
Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 1

Foundations of Model Transformations: Foundations of Model Transformations:

A Lambda Calculus for MDD?A Lambda Calculus for MDD?

Reiko HeckelReiko Heckel

University of Leicester, UKUniversity of Leicester, UK

GLOBAN Summer School, Warsaw, 22-26 Sept. 2008

A “lambda calculus” for A “lambda calculus” for
ModelModel--driven Engineering?driven Engineering?

�� Focus and primary Focus and primary
artifacts are models artifacts are models
instead of programsinstead of programs

�� Core activities includeCore activities include

�� maintaining consistencymaintaining consistency

�� evolutionevolution

�� translationtranslation

�� executionexecution

of modelsof models

�� These are examples of These are examples of
model transformationsmodel transformations

�� A math. foundation is A math. foundation is
needed for studyingneeded for studying

�� expressiveness and expressiveness and

complexitycomplexity

�� execution and execution and

optimisationoptimisation

�� wellwell--definednessdefinedness

�� preservation of semanticspreservation of semantics

of transformations of transformations

�� Graph transformations Graph transformations
as one such foundationas one such foundation

Why it is fun: Programming By ExampleWhy it is fun: Programming By Example

StageCast (StageCast (www.stagecast.comwww.stagecast.com): a visual programming): a visual programming
environment for kids (from 8 years on), based on environment for kids (from 8 years on), based on

�� behavioral rules associated to graphical objectsbehavioral rules associated to graphical objects

�� visual pattern matchingvisual pattern matching

�� simple control structures (priorities, sequence, choice, ...)simple control structures (priorities, sequence, choice, ...)

�� external keyboard controlexternal keyboard control

�� intuitive ruleintuitive rule--based behavior modellingbased behavior modelling

Next: abstract from concrete visual presentationNext: abstract from concrete visual presentation

States of the PacMan Game:States of the PacMan Game:
GraphGraph--Based Presentation Based Presentation

:Ghost

:Field

:Field :Field

:Field

:Field

:Field

:PacMan

marbles=3 instance graph

type graph

:Marble

typingtyping

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

Rules of the PacMan Game:Rules of the PacMan Game:
GraphGraph--Based Presentation, PacMan Based Presentation, PacMan

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

pm:PacMan
marbles=m

f1:Field f2:Field

:Marble

f1:Field f2:Field

pm:PacMan
marbles=m+1collect

Rules of the PacMan Game:Rules of the PacMan Game:
GraphGraph--Based Presentation, GhostBased Presentation, Ghost

f1:Field f2:Field

g:Ghost

f1:Field f2:Field

g:GhostmoveGhost

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 2

f1:Field f2:Field

g:Ghost

f1:Field f2:Field

g:GhostmoveGhost

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

Graph TransformationGraph Transformation

:Ghost:Field

:Field :Field

:Field

:Field

:Field

:Marble

:PacMan

marbles=3

:PacMan

marbles=4

typingtyping

collect ;
kill

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� SemanticsSemantics--preserving preserving
Model TransformationModel Transformation

A Basic Formalism: Typed GraphsA Basic Formalism: Typed Graphs

Directed graphsDirected graphs

�� multiple parallel edgesmultiple parallel edges

�� undirected edges as pairs undirected edges as pairs

of directed onesof directed ones

Graph homomorphismGraph homomorphism asas
mappings preserving mappings preserving
source and targetsource and target

Typed graphsTyped graphs given bygiven by

�� fixed fixed type graphtype graph TGTG

�� instance graphsinstance graphs G G

typed over TGtyped over TG by by
homomorphismhomomorphism gg

g:Ghost:Field

:Field :Field

:Field

:Field

f:Field

gg

Field
PacMan

marbles:int
Ghost

Marble

G

TG

Rules Rules

p: L p: L �� R with L R with L ∩∩∩∩∩∩∩∩ R wellR well--defined, in different defined, in different
presentationspresentations
�� like above (cf. PacMan example)like above (cf. PacMan example)

�� with L with L ∩∩ R explicit [DPO]: L R explicit [DPO]: L  K K �� RR

f1:Field f2:Field

pm:PacMan
movePM:

f1:Field f2:Field

pm:PacMan

Rules Rules

p: L p: L �� R with L R with L ∩∩∩∩∩∩∩∩ R wellR well--defined, in different defined, in different
presentationspresentations
�� like above (cf. PacMan example)like above (cf. PacMan example)

