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Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security: 
the big picture

3. Dimensions and principles of declassification

4. Combining the dimensions of 
declassification for dynamic languages

today
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A scenario: free service 
software
Users freely download and

use the software providing

a service:

• Grokster, Kazaa, 
Morpheus,... are file-
sharing services helping 
users exchange files

• Come with ―hooks‖ for 
automatic updates

• Support advertisement 
to justify cost
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Real story: scumware

Users are tricked to download

software bundled with pests:

• Homepage/search hijackers
(MySearch)

• Unsolicited pop-up ads

• Rewriting URLs to override 
original ads with own

• ―Hooks‖ for automatic updates are used to execute 
the advertiser’s arbitrary code (MediaUpdate, 
DownLoadware)

• Information gathering—visited URLs and filled forms 
are forwarded to a third-party (Gator, IPInsight, 
Transponder)
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General problem: malicious 
and/or buggy code is a threat
• Trends in software

– mobile code, executable content

– platform-independence

– extensibility

• These trends are attackers’ opportunities!
– easy to distribute worms, viruses, exploits,...

– write (an attack) once, run everywhere

– systems are vulnerable to undesirable 
modifications

• Need to keep the trends without 
compromising information security
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Today’s computer security 
mechanisms: an analogy
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Today’s attacker: an analogy
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Types of malicious code 1

• Viruses: pieces of malicious code that attach to 
programs and propagate when an infected program 
executes

• Worms: carry out pre-programmed attacks  
spreading from machine to machine across network

• Trojan horses: malicious intent, yet appearing to do 
something useful (e.g., login daemon, web-
spoofing)
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Types of malicious code 2

• Attack scripts: written by experts to exploit 
security weaknesses (e.g., buffer overflow)

• Java attack applets: embedded in Web pages 
to achieve access through a Web browser

• ActiveX controls: program components that 
allow malicious code to control applications or 
the OS



10

Brief history of malicious code
• 1980’s: Trojan hoarse, viruses (must  be 

compact to keep to small volumes of the media)

• 1992: Web arrives

• 1995: Java and Javascript introduce widespread 
mobile code

• 1999: Melissa

• 2000: Love Bug ($10bln damage)

• 2001: AnnaKournikova worm

• 2001: Code Red

• 2002: MS-SQL Slammer (published by MS)

• 2003: Blaster

• 2005: Samy (MySpace worm, >1M pages)
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Flexibility of Mobile Code

• Send around data that automatically 
executes

• The more platform the better

• Embedded, mobile devices need this

Examples are:

• Java, ActiveX, Postscript, Audio Codex, 
Word macros, JavaScript, VBS,...



Trojan Horses

• Any mobile program 

code may contain an 

(un)intended Trojan!
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Numerous Opportunities for 
the Attacker!

• JavaScript: invasion of privacy, denial of 
service, Web spoofing

• Macro pests: Melissa, Love Bug, 
AnnaKournikova worm

• ActiveX: system modification attacks, 
stealing money

• Java security: attack applets
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Defense against Malicious 
Code
• Analyze the code and reject in case of 

potential harm

• Rewrite the code before executing to 
avoid potential harm

• Monitor the code and stop before it 
does harm (e.g., JVM)

• Audit the code during executing and 
take policing action if it did  harm
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Promising New Defenses via 
Language-Based Security 1

• Static certification e.g. type systems

Code 
producer

analyze          deploy

reject

code consumer

• Main focus today
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Promising New Defenses via 
Language-Based Security 2

• Proof-carrying code

produce 
and 

analyze

verify          deploy

reject

code consumer

code + proof

logical certificate 
that asserts 

validity of the 
code

verify against a 
trusted logical 

framework
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Promising New Defenses via 
Language-Based Security 3

• Software-based reference monitors

produce
instrument          deploy 

and monitor

code consumerAdd policy specific 
monitoring code



18

Computer Security

• The CIA

– Confidentiality

– Integrity

– Availability

• years of theory & 
formal methods

• revival of interest: 
Mobile Code
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Confidentiality: Motivation

request

response

• Distributed file client/server: attacker’s goal is to learn
secrets by observing public information 

client

Prog1

...

...

server

Prog

...

