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Syllabus

1. V for Virtual
2. A Concurrent A-Calculus with Refinement Types
3. Security Protocols and their Implementations

The theoretical core is the typed lambda-calculus RCF, and its implementation as an
enhanced typechecker for F#; RCF supports functional programming a la ML and
Haskell, concurrency in the style of process calculus, and refinement types allowing
correctness properties to be stated in style of dependent type theory.

We will examine a diverse (but hardly exhaustive) range of problems in the area of
programming datacentres: cryptographic security protocols, language-based access
control, and the assembly and management of software components such as VMs



V for Virtual

Declarative Datacentres, Part 1



VIRTUALIZATION:
WHAT AND WHY?



What is a Virtual Machine?

“A virtual machine is an efficient, isolated duplicate of

Syslem/370k‘! -
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* Avirtual machine monitor (VMM) contains one or more VMs
 Each VM runs a guest OS, which itself runs applications

e The VMM may run under a host OS, or on the bare machine



Why
Virtualize?
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Comparison with Applications of
Real Machines Virtualization
e Better hardware utilization e Server (or client) consolidation
e Better application isolation e Development and test
e Faster provisioning e Legacy applications
e Poorer performance e Training and demos

e Security



What Is, and Isn’t, a VMM?

Efficient: An overwhelming majority of guest instructions are
executed by the hardware without VMM intervention

Duplicate: Software on the VMM executes identically(*) to its
execution on hardware, barring timing effects

Isolated: The VMM manages all hardware resources

Non-examples:
— Language-based VMs eg Sun’s JVM or Microsoft’s CLR
— Hardware emulators eg Virtual PC on Macs with PowerPC hardware

G. Popek and R. P. Goldberg (1974). Formal requirements for
virtualizable third generation architectures. CACM 17(7):412-421.

K. Adams and O. Ageson (2006). A comparison of software and
hardware techniques for x86 virtualization. ASPLOS’06.



HOW VIRTUALIZATION WORKS



How an Operating System Works

Computer

‘ CPU state: registers (eg M is user or kernel mode), ...

Operating System Kernel

Application Process

SYS print “Hello world!” =25 PRT “Hello world!”

trap

PRT “Hello world!” » Terminate process

Printer
Hello World!




How Classic Virtualization Works

Computer

‘ Real CPU state: registers (eg M is user or kernel mode), ...

Virtual Machine Monitor (VMM)

‘ Shadow state: m=user, ... ‘

Operating System Kernel

Application Process
SYS print “Hello world!”

PIIRT “Hello world!”

v
m=kernel; if (m==kernel) PRT “Hello world!”
emulate system call else emulate trap to kernel
Printer

Hello World!




But x86 is Not Classically Virtualizable

In a classically virtualizable architecture, all instructions that
access privileged state can be set to trap if run in user mode

In X86, instructions can access privileged state in user mode
without trapping
— For example, in kernel mode popf modifies the interrupt-related IF
flag; in user mode, modifications to IF are suppressed, with no trap
Hence, VMMs for x86 rely on binary translation (BT)

— To run kernel mode guest code, the VMM inserts additional
instructions to emulate the kernel mode behaviour in user mode

— popf turns into a short instruction sequence to access shadow state

Since 2005, AMD’s SVM & Intel’s VT provide hardware support

J.S. Robin and C.E. Irvine (2000). Analysis of the Intel Pentium's ability to
support a secure virtual machine monitor. In 9th USENIX Security Symposium.



The Computer is the Network

Computer

Virtual Machine Monitor (VMM)
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Win98 SE Hard Disk.vhd WinXP SP2 ADG.vhd Knoppix VPC Hard Disk.vhd knoppix-std-0.1.iso
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SERVICE COMBINATORS FOR
FARMING VIRTUAL MACHINES



A Programming Problem

* Asinput, we are given:
— Disk images for each server role in a multi-tier website
— Addresses for external services we depend upon
— Addresses for the services we are to export

* A human operator could run this application by:
— Provisioning (virtual) machines
— Configuring machines with suitable addresses
— Monitoring the machines and taking remedial actions

* The problem is to automate these tasks as operations logic
— The standard solution is to use low-level scripting

— Our solution (Baltic) is to use functional programming (F#, a dialect of
ML), and write code to manipulate abstract states of the application



