Tools for Querying the Model
Stochastic Graph Transformation ;

» associate rate p(p) with every rule p

% 1/p(p) average delay of p, once enables

SGrandom, X SGsmart, X

rule p rate p(p) rule p rate p(p)
new 1 new 1

kill 1 kill 1
random X smart X

x times as fast
as new or kill

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Probability of network being disconnected

o

? ["disconnected"]

—&— smart

S:

© © © © 0o 0o 9o o o o
o = v w A O O N ® ©

X
-
o
w
N

shortcut_rate = 10*

\\ —=— random

Monkey Business: Model and
generate state space (GROOVE)

% A monkey is in a room with a box and a banana
suspended from the ceiling.

» Before it can eat the banana, the monkey has move
next to the box, push it into position, and climb on

top.

-

©)

A

Outline

v Graph Transformation
~ why it is fun operational
v how it works

v Model Transformation
+ behavior modeling
= operational semantics

Abstract
Syntax
Semantic
Domain

transformation

denotational

» denotational semantics ? semantics

Example: WS Business Process

»® refactoring of business
processes, replacing
centralised by distributed
execution

Warehouse Office

Receive
order

* How to demonstrate
preservation of behaviour?
1. specify operational
semantics of processes
2. define transformations
3. show that transformations
preserve semantics

order

Operational Semantics
% diagram syntax plus runtime state

% GT rules to model transitions = defines
labelled transition system

(D [y

ary

>

o) D Clon))

operational
semantics

—l

Abstract
Syntax

Type Graph: Metamodel

Abstract
response Syntax
Msg

op: String
id: String

from to request
current Orch

name: String

with runtime state

partner

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Rules: Invoke another Service

e:Edge tar partner

current

01:0rch 02:0rch

operational
semantics

Abstract
Syntax

I request

m:Msg |

Rules:
Answer the Invocation

| e:Edge lir-l r:Reply |'£| e:Edge |

current

01:0rch fo from 02:0rch

op=r.0p

|e:Edge lir-l r:Reply |'£| e:Edge |

current

reply(rid, m1.id, m2.id)

m2:Msg
id=new()
op=r.op

op=i.op

Rules:
Receive the Response

current

request partner
from to
|01:Orch |'—| ml:Msg '—‘| 02:0rch |
© response
I —
current
01:0rch

Simulation
:Edge
tar
current current
01:Orch /I i:Invoke Iparlncr I 02:0rch I

from

response T

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

Refactoring
Orch 1 Orch 2 Orchl

delegate

<<invoke>>
Orch2.0p

Orch 2

<<receive>>
0

<<reply>>
op

% replace local control flow by message passing

Semantic Compatibility

Processes P, and P, are compatible if weakly bisimilar,
hiding labels not in alph(P,) N alph(P,)

Show for trafo P; = P, that P, simulates Py, i.e.
n P> Qi implies P, > Qy
= Q, simulates Q,
and vice versa.

obs
P——Q,
Approach:
= mixed (local) confluence
= critical pair analysis obs
P,/Q,

Reiko Heckel, Univ. of Leicester

Foundations of Model Transformations:
A Lambda Calculus for MDD?

Critical Pairs and Local Confluence

% a pair of rules (py, p,) in @ minimal conflict
Ssituation

% constructed by overlapping their left-hand
sides to intersect in items to be deleted

% system is locally confluent

. e . G
if all critical pairs are F;/ \Zf

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Critical Pair Analysis in AGG

delegate vs operational rules

) Minimal Conflicts &
first \sec... 1:receive 2:reply 3:responsed:invoke 5:switch 6:reinit 7:partner 8: delegate

1:receive

2: reply.

3: response|

4: invoke

5: switch

6: reinit

7: partner

8: delegate

Critical Pair

LHS of
invoke vs delegate

delete-use-conflict

Outline

v Graph Transformation Operational
» why it is fun
v how it works refactoring
v Model Transformation Abstract D
+ behavior modeling
+ operational semantics
» denotational semantics

+ analysis > synthesis

denotational
semantics

Context-Free Graph Grammar :—:I

Concrete Syntax of Wel/-Structured Activity Diagrams T

Start Graph: Act

Productions in EBNF-like notatfon. é
in T n in
! Act
:
out out

out

Reiko Heckel, Univ. of Leicester

Analysis

receive order

check availability

¥

[product not
available]

[product available] 2

calculate prize

.)_Q<
~N N
ul

send receipt

O
®

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

:'__As.;sn.::t Pair Grammar

denotational
semantics Source: well-structured

activity diagrams
Semantic o
Domain

Synthesis
hd

Proc(A0) 0 + 3 1
Proc(Al) ; Proc(A2) T
Proc (A4) ;
if [product available]] i

then Proc(A5) [product not [product available] 2

else Proc(A8) available] 3 s

- 6
calculate prize

receive order ; — 8 T

check availability ; @@

if [product available]
then calculate prize ;|

send receipt
else notify client

_.

" 7

®

Target: CSP Proc(A)
in in .
[c] A [notc] in
| L
T v t
out out ou
e Proc(A1); if [c] then Proc(A1) X
Proc(A) = Proc(A2) else Proc(A2) do something
Is this Good Enough?
v Visual % Expressive ?