...

data

secret
public
...
...

encryption
access 
control

antivirus 
scanning

if fileScan(―foo‖)=finApp
then fileCopy(―foo‖,‖foo-copy‖)

• To guarantee end-to-end security need
information-flow controls 

firewall

provided 
by 

attacker
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Information security: 
confidentiality
• Confidentiality: sensitive information must not 

be leaked by computation (non-example: 
spyware attacks)

• End-to-end confidentiality: there is no 
insecure information flow through the system

• Standard security mechanisms provide no 
end-to-end guarantees
– Security policies too low-level (legacy of OS-based 

security mechanisms)

– Programs treated as black boxes
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Confidentiality: standard 
security mechanisms
Access control

+prevents ―unauthorized‖ release of information

- but what process should be authorized?

Firewalls

+permit selected communication

- permitted communication might be harmful

Encryption

+secures a communication channel 

- even if properly used, endpoints of 
communication may leak data
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Confidentiality: standard 
security mechanisms
Antivirus scanning

+rejects a ―black list‖ of known attacks 

- but doesn’t prevent new attacks

Digital signatures

+help identify code producer

-no security policy or security proof guaranteed

Sandboxing/OS-based monitoring

+good for low-level events (such as read a file)

-programs treated as black boxes

) Useful building blocks but no end-to-end
security guarantee
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Confidentiality: language-
based approach
• Counter application-level attacks at the level 

of a programming language—look inside the 
black box! Immediate benefits:

• Semantics-based security specification
– End-to-end security policies

– Powerful techniques for reasoning about 
semantics

• Static security analysis
– Analysis enforcing end-to-end security

– Track information flow via security types

– Type checking by the compiler removes 
run-time overhead
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Dynamic security enforcement

Java’s sandbox, OS-based monitoring,
and Mandatory Access Control dynamically 
enforce security policies; But:

Problem: insecure even when nothing is 
assigned to l inside the if!

h:=…;
l:=false;
if h then l:=true

else skip;
out(l)

implicit flow 
from h to l

low(public)

high(secret)
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Static certification

• Only run programs which can be 
statically verified as secure before
running them

• Static certification for inclusion in a 
compiler [Denning&Denning’77] 

• Implicit flow analysis

• Enforcement by security-type systems
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A security-type system

exp : high h  Vars(exp)

exp : low

[pc] ` skip

[pc] ` h:=exp

exp : low

[low] ` l := exp

Expressions:

Atomic commands (pc represents context):

context
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A security-type system: 
Compositional rules

exp:pc   [pc] ` C1    [pc] ` C2 

[pc] ` if exp then C1 else C2 

exp:pc   [pc] ` C

[pc] ` while exp do C

[pc] ` C1    [pc] ` C2 

[pc] ` C1; C2 

[high] ` C

[low] ` C

implicit 
flows: 

branches 
of a high
if must 

be 
typable in 

a high
context
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A security-type system: 
Examples

[low] ` h:=l+4; l:=l-5

[pc] ` if h then h:=h+7 else skip

[low] ` while l<34 do l:=l+1

[pc] ` while h<4 do l:=l+1
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Type Inference: Example

3 : low5 : low

[low] ` h:=h+1; if l=0 then l:=5 else l:=3

[low] ` l:=5, [low] ` l:=3, l=0: low

[low] ` if l=0 then l:=5 else l:=3

[high ] ` h:=h+1

[low] ` h:=h+1 
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What does the type system 
guarantee?

• Type soundness:

Soundness theorem:

[pc] ` C ) C is secure

what does it 
mean?
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Semantics-based security

• What end-to-end policy such a type 
system guarantees (if any)?

• Semantics-based specification of 
information-flow security [Cohen’77], 
generally known as noninterference 
[Goguen&Meseguer’82]:

A program is secure iff high inputs do not      
interfere with low-level view of the system  
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Confidentiality: assumptions 
(simplified)

• Simple security structure (easy to 

generalize to arbitrary lattices)

• Variables partitioned: high and low

secret (high)

public (low)

Private Sub Document_Open()

On Error Resume Next 

If System.PrivateProfileString("",

"HKEY_CURRENT_USER\...

...