Abstract States are Call Graphs

Import
paymentl

Export
orderentry

l

OrderEntry

OrderW2EX3.vhd

¥

OrderProcessing

ProcW2K3 .vhd

let ei = importPaymentl ()

let (vm1,e1) = createOrderProcessingRole ()
let (vm2,e2) = createOrderEntryRole ei el
let () = exportOrderEntry e2



Concrete Implementation

Operations Logic
(F#)

let ei = importPayment1 ()

let (vm1,el) =
createOrderProcessingRole ()

let (vm2,e2) =
createOrderEntryRole ei el

let () = exportOrderEntry e2

Physical Server

Baltic Process

Import
Forwarder

Export
Forwarder

Management

- et

Remote
Payment
Service

Remote
(OrderEntry)
Clients



4 VVMs, VMM, Baltic, External Client
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States Evolve in Response to Events

Export

Export Export
orderentry orderentry orderentry
Y ! Y
OrderEntry OrderEntry OrderEntry
OrderW2K3.vhd OrderW2K3.vhd OrderW2K3.vhd
N \ l
Import Import
p$$1 OrderProcessing paymentl Ref KIS paymentl
l £ W
OrderProcess in;
ProcW2K3.vhd Or s
A
» £
X X ProcW2K3.vhd
OrderProcessing OrderProcessing
Overloaded!
ProcW2K3.vhd ProcW2K3.vhd

l Crashed!\j




Abstract States are Well-Typed

Export _— EndPoint<Order,string>
orderentry
l " EndPoint<Order,string>
7 5

OrderEntry

OrderW2K3.vhd / EndPoint<Order,void>
\‘ /

Disk images become typed functions:

Luport OrderProcessing
paymentl EndPoint<Order,string>
createOrderEntryRole
(EndPoint<Payment,string> epl,
ProcW2K3 vhd EndPoint<Order,void> ep2)

EndPoint<Payment,string> EndPoint<Order,void>
4 - ’ createOrderProcessingRole ()




An Executable Formal Semantics

We build a process model of a Baltic script in terms of
a typed, concurrent, partitioned, lambda calculus

To model VM, processes look like: a,[P,]]|...|a,[P,] | Q
— where P,,..., P,, Q are expressions in the calculus
To model VM snapshots, we allow partitions [P] as values

We can execute this model to generate symbolic traces and
pictorial call graphs, for debugging

We prove that (1) well-typed programs map to well-typed
processes, and (2) process computation preserves typing

Well-typed processes never send ill-formed messages;
hence, typing stops (some) interconnection errors



Baltic — Summary

Various trends are turning datacentre management into a
programming problem

How to code business logic is well understood, but how to
code operations logic is becoming a Hot Topic

We explore a typed approach to operations logic within a
functional language (F#, a dialect of ML)

As a first study, we focus on managing the operations of
service-oriented virtual machines on a single host

We develop the design, implementation, and formal
semantics for a call-graph-based management API

By assigning function types to whole disk images, we catch
some errors statically, but much more could be done...



REVOLUTION
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AWS Home

Why Use AWS?
What's New in AWS?
Upcoming Events
Success Stories
Solutions Catalog
Create an Account
FAQsS

Browse Web Services

Amazon E-Commerce
Service

Amazon Elastic
Compute Cloud {Beta)
Amazon Flexible
Payments Service
{Beta)

Amazon Mechanical
Turk {Beta)