�� with L with L ∩∩ R explicit [DPO]: LR explicit [DPO]: L K K �� RR

�� with L, R integrated [UML, Fujaba]: with L, R integrated [UML, Fujaba]:
L L ∪∪ R and markingR and marking
�� L L -- R as R as destroyeddestroyed

�� R R -- L as L as newnew

f1:Field f2:Field

pm:PacMan
movePM:

{destroyed} {new}

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 3

Transformation StepTransformation Step

1.1. select rule p: L select rule p: L �� R R ; occurrence o; occurrence oLL: L : L �� GG

2.2. remove from remove from G G thethe occurrence of occurrence of LL\\ RR
3.3. add to result a copy of add to result a copy of R R \\ LL

f1:Field

f2:Field
pm:PacMan
marbles=3

m2:Marble

oL

G

L Rp
pm:PacMan
marbles=m

f2:Field f1:Field

m1:Marble

f2:Field f1:Field

pm:PacMan
marbles=m+1

f3:Field

m1:Marble

oR

pm:PacMan
marbles=4

H f1:Field

f2:Field

m2:Marblef3:Field

Semantic Questions: Dangling EdgesSemantic Questions: Dangling Edges

�� conservative solution: application is forbiddenconservative solution: application is forbidden

�� invertible transformations, no sideinvertible transformations, no side--effectseffects

�� radical solution: delete dangling edgesradical solution: delete dangling edges

�� more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a:A

a:A :B ??

Semantic Questions: ConflictsSemantic Questions: Conflicts

�� conservative solution: application is forbiddenconservative solution: application is forbidden

�� invertible transformations, no sideinvertible transformations, no side--effectseffects

�� radical solution: give priority to deletionradical solution: give priority to deletion

�� more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a1:A

a:A

a2:A a1:A

??

Advanced FeaturesAdvanced Features

Dealing with unknown contextDealing with unknown context

�� setset--nodes (multinodes (multi--objects): match all nodes with the required objects): match all nodes with the required

connections connections

�� explicit (negative) context conditionsexplicit (negative) context conditions

(turns f1 into a trap by reversing all outgoing edges to Field (turns f1 into a trap by reversing all outgoing edges to Field

vertices, but only if there is no Ghost)vertices, but only if there is no Ghost)

Control StructuresControl Structures
�� prioritiespriorities
�� programmed transformationprogrammed transformation

:Field:Field
f1:Field :Field f1:Field :Field:Ghost

A bit of History …A bit of History …

Chomsky

Grammars

Term

Rewriting

Petri

Nets

Graph Transformation and Graph Grammars

Diagram

Languages

Behaviour

Modelling and
Visual Programming

Models of

Computation

Exercise 1: PackmanExercise 1: Packman
a) be a (slightly) more clever player!a) be a (slightly) more clever player!

Extend the Extend the movePMmovePM rule so that rule so that PacmanPacman does does
not move next to a not move next to a Ghost.Ghost.

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 4

Exercise 1: Packman Exercise 1: Packman
b) Give b) Give PacmanPacman another chanceanother chance

Let Let PacmanPacman have a counter for his lives. have a counter for his lives.

Next: Refine the rule Next: Refine the rule killkill to remove to remove PacmanPacman
only if he has run out of lives. Otherwise only if he has run out of lives. Otherwise
decrease the counter and remove the decrease the counter and remove the GhostGhost..

Field
PacMan

marbles:int
Ghost

Marble

Refine rule Refine rule killkill

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

Exercise 2: Roots of GTExercise 2: Roots of GT
a) Chomsky Grammarsa) Chomsky Grammars

Production Production A A �������� aAbaAb as (contextas (context--free: free: one one

vertex or edge in vertex or edge in LL) graphical production rule) graphical production rule

Exercise 2: Roots of GTExercise 2: Roots of GT
b) Petri Netsb) Petri Nets

A PT net transition as graph transformation ruleA PT net transition as graph transformation rule

A

B

C

2

Exercise 2: Roots of GTExercise 2: Roots of GT
c) Term Rewritingc) Term Rewriting