'WORD/Melissa 

high
low low

high

• Intended security: low-level observations 
reveal nothing about high-level input:
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Confidentiality for sequential 
programs: noninterference

• Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

• How do we formalize noninterference in 
terms of program semantics?

h1

l

h2

ll’

h1’

l’

h2’

« C ¬ : Int £ Int ! (Int £ Int)?

high input low input high output low output

nontermintation
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Semantics-based security

• Semantics-based security for C: as 
high input varied, low-level behavior 
unchanged:

8mem,mem’. mem =L mem’ ) «C¬mem ¼L «C¬mem’

Low-memory equality:
(h,l) =L (h’,l’) iff l=l’

C’s behavior:
semantics «C¬

Low view ¼L: 
indistinguishability 
by attacker

C is secure iff

8mem1,mem2. mem1 =L mem2 )

« C ¬mem1 ¼L « C ¬mem2
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Semantics-based security

• What is ¼L for our language?

• Depends on what the attacker can 
observe

• For what ¼L does the type system 
enforce security ([pc] ` C ) 

C is secure)? Suitable candidate for ¼L:

mem ¼L mem’ iff 
mem  ?  mem’ ) mem =L mem’
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Confidentiality: Examples

insecure (indirect)if h=0 then l:=0

else l:=1

secure (up to 
timing)

if h=0 then 
sleep(1000)

secure (up to 
termination)

while h=0 do skip

secureh:=l; l:=h

securel:=h; l:=0

insecure (direct)l:=h
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Semantics: Examples

?«while h=0 then 
do skip¬ (0,y) 

(1,1)«if h=0 then l:=0

else l:=1¬ (1,y)

(x,x)«l:=h¬ (x,y)  

(0,y)«if h=0 then 
sleep(1000)¬(0,y) 

(x,0)«l:=h; l:=0¬ (x,y) 



38

Evolution of language-based 
information flow
Before mid nineties two separate lines of work:

Static certification, e.g., [Denning&Denning’76, 

Mizuno&Oldehoeft’87,Palsberg&Ørbæk’95]

Security specification, e.g., [Cohen’77, Andrews& 

Reitman’80, Banâtre&Bryce’93, McLean’94]

Volpano et al.’96: First connection between 
noninterference and static certification: 
security-type system that enforces 
noninterference



39

Evolution of language-based 
information flow

• Enriching language expressiveness

• Exploring impact of concurrency

• Analyzing covert channels (mechanisms not 
intended for information transfer)

• Refining security policies

Four main categories of current 
information-flow security research:



Expressiveness

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects



Expressiveness Concurrency

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution
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Concurrency: Nondeterminism

• Possibilistic security: variation of h
should not affect the set of possible l

• An elegant equational security
characterization [Leino&Joshi’00]: 
suppose HH (―havoc on h‖) sets h to an 
arbitrary value; C is secure iff

8mem.«HH; C; HH¬mem ¼ «C; HH¬mem 
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Concurrency: Multi-threading

• High data must be protected at all times:
– h:=0; l:=h secure in isolation 

– but not when h:=h’ is run in parallel

• Attack may use scheduler to exploit timing 
leaks (works for most schedulers):

• A blocked thread may reveal secrets:

• Assuming a specific scheduler vulnerable

(if h then sleep(1000)); l:=1  k sleep(500); l:=0

wait(h); l:=1
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Concurrency: Multi-threading 
[Sabelfeld & Sands]

• Bisimulation-based ¼L accurately expresses 
the observational power 

• Timing- and probability-sensitive

• Scheduler-independent bisimulation 
(quantifying over all schedulers)

• Strong security: most
accurate compositional
security implying
SI-security

Benefits:
²Timing and prob. channels
²Compositionality
²Scheduler-independence    
²Security type system



45

Concurrency: Distribution

• Blocking a process: observable by other 
processes (also timing, probabilities,...)