Amazon Simple Storage
Service

Amazon Simple Queue
Searvice

Alexa Web Services

Browse &ll Web Services

Developer Connection

Fesource Center
Forums

Blog
Mewslettar
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&3 | [} EC2Firefox Ul || TestPage for the Apache HTTP Serve... -
- - - M
Summary of This Month's Activity as of October 3, 2007 -
Billing Cycle for this Report: October 1 - Octeber 31, 2007
Usage Charges Rate Usage Totals
Amazon Simple Storage Service
View/Edit Service £0.15 per GB-Maonth of storage used 0.028 GB-Mao 0.01
50,10 per GB - all data transferin 0,000 GB Q.00
£0.18 per GE - first 10 TE/ menth data transfer cut 0.000 GB 0,00
z0,16 per GE - next 40 TE / menth datz transfer cut 0,000 GB 0.00
£0,12 per GB - data transfer cut/ menth owver S0 TE 0,000 GB Q.00
20,01 per 1,000 PUT or LIST requasts 0 Reguests 0,00
=0.01 per 10,000 GET and all ether requests 0 Feguests 0.00
0.01
lJszge Report
Amazon Elastic Compute Cloud
View/Edit Service®0.10 perinstance-hour consumed [or part of an hour consumed] Z Hrs 0.20
20,10 per GB - all data transferin 0.000 GB 0,00
£0,18 per GE - first 10 TE/ menth data transfer cut 0,000 GB 0.00
£0.16 per GB - next 40 TE/ month data transfer cut 0.000 GB .00
0,13 per GBE - gata transfer out/ month over S0 TE 0,000 GB 0.00
0.20
lUszge Report B
Subtotal $0.21
Taxes
Estimated Taxes due en Mowvember 1, 2007 $ 0.04
Charges due on November 1, 2007% %0.25
* 2ll charges for this billing cyele will be charged to yeur credit card en yeur next billing date, Mevember 1, 2007, These charges W
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ami-2ah&534f ecZ-public-images /developer-mage.manifest, xml available public
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This page is used to test the proper operation of the Apache HTTP server after it has been installed. If you can read
this page, it means that the Apache HTTP server installed at this site is working properly.

If you are a member of the general public:

The fact that you are seeing this page indicates that
the website you just visited is either experiencing
problems. or is undergoing routine maintenance.

If you would like to let the administrators of this website
know that you've seen this page instead of the page

you expected, you should send them e-mail. In general.

mail sent to the name "webmaster” and directed fo the
website's domain should reach the appropriate person.

For example, if you experienced problems while visiting
www.example.com, you should send e-mail to
"webmaster@example com”.

For information on Fedora Core, please visit the
Fedora Project wehsite.

If you are the website administrator:

You may now add content to the directory
/var/www/honl/ . Note that until you do so, people
visiting your website will see this page, and not your
content. To prevent this page from ever being used,
follow the instructions in the file

Jetc/httpd/cont . .d/welcome . cont.

You are free to use the images below on Apache and
Fedora Core powered HTTP servers. Thanks for using
Apache and Fedora Core!

wered by =
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Stored-Program Global Computers

Global Computer — grid of geo-distributed data centres
Operating System — TBD =t

‘Search ‘ ‘Mail ‘

‘Social Network ‘ ‘Your idea goes here ‘

* EC2is imperfect, has research precursors, but from a user perspective it’s
revolutionary — users can run their own programs in the cloud — eg Hadoop

* Like the 1940s, transition from fixed-program to stored-program computers
* We know the basic parts (eg VMs), but what are the OSs, the languages?
* What do we need to enable a single coder to write a global app?

* Thisis a Hot Question in industry today, and platforms like EC2 allow any grad
student to have a go at implementing an answer



Resources for Part 1

Hypervisor verification research at Saarbruecken
http://www.microsoft.com/emic/verisoft.mspx

Microsoft Virtual Server (free download)
http://www.microsoft.com/windowsserversystem/virtualserver/

Amazon EC2 (VMs at 10c per instance per hour)
http://aws.amazon.com/ec?2

James Hamilton’s recent talks (source of my datacentre picture)
http://research.microsoft.com/~jamesrh/



http://www.microsoft.com/emic/verisoft.mspx
http://www.microsoft.com/windowsserversystem/virtualserver/
http://aws.amazon.com/ec2
http://research.microsoft.com/~jamesrh/
http://research.microsoft.com/~jamesrh/
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A Concurrent A-Calculus
with Refinement types

Declarative Datacentres, Part 2

Based on joint work with Jesper Bengtson, Karthikeyan
Bhargavan, Cédric Fournet, and Sergio Maffeis



Why Study this Calculus?