Rule f(s(s(x))) Rule f(s(s(x))) �� f(s(x)) + f(x) f(s(x)) + f(x)
as graph rewrite rule (tree or DAG)as graph rewrite rule (tree or DAG)

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� Model TransformationModel Transformation

�� behavior modelingbehavior modeling

�� operational semanticsoperational semantics

�� denotationaldenotational semanticssemantics

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

transformation

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 5

Case StudyCase Study

Problem:Problem:
�� no central infrastructureno central infrastructure

�� unreliable componentsunreliable components

�� removing nodes removing nodes
may disconnect networkmay disconnect network

Idea: introduce redundancy!Idea: introduce redundancy!

Question: Which links should be added to guarantee a Question: Which links should be added to guarantee a
certain level of reliability ?certain level of reliability ?

a)a) at random, up to a limit of at random, up to a limit of nn linkslinks

b)b) so that deletion of node does not increase distanceso that deletion of node does not increase distance

pp11

pp22

pp33

pp44

pp55

Modelling Change in the Network: Modelling Change in the Network:

A Graph Transformation SystemA Graph Transformation System

p:Pp:P p:Pp:P pp11:P:P
ll

p:Pp:P

killkill

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll

shortcutshortcut

newnew

Which shortcuts?Which shortcuts?

a) At random (limit here: a) At random (limit here: n = 3n = 3 links)links)

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll
randomrandom:P:P

:P:P

:P:P

:P:P

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll

:P:P

ll

ll

pp11:P:P

pp22:P:P

pp33:P:P
ll

ll ll

smartsmart

Which shortcuts?Which shortcuts?

b) So that deletion of node does not increase b) So that deletion of node does not increase
distancedistance

L. L. MarianiMariani. Fault. Fault--tolerant routing for p2p systems with unstructured topology. tolerant routing for p2p systems with unstructured topology.
Proc. International Symposium on Applications and the Internet (SAINT 2005), Proc. International Symposium on Applications and the Internet (SAINT 2005),

Trento, Italy.Trento, Italy.

Modelling Time:Modelling Time:
Stochastic Graph TransformationStochastic Graph Transformation

�� aassociatessociate rate rate ρρρρρρρρ(p) (p) with every rulewith every rule pp

�� 1/1/ρρρρρρρρ(p) (p) average delay of p, once enablesaverage delay of p, once enables

rule rule pp rate rate ρρρρρρρρ(p)(p)

newnew 11

killkill 11

randomrandom xx

SGSGrandom, xrandom, x SGSGsmart, xsmart, x

rule rule pp rate rate ρρρρρρρρ(p)(p)

newnew 11

killkill 11

smartsmart xx

x times as fast x times as fast
as new or killas new or kill

Tools for Querying the ModelTools for Querying the Model

CTMCCTMC

rule rule pp rate rate ρρρρρρρρ(p)(p)

newnew 11

killkill 11

randomrandom xx

��p:Pp:P ��p:Pp:P ��pp11:P:P
��ll

��p:Pp:P

��killkill

��pp11:P:P

��pp22:P:P

��pp33:P:P
��ll

��ll ��ll

��pp11:P:P

��pp22:P:P

��pp33:P:P
��ll

��ll ��ll

��shortcutshortcut

��newnew

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 6

Probability of network being disconnected

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 2.0 3.0 4.0 5.0

shortcut_rate = 10
x

S
=

?
 [

 "
d

is
c
o

n
n

e
c
te

d
"

]

smart

random

��00 1 21 2 33 4 4

Monkey Business: Model and Monkey Business: Model and
generate state space (GROOVE)generate state space (GROOVE)
�� A monkey is in a room with a box and a banana A monkey is in a room with a box and a banana

suspended from the ceiling.suspended from the ceiling.
�� Before it can Before it can eateat the banana, the monkey has the banana, the monkey has movemove

next to the box, next to the box, pushpush it into position, and it into position, and climbclimb on on
top. top.

