
Information-flow security

Andrei Sabelfeld
Chalmers

http://www.cs.chalmers.se/~andrei

GLOBAN, Sep. 2008

ProSec
O

2

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification

4. Combining the dimensions of
declassification for dynamic languages

today

3

A scenario: free service
software
Users freely download and

use the software providing

a service:

• Grokster, Kazaa,
Morpheus,... are file-
sharing services helping
users exchange files

• Come with ―hooks‖ for
automatic updates

• Support advertisement
to justify cost

4

Real story: scumware

Users are tricked to download

software bundled with pests:

• Homepage/search hijackers
(MySearch)

• Unsolicited pop-up ads

• Rewriting URLs to override
original ads with own

• ―Hooks‖ for automatic updates are used to execute
the advertiser’s arbitrary code (MediaUpdate,
DownLoadware)

• Information gathering—visited URLs and filled forms
are forwarded to a third-party (Gator, IPInsight,
Transponder)

5

General problem: malicious
and/or buggy code is a threat
• Trends in software

– mobile code, executable content

– platform-independence

– extensibility

• These trends are attackers’ opportunities!
– easy to distribute worms, viruses, exploits,...

– write (an attack) once, run everywhere

– systems are vulnerable to undesirable
modifications

• Need to keep the trends without
compromising information security

6

Today’s computer security
mechanisms: an analogy

7

Today’s attacker: an analogy

8

Types of malicious code 1

• Viruses: pieces of malicious code that attach to
programs and propagate when an infected program
executes

• Worms: carry out pre-programmed attacks
spreading from machine to machine across network

• Trojan horses: malicious intent, yet appearing to do
something useful (e.g., login daemon, web-
spoofing)

9

Types of malicious code 2

• Attack scripts: written by experts to exploit
security weaknesses (e.g., buffer overflow)

• Java attack applets: embedded in Web pages
to achieve access through a Web browser

• ActiveX controls: program components that
allow malicious code to control applications or
the OS

10

Brief history of malicious code
• 1980’s: Trojan hoarse, viruses (must be

compact to keep to small volumes of the media)

• 1992: Web arrives

• 1995: Java and Javascript introduce widespread
mobile code

• 1999: Melissa

• 2000: Love Bug ($10bln damage)

• 2001: AnnaKournikova worm

• 2001: Code Red

• 2002: MS-SQL Slammer (published by MS)

• 2003: Blaster

• 2005: Samy (MySpace worm, >1M pages)

11

Flexibility of Mobile Code

• Send around data that automatically
executes

• The more platform the better

• Embedded, mobile devices need this

Examples are:

• Java, ActiveX, Postscript, Audio Codex,
Word macros, JavaScript, VBS,...

Trojan Horses

• Any mobile program

code may contain an

(un)intended Trojan!

13

Numerous Opportunities for
the Attacker!

• JavaScript: invasion of privacy, denial of
service, Web spoofing

• Macro pests: Melissa, Love Bug,
AnnaKournikova worm

• ActiveX: system modification attacks,
stealing money

• Java security: attack applets

14

Defense against Malicious
Code
• Analyze the code and reject in case of

potential harm

• Rewrite the code before executing to
avoid potential harm

• Monitor the code and stop before it
does harm (e.g., JVM)

• Audit the code during executing and
take policing action if it did harm

15

Promising New Defenses via
Language-Based Security 1

• Static certification e.g. type systems

Code
producer

analyze deploy

reject

code consumer

• Main focus today

16

Promising New Defenses via
Language-Based Security 2

• Proof-carrying code

produce
and

analyze

verify deploy

reject

code consumer

code + proof

logical certificate
that asserts

validity of the
code

verify against a
trusted logical

framework

17

Promising New Defenses via
Language-Based Security 3

• Software-based reference monitors

produce
instrument deploy

and monitor

code consumerAdd policy specific
monitoring code

18

Computer Security

• The CIA

– Confidentiality

– Integrity

– Availability

• years of theory &
formal methods

• revival of interest:
Mobile Code

19

Confidentiality: Motivation

request

response

• Distributed file client/server: attacker’s goal is to learn
secrets by observing public information

client

Prog1

...