 RCF is an assembly of standard parts, generalizing some ad hoc
constructions in language-based security

FPC (Plotkin 1985, Gunter 1992) — core of ML and Haskell

Concurrency in style of the pi-calculus (Milner, Parrow, Walker 1989) but
for a lambda-calculus (like 80s languages PFL, Poly/ML, CML)

Formal crypto is derivable by coding up seals (Morris 1973, Sumii and
Pierce 2002), not primitive as in eg spi calculus(Abadi and Gordon, 1997)

Security specs via assume/assert (Floyd, Hoare, Dijkstra 1970s),
generalizing eg correspondences (Woo and Lam 1992)

To check assertions statically, rely on dependent functions and pairs with
subtyping (Cardelli 1988) and refinement types (Pfenning 1992, ...) aka
predicate subtyping (as in PVS, and more recently Russell)

Public/tainted kinds to track data that may flow to or from the opponent,
as in Cryptyc (Gordon, Jeffrey 2002)

* For experiment, there is a downloadable implementation F7



RCF PART 1:
SYNTAX AND SEMANTICS



The Core Language (FPC):

¥, 2

X,)
h

M

inl
inr
fold

(M.N)
h M
A,B =
M
M N
M=N
letx=AinB
let (x,y) =M in A
match M with h x — A else B

variable
value constructor
left constructor of sum type
right constructor of sum type
constructor of 1so-recursive type
value
variable
unit
function (scope of x1s A)
pair
construction
expression
value
application
syntactic equality
let (scope of x is B)
pair split (scope of x, yis A)

constructor match (scope of x 1s A)




The Reduction Relation: A — A’

(funx — A) N — A{N/x}

(let (x1,x2) = (N1,N2) in A) %A{lell}{ﬁgflg}

if M = h N forsome N

(match M with i x — A else B) — A{N/x} :
B otherwise

B nl() ifM=N
MN%{ inr() otherwise

letx =Min A — A{M/x}

A—A'=letx=AinB—letx=A"inB
1

Exercise:  These rules implement call-by-value functions and strict constructors.

Adapt the semantics to call-by-name functions and non-strict constructors.
Exercise: Can pairs, constructions, and equality M = N be encoded with just func-

tions, that is, within the pure untyped A -calculus?



Example: Booleans and Conditional Branching:

false 5 inl ()
true = inr () .\
if A then B else B' =

let x = A in match x with true — B else match x with false — B’
1 ]

Exercise: Derive arithmetic, that is, value zero, functions succ, pred, and iszero.
Exercise: Derive list processing, that is, value nil, functions cons, hd, il, and null.

Exercise: Write down an expression Q that diverges, thatis, Q - A; — A>, — ...
Exercise: Derive a fixpoint function fix so that we can define recursive function defi-

nitions as follows: let rec fx =A = let f = fix (fun f — funx — A).



The Heating Relation A = A’:
I
Axioms A =A" areread as bothA = A" and A’ = A.

A=A
A=A" ifA=2A"andA'= A"

A=A =letx=AinB=letx =A"inB

A—A" ifA=BB—B.B=A
|

Heating 1s an auxiliary relation; its purpose 1s to enable reductions, and to place
every expression in a normal form, known as a structure.



Parallel Composition:

A.B::=

AT B

()rA=A
(Ar AT A"=Ar (A'T A”)
(AP A)P A" = (AP A) P A”

letx = (AT A")inB=AT (letx = A" in B)

A=A = (AT B)= (A'T B)
A=A = (BFA)= (BT A')
A—A = (AT B) — (A'T B)
B—B = (AT B)— (AT B')

expression
as before

Exercise: Which parameter 1s passed to the function F by the following expression:

letx = (17 (2r3))in Fx



Name Generation:
I

A.B = expression
. as before
(va)A fork

A= A= (va)A = (va)A’

aé¢m(A")=A"T ((va)A) = (va)(A'T A)

a¢m(A) = ((va)A)r A'= (va)(AT A)
aé¢fn(B)=letx = (va)AinB= (va)letx = AinB

A—A"= (va)A — (va)A’
|

Exercise: For m-calculus experts, which common rules of structural equivalence for
restriction are missing?

Exercise: What are the reductions of the following expression:

letx = (va)ar (vb)bin F x



Input and Output:

A.B::= expression
.. as before
a'M transmission of M on channel a
a? receive message off channel
alM=alMT ()
alMr a? — M

Exercise: What are the reductions of the expression: a!3 1 a? " a!5
Exercise: What are the reductions of the expression: a!3 7 let x = a?in F x
Exercise: What are the reductions of the expression: a!true I" a!false



Example° Concurrent ML:

(T)Chan = (T — unit) * (unit— T)

chan = fun x — (va)(funx — a'x,fun _ — a?)