= abstract syntax or
concrete syntax
templates

= context-free graph
languages only

x Traceable ?
v Bi-directional = through naming
= swap source and target conventions
grammars % Efficient ?
v Declarative = NP complete parsing
problem
X

=> Triple Graph Grammars

A Non-Well-Structured Example

Actions
Place_order, Pay_bill

Processes
A = Place_order > B
B = if ‘non-empty”
then C else STOP
C=Pay_bill > £
E=ifpaid
then A else STOP

Correspondence Rules:
Initial, Action, and Merge on Action

% Rule pairs, in
A= .. TA condensed
presentation

= Green/bf >
y {new}
A=act> B
= () & No restriction to
B context-freeness

» Correspondence

A
via common
= g act B
A=B “) names

Reiko Heckel, Univ. of Leicester

Formally: Triple Graph Grammars

% Meta model for correspondence
+ traceability

Target Source
Metamodel <<use>> <<use>>, Metamodel

Corresp.
Metamodel

* Symmetric rule triplets (left, corr, right),
generating directed rules
+ Declarative > operational

>

Foundations of Model Transformations: GLOBAN Summer School
A Lambda Calculus for MDD? Warsaw, 22-26 Sept. 2008

Derived Operational GT Rule:
Example TGG Rule) right > left
A=act> B . |
B=... <:> na;ﬁgoi x I :ProcEdge |——| :Edge |
exp tar
:Pi I N N I :Prefix I SUCC| :Var | .@&E
namgoi A I :ProcEdge I I iEdge | [name ="act | [name =B8]
exp {new} {new} Src
| :Prefi | succ| :Va | :P
| namé :Ixact | | namer: B | nam:)i B I :ProcEdge } I :Edge |
{new} {new} {new} {new}
:Proc I~ 1 I left corr right
name = B | :ProcEdge | { :Edge l Alternatively:
{new} {new} {new} = left > right
left corr right u (left, right) > corr
Boing 777:

Extremely Reliable

Add Redundancy

% The plane is thought to have suffered a i

. Engine
sudden loss of power on both engines.
» Mechanical or electronic failure?

= Birds flying into engines?
"o Eopilot
% The aircraft is generally thought to be

extremely reliable ...

Engine
Ctrl2

Semantic Verification of Rule

Required

% semantic domain D with relation < closed
under contexts (d < e = (/d] < (fe])

» think CSP with (trace/failures/divergence)
refinement

% compositional semantic mapping sem

— . ™

: = (OI)

Approach: /
= make sure that, in general, s(L) # s(R) implies s(G) # s(H)

Models (graphs) Semantic Domain
» check for each rule r if s(L) # s(R)

Reiko Heckel, Univ. of Leicester 10

Foundations of Model Transformations:
A Lambda Calculus for MDD?

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

How to ensure compositionality?
Semantic mapping described by triple graph

grammar
Design Sem, Domain|
Metamodel <cuse>s, | Metamodel
Corresp.
Metamodel

sem(G,) ::= G, < Gy =*G, terminated
Is compositional if there are no negative
preconditions over source elements

[:ActivityEdge —1— :ProcEdge | n':;‘; — Triple Rule
Jirger with NAC
:Node
label = act
|source
[:ActivityEdge |——{ :pBcEdge |
/7
| :ActivityEdge I——| :ProcEdge I ;:c:; —y
[exp
I:Preﬁx | succ| :var |
[name:act| |name=B|

| :ActivityEdge |———| :ProcEdge I—
A B

Roots and Inspirations

Chomsky Term Petri
Grammars Rewriting Nets

! ! !

Graph Transformation and Graph Grammars

 : :

= Formal language = Well-definedness = Concurrency semantics
theory of graphs; = Termination = Processes, unfoldings
= Confluence = Event-structures
= Diagram editor and * Semantics of =Verification
compiler generators process calculi and * Logics

modelling languages " Model checking
9 guag = Stochastic simulation

Outline

v Graph Transformation
» why it is fun
v how it works

v Model Transformation
+ behavior modeling
+ operational semantics
+ denotational semantics

operational
semantics

refactoring
Abstract
Syntax

denotational
semantics

Semantic
Domain

Conclusion

% The tutorial has
= Motivated the use of graph transformation in software
engineering
= Introduced the foundations of graph transformation
= Shown example applications of graph transformation
«+ for behavior modeling and analysis
« for model transformations for translating between
languages, execution an refactoring of models
* Want to know more?

= Visit www.gratra.org, subscribe to gratra@upb.de,
or email reiko@mcs.le.ac.uk

Reiko Heckel, Univ. of Leicester

Discussion

11

Foundations of Model Transformations:
A Lambda Calculus for MDD?

Solution 1: Packman
a) be a (slightly) more clever player!

Extend the movePM rule so that Pacman does
not move next to a Ghost.

movePM

Solution: a negative application condition.

GLOBAN Summer School
Warsaw, 22-26 Sept. 2008

Solution 1: Packman
b) Give Pacman another chance

Let Pacrman have a counter for his lives.

PacMan Solution:
marbles:int add an attribute.
lives:int

Refine the rule i/ to remove Pacman only if he
has run out of lives. Otherwise decrease
the counter and remove the Ghost.

Solution 1 b) Refine rule i/

ill

Solution: match attribute value.

:PacMan
lives = 0

a
T

pm:PacMan
lives = n-1

pm:PacMan
lives = n Solution: an attribute

application condition.

Solution 2: Roots of GT
a) Chomsky Grammars

Production A - aAb as (context-free: one vertex or
edge in L) graphical production rule

% Theory of graph grammars as formal language
theory for graphs
= hierarchies of language classes and grammars
= decidability and complexity results
= parsing algorithms

Solution 2: Roots of GT
b) Petri Nets

A PT net transition as graph transformation rule

A
@—’O 2l) () (]

% Theory of concurrency for graph
transformation
= independence, causality, and conflicts
» processes, unfoldings
= analysis techniques

Reiko Heckel, Univ. of Leicester

Solution 2: Roots of GT
¢) Term Rewriting

Rule f(s(s(x))) = f(s(x)) + f(x)
as DAG rewrite rule

% Theory of term graph
rewriting (TGR)

= soundness / completeness w.r.@ T
TR

= termination, critical pairs,
confluence

12