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� Model TransformationModel Transformation

�� behavior modelingbehavior modeling

�� operational semanticsoperational semantics

�� denotationaldenotational semanticssemantics

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

transformation

Example: WS Business ProcessExample: WS Business Process

�� refactoring of business refactoring of business

processes, replacing processes, replacing
centralised by distributed centralised by distributed

executionexecution

�� How to demonstrate How to demonstrate

preservation of behaviour?preservation of behaviour?

1.1. specify operational specify operational

semantics of processessemantics of processes

2.2. define transformationsdefine transformations

3.3. show that transformations show that transformations

preserve semanticspreserve semantics

Receive
order

Undo
order

Shipment

Warehouse Office

Operational SemanticsOperational Semantics

�� diagram syntax plus diagram syntax plus runtime stateruntime state

�� GT rules to model transitions GT rules to model transitions �� defines defines
labelledlabelled transition system transition system

op(…) op(…)

op(…)

Abstract

Syntax

operational

semantics

Edge Node

Basic
op: String

Structured

Orch
name: String

Msg
op: String
id: String

Switch Invoke

src
tar

current

tofrom

partner

request

Reply

response

Elem

corresponds

responsible

Type Graph: MetamodelType Graph: Metamodel

……

with runtime statewith runtime state

Abstract

Syntax

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 7

Rules: Invoke another ServiceRules: Invoke another Service

e:Edge
tar

i:Invoke

o1:Orch o2:Orch

current

partner

e:Edge
tar

i:Invoke

o1:Orch o2:Orch

current

partner

m:Msg
id=new()
op=i.op

from
to

req(i.id, m.id)
request

Abstract

Syntax

operational

semantics Rules:Rules:
Answer the InvocationAnswer the Invocation

e:Edge
tar

r:Reply

o1:Orch o2:Orch

current

m1:Msg
op=r.op

fromto

e:Edge
tar

r:Reply

o1:Orch o2:Orch

current

m1:Msg
op=r.op

fromto

m2:Msg
id=new()

op=r.op

from to

reply(r.id, m1.id, m2.id)

response

src
e:Edge

src
e:Edge

Rules:Rules:
Receive the ResponseReceive the Response

i:Invoke

o1:Orch o2:Orch

current

src

m1:Msg

tofrom

m2:Msg
to from

e:Edge

partner

i:Invoke

o1:Orch o2:Orch

current

src
e:Edge

partnerresp(i.id, m2.id)

request

response

SimulationSimulation

:Edge

tar

i:Invokeo1:Orch o2:Orch
current partner

:Edge

src

:Edge

tar

r:Reply

:Edge

src

current

m1:Msg
op=i.op

from

to
request

m2:Msg
op=r.op

from

to

response

Observations: req(i.id, m1.id); reply(r.id, m1.id, m2.id); resp(i.id, m2.id)

RefactoringRefactoring

�� replace local control flow by message passingreplace local control flow by message passing

…

Orch 1 Orch 2

… …

Orch1 Orch 2

<<invoke>>

Orch2.op

<<receive>>

op

<<reply>>

op

… …

… …

…

delegate

Semantic CompatibilitySemantic Compatibility

Processes PProcesses P1 1 and Pand P22 are compatible if are compatible if weakly weakly bisimilarbisimilar, ,

hiding labels not in hiding labels not in alphalph(P(P11)) ⋂ ⋂ alphalph(P(P22))

Show for Show for trafotrafo PP11 �� PP22 thatthat PP22 simulates simulates PP11, i.e., i.e.
�� PP11��obsobs QQ11 implies implies PP2 2 ��obsobs QQ22

�� QQ22 simulates Qsimulates Q11

and vice versa.and vice versa.

Approach: Approach:
�� mixed (local) confluence mixed (local) confluence

�� critical pair analysiscritical pair analysis

P1 Q1

P2 Q2

obsobs

obsobs

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 8

Critical Pairs and Local ConfluenceCritical Pairs and Local Confluence

�� a pair of rules (pa pair of rules (p11, p, p22) in a) in a minimal conflictminimal conflict
situationsituation

�� constructed by constructed by overlapping their leftoverlapping their left--hand hand
sides sides to to intersect in items to be deletedintersect in items to be deleted

�� system is locally confluent system is locally confluent
if all critical pairs areif all critical pairs are G

H *

G2G1

*

p1
p2

Critical Pair Analysis in AGGCritical Pair Analysis in AGG
delegatedelegate vsvs operational rulesoperational rules