Send ~ func x — let (s,r) =cinsx send x on ¢
recv = — func — let (s,7) = cinr () block for x on ¢
fork = fun f — (f() 7 ()) run f in parallel

Example' Mutable State:

(T)ref (T )chan

ref M = let r=chan"r"in send r M:r new reference to M
deref M —letx = recvMinsend M x;x dereference M
M:=N=letx =recv Minsend M N update M with N

|

Exercise: What are the reductions of the expression: let x = refSinx:=7
Exercise: Encode concurrent while-programs within RCE
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Assume and Assert

Suppose there is a global set of formulas, the log
To evaluate assume C, add C to the log, and return ().

To evaluate assert C, return ().

— If Clogically follows from the logged formulas, we say the assertion
succeeds; otherwise, we say the assertion fails.

— The log is only for specification purposes; it does not affect execution

assume Foo(); assert Bar(); assume Foo()=>Bar(); assert Bar()

Our use of first-order logic predicates (like Foo()) generalizes
conventional assertions (like assert i>0 in eg JML, Spec#)

— Such predicates usefully represent security-related concepts like roles,
permissions, events, compromises



A General Class of Logics:
|
C:=p(M,,....M)) |[M=M|CAC |CVC' |-C|C=C"|¥x.C|3xC

{Cy,....C,} EC deducibility relation

Assume and Assert:

A.B = expression
as before
assume C assumption of formula C
assert C assertion of formula C

assume C => assume C T ()

assert C — ()

Exercise: What are the reductions of the expression:
assume Foo();assert Bar(); assume Foo() = Bar();assert Bar()



Structures and Static Safety:

e:=M|MN|M=N|let (x,y) = MinB |
match M with i x — A else B | M? | assert C

[Tici JAi= (T AT ...T A,

Z w={}|(letx = £ in B)

S:=(vay)...(vay) (( H assume C;) I ( H ci!M;) T ( H ﬁf{f?k}))

icl..m jel..n kel..o

Let structure S be statically safe 1f and only if,
forall k € 1..0 and C, if ¢, = assert C then {Cy,...,C,,} - C.
|

Lemma For every expression A, there is a structure S such that A = S.

Expression Safety:

Let expression A be safe if and only if,
forall A"and S, if A —* A" and A’ = S, then S is statically safe.
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APPLICATION OF RCF:
ACCESS CONTROL BY TYPING



Motivating Example: Access Control

Example: untrusted
code calling into a
trusted library

Trusted code
expresses security
policy with assumes
and asserts

Every policy violation
causes an assertion
failure

Idea: rule out
assertion failures
statically

type facts = CanRead of string | CanDelete of string

let read file = assert(CanRead(file)); ...
let delete file = assert(CanDelete(file)); ...

letpwd="C: /etc/password"
lettmp="C:/temp/tempfile"

let _ = assume (CanDelete(tmp))
assume Vx. CanDelete(x) — CanRead(x)

let untrusted() =
let v1 =read tmp in // ok, by global assumption
let v2 = read pwd in // assertion fails
delete tmp; // ok
delete pwd // assertion fails




Logging Dynamic Events

Security policies
often stated in
terms of dynamic
events such as role
activations or data
checks

We mark such
events by adding
formulas to the log
with assume

type facts = ... | PublicFile of string
let read file = assert(CanRead(file)); ...
let readme = "C: /public/README"

// Dynamic validation:

let publicfile f =
iff="C:/public/README" || ...
then assume (PublicFile(f))
else failwith "not a public file"

assume Vx. PublicFile(x) = CanRead(x)

let untrusted() =
let v2 = read readme in // assertion fails
publicfile readme; // validate the filename
let v3 = read readme in () // now, ok




Access Control by Typing

val read: (file: string {CanRead(file)}) — string
val delete: (file:string {CanDelete(file) }) — unit
val publicfile: (file : string) — unit { PublicFile(file) }

Preconditions express access control requirements
Postconditions express results of validation

We typecheck partially trusted code to guarantee all
preconditions (and hence all asserts) hold at run time
To do so, we have an enhanced function type:

— (x1:T1) {C1} > (x2:T2) {C2}

— In RCF, these boil down to dependent functions plus refinement types

Related work: eg types for stack inspection (Pottier, Skalka,
Smith), Aura (Zdancevic et al)



RCF PART 2:
TYPES FOR SAFETY



Starting Point: The Type System for FPC:
:EI—f} (x:T)eE EFA:T Ex:THB:U
Ebx:T EFletx=AinB:U