...

server

Prog

...

...

data

secret
public
...
...

encryption
access
control

antivirus
scanning

if fileScan(―foo‖)=finApp
then fileCopy(―foo‖,‖foo-copy‖)

• To guarantee end-to-end security need
information-flow controls

firewall

provided
by

attacker

20

Information security:
confidentiality
• Confidentiality: sensitive information must not

be leaked by computation (non-example:
spyware attacks)

• End-to-end confidentiality: there is no
insecure information flow through the system

• Standard security mechanisms provide no
end-to-end guarantees
– Security policies too low-level (legacy of OS-based

security mechanisms)

– Programs treated as black boxes

21

Confidentiality: standard
security mechanisms
Access control

+prevents ―unauthorized‖ release of information

- but what process should be authorized?

Firewalls

+permit selected communication

- permitted communication might be harmful

Encryption

+secures a communication channel

- even if properly used, endpoints of
communication may leak data

22

Confidentiality: standard
security mechanisms
Antivirus scanning

+rejects a ―black list‖ of known attacks

- but doesn’t prevent new attacks

Digital signatures

+help identify code producer

-no security policy or security proof guaranteed

Sandboxing/OS-based monitoring

+good for low-level events (such as read a file)

-programs treated as black boxes

) Useful building blocks but no end-to-end
security guarantee

23

Confidentiality: language-
based approach
• Counter application-level attacks at the level

of a programming language—look inside the
black box! Immediate benefits:

• Semantics-based security specification
– End-to-end security policies

– Powerful techniques for reasoning about
semantics

• Static security analysis
– Analysis enforcing end-to-end security

– Track information flow via security types

– Type checking by the compiler removes
run-time overhead

24

Dynamic security enforcement

Java’s sandbox, OS-based monitoring,
and Mandatory Access Control dynamically
enforce security policies; But:

Problem: insecure even when nothing is
assigned to l inside the if!

h:=…;
l:=false;
if h then l:=true

else skip;
out(l)

implicit flow
from h to l

low(public)

high(secret)

25

Static certification

• Only run programs which can be
statically verified as secure before
running them

• Static certification for inclusion in a
compiler [Denning&Denning’77]

• Implicit flow analysis

• Enforcement by security-type systems

26

A security-type system

exp : high h  Vars(exp)

exp : low

[pc] ` skip

[pc] ` h:=exp

exp : low

[low] ` l := exp

Expressions:

Atomic commands (pc represents context):

context

27

A security-type system:
Compositional rules

exp:pc [pc] ` C1 [pc] ` C2

[pc] ` if exp then C1 else C2

exp:pc [pc] ` C

[pc] ` while exp do C

[pc] ` C1 [pc] ` C2

[pc] ` C1; C2

[high] ` C

[low] ` C

implicit
flows:

branches
of a high
if must

be
typable in

a high
context

28

A security-type system:
Examples

[low] ` h:=l+4; l:=l-5

[pc] ` if h then h:=h+7 else skip

[low] ` while l<34 do l:=l+1

[pc] ` while h<4 do l:=l+1

29

Type Inference: Example

3 : low5 : low

[low] ` h:=h+1; if l=0 then l:=5 else l:=3

[low] ` l:=5, [low] ` l:=3, l=0: low

[low] ` if l=0 then l:=5 else l:=3

[high] ` h:=h+1

[low] ` h:=h+1

30

What does the type system
guarantee?

• Type soundness:

Soundness theorem:

[pc] ` C) C is secure

what does it
mean?

31

Semantics-based security

• What end-to-end policy such a type
system guarantees (if any)?

• Semantics-based specification of
information-flow security [Cohen’77],
generally known as noninterference
[Goguen&Meseguer’82]:

A program is secure iff high inputs do not
interfere with low-level view of the system

32

Confidentiality: assumptions
(simplified)

• Simple security structure (easy to

generalize to arbitrary lattices)

• Variables partitioned: high and low

secret (high)

public (low)

Private Sub Document_Open()

On Error Resume Next

If System.PrivateProfileString("",

"HKEY_CURRENT_USER\...

...