Critical PairCritical Pair

LHS of
invoke vs delegate

delete-use-conflict

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� Model TransformationModel Transformation

�� behavior modelingbehavior modeling

�� operational semanticsoperational semantics

�� denotationaldenotational semanticssemantics
�� analysis analysis �� synthesissynthesis

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

refactoring

ContextContext--FreeFree Graph GrammarGraph Grammar

do something

out

in

ActStart Graph:

Act

in

out

Act

Act

in

out

::=

Productions in EBNF-like notation:

Act

in

out

Act

[c] [not c]

Concrete Syntax of Well-Structured Activity Diagrams

Abstract

Syntax

AnalysisAnalysis

check availability

receive order

notify client

calculate prize

send receipt

[product not

available]

[product available]

0 1

2

3

4

56

7

8

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 9

Pair GrammarPair Grammar

A:Act

in

out

A1:Act

in

out

A2:Act

do something

out

in

::=

A:Act

A1:Act

in

out

A2:Act

[c] [not c]

Proc(A) ::=
Proc(A1) ;
Proc(A2)

if [c] then Proc(A1)
else Proc(A2)

do something

Source: well-structured

activity diagrams

Proc(A)Target: CSP

Abstract

Syntax

Semantic

Domain

denotational

semantics

SynthesisSynthesis

Proc(A0)Proc(A0)

Proc(A1Proc(A1) ;) ; Proc(A2)Proc(A2)

……

Proc(A3) ;Proc(A3) ;
Proc (A4) ;Proc (A4) ;
ifif [product available][product available]

thenthen Proc(A5)Proc(A5)
elseelse Proc(A8)Proc(A8)

……

receive order ;receive order ;
check availability ;check availability ;

ifif [product available][product available]

thenthen calculate prize ;calculate prize ;
send receiptsend receipt

elseelse notify clientnotify client

check availability

receive order

notify client

calculate prize

send receipt

[product not

available]

[product available]

0 1

2

3

4

56

7

8

Is this Good Enough?Is this Good Enough?

�� VisualVisual

�� abstract syntax or abstract syntax or

concrete syntax concrete syntax

templatestemplates

�� BiBi--directionaldirectional

�� swap source and target swap source and target
grammarsgrammars

�� DeclarativeDeclarative

�� Expressive Expressive ??

�� contextcontext--free graph free graph

languages onlylanguages only

�� Traceable Traceable ??

�� through naming through naming

conventionsconventions

�� Efficient Efficient ??

�� NP complete parsing NP complete parsing

problemproblem

�� ……

� Triple Graph Grammars

A NonA Non--WellWell--Structured ExampleStructured Example

ActionsActions
Place_order, Pay_billPlace_order, Pay_bill

ProcessesProcesses
AA = Place_order = Place_order �� BB

BB = if ‘non= if ‘non--empty’ empty’

then then CC else STOPelse STOP

CC = Pay_bill = Pay_bill �� EE

E E == if ‘paid’ if ‘paid’
then then AA else STOPelse STOP

[else]

[non-empty]

[again]

[else]

Place order

Pay bill

A

B

C

E

Correspondence Rules:Correspondence Rules:
Initial, Action, and Merge on ActionInitial, Action, and Merge on Action

A A = …= …

AA == act act �������� BB

B B = …= …

AA == BB

start A

act

A

B

action

�� Rule pairs, in Rule pairs, in
condensed condensed
presentationpresentation

�� Green/bfGreen/bf ��

{new}{new}

�� No restriction to No restriction to
contextcontext--freenessfreeness

�� Correspondence Correspondence
via common via common
names names

act

A

Bmerge

Formally: Triple Graph GrammarsFormally: Triple Graph Grammars

�� Meta model for correspondenceMeta model for correspondence

�� traceabilitytraceability

�� Symmetric rule triplets (left, corr, right), Symmetric rule triplets (left, corr, right),
generating directed rulesgenerating directed rules

�� Declarative Declarative �� operationaloperational

Target

Metamodel

Corresp.