EFo E-M:T EFN:U
Et():unit EFM=N:unit+unit

Ex:THFA:U EF-M:(T—-U) EFN:T
Etrfunx—A: (T —U) EFMN:U

E-M:T EFEN:U EFM:(TxU) Ex:T.y:UFA:V
EF(M,N):(TxU) Erlet(x,y)=MinA:V

h:(T,U) EEM:T ERU E-M:T h:(HT) Ex:HFA:U EFB:U
E-hM:U EFHmatch M withhx — Aelse B: U

inl:(T, T4+U) inr:(U,T4+U) fold:(T{pa.T/a},uee.T)

Exercise: Write types of Booleans, numbers, and lists.
Exercise: Write a well-typed fixpoint combinator.



Three Steps Toward Safety by Typing

We include refinement types {x : T | C}, whose values are
those of T that satisfy C

To exploit refinements, we add a judgment E |- C, meaning
that C follows from the refinement typesin E

To manage refinement formulas, we need (1) dependent
versions of the function and pair types, and (2) subtyping

e A valueof Ilx: 7. U 1s a function M such that if N
has type T, then M N has type U{N/x}.

e A value of Xx: T. U is a pair (M,N) such that M
has type T and N has type U{M /x}.

o [fA:Tand T <:U thenA : U.



IS_yntax of RCF Types:

H,T.U,V = type

unit unit type

[Ix:T.U dependent function type (scope of x 1s U)
x:T.U dependent pair type (scope of x 1s U)
T+U disjoint sum type

uo. T 1so-recursive type (scope of a1s T)

o 1so-recursive type variable

{x:T|C} refinement type (scope of x is C)

{C} E {_:unit|C} ok-type
bool = unit+ unit Boolean type




[\ Oe()ef\ 0‘6«&'
Starting Point: Hie Type System for FPC:

EFo T)eE EFA:T Ex:THB:U
(x:T) € X X¢’F"M
Etx:T EFletx=AinB:U

EFo E-M:T EFN:U
Et():unit EFM=N:unit+unit

TxTU

Ex:THA:U E-M: (=) EFN:T

E+funx — A: ) EI—MN:U[N/,(]
<T. U x: 1.0
E-M:T EFN:UMEFM: Ex:Ty:UFA:V Yy
EF (M,N): &= Etlet (x,y) =MinA:V )
ST AL
h:(T,U) EEM:T ERU E-M:T h:(HT) Ex:HFA:U EFB:U
EF-hM:U EF match M withhx — Aelse B: U

inl:(T, T4+U) inr:(U,T4+U) fold:(T{pa.T/a},uee.T)

Exercise: Write types of Booleans, numbers, and lists.
Exercise: Write a well-typed fixpoint combinator.



Rules for Formula Derivation:

I "

forms(E) =
{C{y/x}}Uforms(y:T) ifE=(y:{x:T|C})
forms(E;) Uforms(E>) if E=(E,E»)
& otherwise

Eto fnfv(C) Cdom(E) forms(E)FC
EFC

Exercise: What is forms(E) if E = x; : {y; :int| Even(y;)},x2 : {y2 :int | Odd(x;)}?
Exercise: A handy abbreviation is {C} = {_: unit | C}, where _ is fresh. What is
forms(x: {C})?



Assume and Assert

EFo fmfv(C) Cdom(E)

E + assume C : {_: unit| C}

EHC
E  assert C : unit




Rules for Refinement Types:

|
EF{x:T|C} EFT<T
EE{x:T|C}<:T

EFT<T' Ex:THC
EFT < Ax:T'|C}

EEM:T EFRFC{M/x}
E-M:{x:T|C}

Exercise: Derive the following subtyping rules:

E-FT<:T' Ex:{x:T|C}-C EFC=C

EF{x:T|C}<:{x:T"|C"} EH{C}<:{C'}



Standard Rules of Subtyping:

1
EFA:T EFT<:T'
EFA:T

EFo EFT <:T Ex:T'HFU<:U'
Erunit<:unit EF(Ix:T.U)<:(Ix:T'.U")

EFT<:T Ex:T-U<U EFT<T ErU<U
EF(Ix:T.U)<:(Zx:T.U") EH(THU)<: (T'+U")

Eto (a<:d)eE Eoa<oa'bT<T a¢mp(T) o ¢fm(T)
Eroa<:o E-(ua.T)<: (uo'.T')

Exercise: Prove that E =T <: T’ is decidable, assuming an oracle for E - C.