• Messages travel over publicly observable 
medium; encryption protects messages’ 
contents but not their presence

• Mutual distrust of components

• Components (hosts) may be compromised/
subverted; messages may be delayed/lost

distri-
bution

concur-
rency
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Concurrency: Distribution

• An architecture for secure program splitting 
to run on heterogeneously trusted hosts 
[Zdancewic et al.’01, Zheng et al.’03] 

• Type systems for secrecy for cryptographic 
protocols in spi-calculus [Abadi’97, 
Abadi&Blanchet’01]

• Logical relations for the low view 
[Sumii&Pierce’01]

• Interplay between communication primitives 
and types of channels [Sabelfeld&Mantel’02]



Expressiveness Concurrency
Covert 

channels

NoninterferenceStatic certification

Sound security analysisProcedures

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution

Termination

Timing

Probability
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Covert channels: Termination

• Covert channels are mechanisms not 
intended for information transfer

• Low view ¼L must match observational power 
(if the attacker observes (non)termination):

Is while h>0 do h:=h+1 secure?

mem ¼L mem’ iff
mem = ? = mem’ Ç

(mem  ?  mem’ Æ mem =L mem’)
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Covert channels: Timing
• Recall:

• Nontermination ¼L time-consuming 

computation

• Bisimulation-based ¼L accurately 

expresses the observational power 
[Sabelfeld&Sands’00, Smith’01]

• Agat’s technique for transforming out 
timing leaks [Agat’00]

(if h then sleep(1000)); l:=1  k sleep(500); l:=0
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Example: Mk mod n

s = 1; 
for (i=0; i<w; i++){ 
if (k[i]) 

C = (s*M) mod n; 
else 

C = s; 
s = C*C; 

} 

No information flow 
to low variables, 
but entire key can 
be revealed by 
measuring timing 

[Kocher’96]
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Transforming out timing leaks

Branching on high causes leaks

k[i]

C = (s*M) mod n

C = s
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Transforming out timing leaks

Cross-copy low slices

k[i]

C = (s*M) mod n

C = sC /= s

C /= (s*M) mod n

Non-assignment
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Covert channels: Probabilistic

• Possibilistically but not probabilistically secure 
program:

• Timing attack exploits probabilistic properties 
of the scheduler:

• Probability-sensitive ¼L by PERs 
[Sabelfeld&Sands’99]

• Probabilistic bisimulation-based security 
[Volpano&Smith’99,Sabelfeld&Sands’00,Smith’01,’03]

l:=PIN Y9/10 l:=rand(9999)

(if h then sleep(1000)); l:=1  k sleep(500); l:=0

resolved by uniform scheduler



Expressiveness Concurrency
Covert 

channels
Security 
policies

NoninterferenceStatic certification

Sound security analysisProcedures Declassification

Functions

Exceptions

Objects

Nondeterminism

Threads

Distribution

Termination

Timing

Probability

Admissibility

Relative
security

Quantitative
security
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Security policies

• Many programs intentionally release information, or 
perform declassification

• Noninterference is restrictive for declassification
– Encryption

– Password checking

– Spreadsheet computation (e.g., tax preparation) 

– Database query (e.g., average salary)

– Information purchase

• Need support for declassification
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Security policies: 
Declassification
• To legitimize declassification we could 

add to the type system:

• But this violates noninterference

• What’s the right typing rule? What’s the 
security condition that allows intended 
declassifications?

declassify(h) : low

More on this in the 
next lecture
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Most recent highlights and trends

• Security-preserving compilation
– JVM [Barthe et al.]

• Dynamic enforcement [Le Guernic]

• Cryptographic primitives [Laud]

• Web application security
– SWIFT [Myers et al.]

– NoMoXSS [Vogt et al.]

– …

• Declassification
– dimensions [Sabelfeld & Sands]

– …

More on this in the 
next lecture

More on this in the 
next lecture

More on this in the 
next lecture
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Summary for today

• Security practices not capable of tracking 
information flow ) no end-to-end guarantees

• Language-based security: effective information 
flow security models (semantics-based security) 
and enforcement mechanisms (static analysis via 
security type systems)

• Semantics-based security benefits:
– End-to-end security for sequential, multithreaded, 

distributed programs

– Models for timing and probabilistic leaks

– Compositionality properties (crucial for compatibility 
with modular analyses)

– Enforceable by security type systems
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Course outline: the four hours

1. Language-Based Security: motivation

2. Language-Based Information-Flow Security: 
the big picture

3. Dimensions and principles of declassification

4. Combining the dimensions of 
declassification for dynamic languages

tomor-
row
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End of talk