'WORD/Melissa

high
low low

high

• Intended security: low-level observations
reveal nothing about high-level input:

33

Confidentiality for sequential
programs: noninterference

• Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

• How do we formalize noninterference in
terms of program semantics?

h1

l

h2

ll’

h1’

l’

h2’

« C ¬ : Int £ Int ! (Int £ Int)?

high input low input high output low output

nontermintation

34

Semantics-based security

• Semantics-based security for C: as
high input varied, low-level behavior
unchanged:

8mem,mem’. mem =L mem’) «C¬mem ¼L «C¬mem’

Low-memory equality:
(h,l) =L (h’,l’) iff l=l’

C’s behavior:
semantics «C¬

Low view ¼L:
indistinguishability
by attacker

C is secure iff

8mem1,mem2. mem1 =L mem2)

« C ¬mem1 ¼L « C ¬mem2

35

Semantics-based security

• What is ¼L for our language?

• Depends on what the attacker can
observe

• For what ¼L does the type system
enforce security ([pc] ` C)

C is secure)? Suitable candidate for ¼L:

mem ¼L mem’ iff
mem  ?  mem’) mem =L mem’

36

Confidentiality: Examples

insecure (indirect)if h=0 then l:=0

else l:=1

secure (up to
timing)

if h=0 then
sleep(1000)

secure (up to
termination)

while h=0 do skip

secureh:=l; l:=h

securel:=h; l:=0

insecure (direct)l:=h

37

Semantics: Examples

?«while h=0 then
do skip¬ (0,y)

(1,1)«if h=0 then l:=0

else l:=1¬ (1,y)

(x,x)«l:=h¬ (x,y)

(0,y)«if h=0 then
sleep(1000)¬(0,y)

(x,0)«l:=h; l:=0¬ (x,y)

38

Evolution of language-based
information flow
Before mid nineties two separate lines of work:

Static certification, e.g., [Denning&Denning’76,

Mizuno&Oldehoeft’87,Palsberg&Ørbæk’95]

Security specification, e.g., [Cohen’77, Andrews&

Reitman’80, Banâtre&Bryce’93, McLean’94]

Volpano et al.’96: First connection between
noninterference and static certification:
security-type system that enforces
noninterference

39

Evolution of language-based
information flow

• Enriching language expressiveness

• Exploring impact of concurrency

• Analyzing covert channels (mechanisms not
intended for information transfer)

• Refining security policies

Four main categories of current
information-flow security research:

Expressiveness

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects

Expressiveness Concurrency

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution

42

Concurrency: Nondeterminism

• Possibilistic security: variation of h
should not affect the set of possible l

• An elegant equational security
characterization [Leino&Joshi’00]:
suppose HH (―havoc on h‖) sets h to an
arbitrary value; C is secure iff

8mem.«HH; C; HH¬mem ¼ «C; HH¬mem

43

Concurrency: Multi-threading

• High data must be protected at all times:
– h:=0; l:=h secure in isolation

– but not when h:=h’ is run in parallel

• Attack may use scheduler to exploit timing
leaks (works for most schedulers):

• A blocked thread may reveal secrets:

• Assuming a specific scheduler vulnerable

(if h then sleep(1000)); l:=1 k sleep(500); l:=0

wait(h); l:=1

44

Concurrency: Multi-threading
[Sabelfeld & Sands]

• Bisimulation-based ¼L accurately expresses
the observational power

• Timing- and probability-sensitive

• Scheduler-independent bisimulation
(quantifying over all schedulers)

• Strong security: most
accurate compositional
security implying
SI-security

Benefits:
²Timing and prob. channels
²Compositionality
²Scheduler-independence
²Security type system

45

Concurrency: Distribution

• Blocking a process: observable by other
processes (also timing, probabilities,...)