Exercise: (Hard.) Prove that E - T <: T’ is transitive.
Exercise: Assume that - (x = 0) = Even(x) but not the converse. Which are true?

— (Ix : {x:int| x =0}. bool) <: (Ilx: {x:int | Even(x)}. bool)
- (Xx: {x:int| x=0}. bool) <: (Xx: {x:int| Even(x)}. bool)
- (Ex: {x:int| x=0}. bool) <: (Ix: {x:int| Even(x)}. bool)



Rules for Restriction, 1/0, and Parallel Composition:

I
Eal]THFA:U aé¢fmU) E-M:T (a]T)cE EFo (a]T)€E
E=alM : unit Fal: T

EF(va)A:U

E,_ :{A)}FA:Ty E,_.:{A1}FA: D
EF(AITA): D

AT Ay = (A] NA7)
assume C =C

(va)A = (Ja.A)

let x :A| in Ag :Al

A = True if A matches no other rule
L

Exercise: Find types to typecheck the following code:

ald2r (ve)((let x = a? in assume Sent(x) I c¢lx) I’ (let x = ¢? in assert Sent(x)))



Type System and Theorem

E:=x:T,....x, : T, environment

Ero E 1s syntactically well-formed

E-T in E, type T 1s syntactically well-formed
E-C formula C is derivable from E

EFT <:U in E, type T 1s a subtype of type U
EFA:T in E, expression A has type T

Lemma If & =S : T then S is statically safe.
LemmalfEFA:TandA=A"thenEFA':T.
LemmalfEFA:TandA —A'"thenEFA’: T.

Theorem If & — A : T then A 1s safe.
(For any A" and S such that A —* A’ and A’ = S
we need that S 1s statically safe.)
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Summary of Part 2

RCF supports functional programming a la ML and Haskell,
concurrency in the style of process calculus,

and refinement types allowing correctness properties to be stated
in the style of dependent type theory.

Next, we will develop applications of RCF, and describe our
implementation http://research.microsoft.com/F7

By embedding our theory of concurrency within an existing
language, we obtain a programming environment at once

There are many open questions around RCF: partitions,
equivalences, type inference, mutable state, information flow


http://research.microsoft.com/F7

Friday 26t 12:15-13:00




Security Protocols and their
Implementations

Declarative Datacentres, Part 3



The Needham-Schroeder Problem

In Using encryption for authentication in large networks of computers
(CACM 1978), Needham and Schroeder didn’t just initiate a field that
led to widely deployed protocols like Kerberos, SSL, SSH, IPSec, etc.

They threw down a gauntlet.

The Needham-Schroeder public-key authentication protocol (CACM 1978)

“Protocols such as those developed hereareprone 9 ) )

to extremely subtle errors that are unlikely to be o
detected in normal operation. The need for —{ Bk Dt ]
techniques to verify the correctness of such i
!orotocols i§ great, and we encouragfa thosg S | KT S
interested in such problems to consider this area.”

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}-1
NA,NB serve as nonces to prove freshness of messages 6 and 7



The Needham-Schroeder public-key authentication protocol (CACM 1978)

AB |—>

4—| {| B,KB | }s-1
_.I {I msg3(A,NA) |} |->

——BA b
(| AKA g1

«| {| msg6(NANB) [}, |

{11 msg7NB) [}y >

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA | }s-1
NA,NB serve as nonces to prove freshness of messages 6 and 7



Assuming A knows KB and B knows KA, we get the core protocol:

—I {| msg3(A,NA) |} |'>

< {| msg6(NANB) [}y |

-|{| msg7(NB) |} |->

More precisely, the goals of the protocol are:
e After receiving message 6, A believes NA,NB shared just with B
e After receiving message 7, B believes NA,NB shared just with A

If these goals are met, A and B can subsequently rely on keys
derived from NA,NB to efficiently secure subsequent messages



A certified user M can play a man-in-the-middle attack (Lowe 1995)

{1 msg3(ANA) [}y,

a —{ {1 msg3(ANA) [}q

|.>

€ {I msg6(NANB) [},

|-

<« {| msg6(NANB) |},

j

= {I msg7(NB) |},

|.>

= {I msg7(NB) |}s

|.>

This run shows a certified user M can violate the protocol goals:
e After receiving message 6, A believes NA,NB shared just with M
e After receiving message 7, B believes NA,NB shared just with A

(Writing in the 70s, Needham and Schroeder assumed certified users

would not misbehave; we know now they do.)