Metamodel

Source

Metamodel<<use>> <<use>>

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 10

Example TGG RuleExample TGG Rule

:Edge

:Node
op = act

:ProcEdge
:Proc

name = A

:Prefix
name = act

tar

{new}

exp

{new}

act

A

B

AA == act act �������� BB
B B = …= …

:Edge

src

{new}

:ProcEdge
:Proc

name = B
{new}

{new}

:Var
name = B

{new}

succ

left corr right

Derived Operational GT Rule: Derived Operational GT Rule:
right right �� leftleft

Alternatively: Alternatively:
�� left left �� rightright

�� (left, right) (left, right) �� corr corr

:Edge

:Node
op = act

:ProcEdge
:Proc

name = A

:Prefix
name = act

tarexp

{new}

:Edge

src

:ProcEdge
:Proc

name = B
{new}

{new}

:Var
name = B

{new}

succ

left corr right

BoingBoing 777:777:
Extremely ReliableExtremely Reliable

�� The plane is thought to have suffered a The plane is thought to have suffered a
sudden loss of power on both engines. sudden loss of power on both engines.

�� Mechanical or electronic failure?Mechanical or electronic failure?

�� Birds flying into engines?Birds flying into engines?

�� ……

�� The aircraft is generally thought to be The aircraft is generally thought to be
extremely reliable …extremely reliable …

Add RedundancyAdd Redundancy

AutopilotAutopilot

EngineEngine
Ctrl1Ctrl1

EngineEngine
Ctrl2Ctrl2

AutopilotAutopilot

EngineEngine
Ctrl1Ctrl1

EngineEngine
Ctrl2Ctrl2

Semantic Verification of RuleSemantic Verification of Rule
r

L R

L R

r/o

s(L)s(L) s(R)s(R)

G H

s(G) s(H)

Approach: Approach:
�� make sure that, in general, make sure that, in general, s(L) s(L) ## s(R)s(R) implies s(G) # s(H)implies s(G) # s(H)

�� check for each rule check for each rule rr if if s(L) s(L) ## s(R)s(R)

semantic domainsemantic domain

RequiredRequired

�� semantic domain semantic domain DD withwith relation relation ≤ closed ≤ closed
under contexts (under contexts (d d ≤ e ≤ e ⇒⇒ C[d] C[d] ≤ C[e]≤ C[e]))
�� think CSP with (trace/failures/divergence) think CSP with (trace/failures/divergence)

refinementrefinement

�� compositional semantic mapping compositional semantic mapping semsem

Models (graphs)Models (graphs) Semantic DomainSemantic Domain

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 11

How to ensure compositionality?How to ensure compositionality?
Semantic mapping described bySemantic mapping described by triple graph triple graph

grammargrammar

sem(Gsem(G00)) ::::= G= Gnn ⇔⇔ GG00 ⇒⇒** GGnn terminated terminated

IIs compositional s compositional if there are no negative if there are no negative
preconditions over source elementspreconditions over source elements

DesignDesign

MetamodelMetamodel

CorrespCorresp..

MetamodelMetamodel

Sem. DomainSem. Domain

MetamodelMetamodel<<use>><<use>> <<use>><<use>>

:ActivityEdge:ActivityEdge

:Node:Node

label = actlabel = act

:ProcEdge:ProcEdge
:Proc:Proc

name = Aname = A

:Prefix:Prefix

name = actname = act

targettarget expexp

:ActivityEdge:ActivityEdge

sourcesource

:ProcEdge:ProcEdge
:Proc:Proc

name = Bname = B

:Var:Var

name = Bname = B

succsucc

:ActivityEdge:ActivityEdge

:Node:Node

label = actlabel = act

:ProcEdge:ProcEdge
:Proc:Proc

name = Aname = A
targettarget

:ActivityEdge:ActivityEdge

sourcesource

actact
AA BB AA = act = act �� BB

B B = = ……

Triple Rule Triple Rule
with NACwith NAC

::ProcEdgeProcEdge

Roots and InspirationsRoots and Inspirations

Chomsky

Grammars

Term

Rewriting

Petri

Nets

Graph Transformation and Graph Grammars

� Formal language

theory of graphs;