• Messages travel over publicly observable
medium; encryption protects messages’
contents but not their presence

• Mutual distrust of components

• Components (hosts) may be compromised/
subverted; messages may be delayed/lost

distri-
bution

concur-
rency

46

Concurrency: Distribution

• An architecture for secure program splitting
to run on heterogeneously trusted hosts
[Zdancewic et al.’01, Zheng et al.’03]

• Type systems for secrecy for cryptographic
protocols in spi-calculus [Abadi’97,
Abadi&Blanchet’01]

• Logical relations for the low view
[Sumii&Pierce’01]

• Interplay between communication primitives
and types of channels [Sabelfeld&Mantel’02]

Expressiveness Concurrency
Covert

channels

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution

Termination

Timing

Probability

48

Covert channels: Termination

• Covert channels are mechanisms not
intended for information transfer

• Low view ¼L must match observational power
(if the attacker observes (non)termination):

Is while h>0 do h:=h+1 secure?

mem ¼L mem’ iff
mem = ? = mem’ Ç

(mem  ?  mem’ Æ mem =L mem’)

49

Covert channels: Timing
• Recall:

• Nontermination ¼L time-consuming

computation

• Bisimulation-based ¼L accurately

expresses the observational power
[Sabelfeld&Sands’00, Smith’01]

• Agat’s technique for transforming out
timing leaks [Agat’00]

(if h then sleep(1000)); l:=1 k sleep(500); l:=0

50

Example: Mk mod n

s = 1;
for (i=0; i<w; i++){
if (k[i])

C = (s*M) mod n;
else

C = s;
s = C*C;

}

No information flow
to low variables,
but entire key can
be revealed by
measuring timing

[Kocher’96]

51

Transforming out timing leaks

Branching on high causes leaks

k[i]

C = (s*M) mod n

C = s

52

Transforming out timing leaks

Cross-copy low slices

k[i]

C = (s*M) mod n

C = sC /= s

C /= (s*M) mod n

Non-assignment

53

Covert channels: Probabilistic

• Possibilistically but not probabilistically secure
program:

• Timing attack exploits probabilistic properties
of the scheduler:

• Probability-sensitive ¼L by PERs
[Sabelfeld&Sands’99]

• Probabilistic bisimulation-based security
[Volpano&Smith’99,Sabelfeld&Sands’00,Smith’01,’03]

l:=PIN Y9/10 l:=rand(9999)

(if h then sleep(1000)); l:=1 k sleep(500); l:=0

resolved by uniform scheduler

Expressiveness Concurrency
Covert

channels
Security
policies

NoninterferenceStatic certification

Sound security analysisProcedures Declassification

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution

Termination

Timing

Probability

Admissibility

Relative
security

Quantitative
security

55

Security policies

• Many programs intentionally release information, or
perform declassification

• Noninterference is restrictive for declassification
– Encryption

– Password checking

– Spreadsheet computation (e.g., tax preparation)

– Database query (e.g., average salary)

– Information purchase

• Need support for declassification

56

Security policies:
Declassification
• To legitimize declassification we could

add to the type system:

• But this violates noninterference

• What’s the right typing rule? What’s the
security condition that allows intended
declassifications?

declassify(h) : low

More on this in the
next lecture

57

Most recent highlights and trends

• Security-preserving compilation
– JVM [Barthe et al.]

• Dynamic enforcement [Le Guernic]

• Cryptographic primitives [Laud]

• Web application security
– SWIFT [Myers et al.]

– NoMoXSS [Vogt et al.]

– …

• Declassification
– dimensions [Sabelfeld & Sands]

– …

More on this in the
next lecture

More on this in the
next lecture

More on this in the
next lecture

58

Summary for today

• Security practices not capable of tracking
information flow) no end-to-end guarantees

• Language-based security: effective information
flow security models (semantics-based security)
and enforcement mechanisms (static analysis via
security type systems)

• Semantics-based security benefits:
– End-to-end security for sequential, multithreaded,

distributed programs

– Models for timing and probabilistic leaks

– Compositionality properties (crucial for compatibility
with modular analyses)

– Enforceable by security type systems

59

Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security:
the big picture

3. Dimensions and principles of declassification

4. Combining the dimensions of
declassification for dynamic languages

tomor-
row

60

References

• Attacking malicious code: a report to
the Infosec Research Council
[McGraw & Morrisett, IEEE Software, 2000]

• Language-based information-flow
security
[Sabelfeld & Myers, IEEE JSAC, 2003]

61

End of talk