� Diagram editor and

compiler generators

� Concurrency semantics
� Processes, unfoldings
� Event-structures

�Verification
� Logics

� Model checking
� Stochastic simulation

� Well-definedness

� Termination

� Confluence

� Semantics of

process calculi and
modelling languages

OutlineOutline

�� Graph TransformationGraph Transformation

�� why it is funwhy it is fun

�� how it workshow it works

�� Model TransformationModel Transformation

�� behavior modelingbehavior modeling

�� operational semanticsoperational semantics

�� denotationaldenotational semanticssemantics

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

refactoring

ConclusionConclusion

�� The tutorial has The tutorial has

�� Motivated the use of graph transformation in software Motivated the use of graph transformation in software

engineeringengineering

�� Introduced the foundations of graph transformationIntroduced the foundations of graph transformation

�� Shown example applications of graph transformationShown example applications of graph transformation

�� for behavior modeling and analysisfor behavior modeling and analysis

�� for model transformations for translating between for model transformations for translating between
languages, execution an refactoring of modelslanguages, execution an refactoring of models

�� Want to know more?Want to know more?

�� visit visit www.gratra.orgwww.gratra.org, subscribe to , subscribe to gratra@upb.degratra@upb.de, ,

or email or email reiko@mcs.le.ac.ukreiko@mcs.le.ac.uk

DiscussionDiscussion

Foundations of Model Transformations:

A Lambda Calculus for MDD?

GLOBAN Summer School

Warsaw, 22-26 Sept. 2008

Reiko Heckel, Univ. of Leicester 12

Solution 1: PackmanSolution 1: Packman
a) be a (slightly) more clever player!a) be a (slightly) more clever player!

Extend the Extend the movePMmovePM rule so that rule so that PacmanPacman does does
not move next to a not move next to a Ghost.Ghost.

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

f3:Fieldg:Ghost

Solution: a negative application condition.

Solution 1: PackmanSolution 1: Packman
b) Give b) Give PacmanPacman another chanceanother chance

Let Let PacmanPacman have a counter for his lives. have a counter for his lives.

Refine the rule Refine the rule killkill to remove to remove PacmanPacman only if he only if he
has run out of lives. Otherwise decrease has run out of lives. Otherwise decrease
the counter and remove the the counter and remove the GhostGhost..

Field
PacMan

marbles:int
Ghost

Marble

PacMan

marbles:int

lives:int

Solution:
add an attribute.

Solution 1 b) Refine rule Solution 1 b) Refine rule killkill

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

:PacMan
lives = 0

Solution: match attribute value.

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghost
kill

pm:PacMan
lives = n

n > 0

pm:PacMan
lives = n-1Solution: an attribute

application condition.

Solution 2: Roots of GTSolution 2: Roots of GT
a) Chomsky Grammarsa) Chomsky Grammars

Production Production A A �������� aAbaAb as (contextas (context--free: free: one vertex or one vertex or
edge in edge in LL) graphical production rule) graphical production rule

�� Theory of Theory of graph grammarsgraph grammars as formal language as formal language
theory for graphstheory for graphs
�� hierarchies of language classes and grammarshierarchies of language classes and grammars

�� decidability and complexity resultsdecidability and complexity results

�� parsing algorithmsparsing algorithms

1: 2: 3: 4:
a bA

2: 3:
A

Solution 2: Roots of GTSolution 2: Roots of GT
b) Petri Netsb) Petri Nets

A PT net transition as graph transformation ruleA PT net transition as graph transformation rule

�� Theory of concurrency for graph Theory of concurrency for graph
transformation transformation

�� independence, causality, and conflicts independence, causality, and conflicts

�� processes, unfoldingsprocesses, unfoldings

�� analysis techniquesanalysis techniques

A

B

C

2

a2:A b1:B

a1:A

b2:B c:C

Solution 2: Roots of GTSolution 2: Roots of GT
c) Term Rewritingc) Term Rewriting

Rule f(s(s(x))) Rule f(s(s(x))) �� f(s(x)) + f(x) f(s(x)) + f(x)

as DAG rewrite ruleas DAG rewrite rule

�� Theory of term graph Theory of term graph
rewriting (TGR)rewriting (TGR)

�� soundness / completeness w.r.t. soundness / completeness w.r.t.
TRTR

�� termination, critical pairs, termination, critical pairs,
confluenceconfluence

f +

s

s

x

2

1

s

x

f

f