Cryptographic Protocols

* Principals communicate over an untrusted network

— Our focus is on Internet protocols, but same principles apply to
banking, payment, and telephony protocols

* A range of security and privacy objectives is possible
— Message confidentiality — against release of contents
— ldentity protection — against release of principal identities
— Message authentication — against impersonated access
— Message integrity — against tampering
— Message correlation — that a response matches a request
— Message freshness — against replays

* To achieve these goals, principals rely on applying
cryptographic algorithms to parts of messages, but also on
including message identifiers, nonces (unpredictable
guantities), and timestamps



Informal Methods

Informal lists of prudent practices enumerate common patterns in the
extensive record of flawed protocols, and formulate positive advice for
avoiding each pattern.

(eg Abadi and Needham 1994, Anderson and Needham 1995)

The Explicitness Principle

Robust security is about explicitness. A cryptographic protocol should
make any necessary naming, typing and freshness information explicit in
its messages; designers must also be explicit about their starting
assumptions and goals, as well as any algorithm properties which could
be used in an attack.

Anderson and Needham Programming Satan’s Computer 1995

For instance, Lowe’s famous fix of the Needham-Schroeder PK protocol
makes explicit that message 6, {| NA,B,NB | }KA, is sent by B, who is not
mentioned in the original version of the message.

72



Formal Methods

* Dolev&Yao first formalize N&S problem in early 80s
— Shared key decryption: { {M}, }-1=M
— Public key decryption: {| {| M | }a |}xa-1 =M

— Their work now widely recognised, but at the time, no proof
techniques, so little applied

* In 1987, Burrows, Abadi and Needham (BAN) propose a
systematic rule-based logic for reasoning about protocols

— |If P believes that he shares a key K with Q, and sees the message
M encrypted under K, then he will believe that Q once said M

— If P believes that the message M is fresh, and also believes that Q
once said M, then he will believe that Q believes M

— Neither sound nor complete, but useful; hugely influential



A Potted History: 1978-2005

We assume that an intruder can interpose a
computer on all communication paths, and
thus can alter or copy parts of messages, replay
messages, or emit false material. While this
may seem an extreme view, it is the only safe
one when designing authentication protocols.

A N

\I-IiB\ob,/
love Alice

b 4
/ \Flatg\ you,

Bob! -Alice

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”

1981: Denning and Sacco find attack found on N&S symmetric key protocol

1983: Dolev and Yao first formalize secrecy properties wrt N&S threat model, using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful

1994: Hickman (Netscape) invents SSL; holes in v2, but v3 fixes these, very widely deployed

1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed

1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”

1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs

circa 2000: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation

circa 2005: Many FMs now developed; several deliver both accuracy and automation

2005: Cervesato et al find same insider attack as Lowe on proposed public-key Kerberos 74



Verifying Security Protocol Code

C Goubault- 2005 Csur|SPASS FM  NSL (self-written)
Larrecq,
Parrennes
Java 0O'Shea 2006 LysaTool FM  NSL, Otway-Rees
(self-written)

F# Bhargavan, 2006 FS2PV|PV FM WS protocols et al
Fournet, (self-written, but
Gordon, Tse, interoperable)
Swamy

Java Poll, 2007 JML FSA MIDP-SSH
Schubert (independent)

F#  Bhargavan, 2007 FS2CV|CV CM  Self-written
Corin, examples
Fournet

This table omits work on deriving code from models, and tools
to check for insecure configurations of security protocols



One Source, Three Tasks

Source code

Symbolic
Model My code | Authz (modules)
My
protocol _ s Other
Application Libraries
D
ISecurity / \
Goals Symbolic Concrete
Crypto Crypto
Some other
implementation
Verifier Crypto
Platform (CLR)  Net
Symbolic Symbolic testing ‘ Interoperability

verification & debugging



Source Language: F

F# is a dialect of ML running on the CLR developed by Don
Syme at MSR Cambridge
— First release around 2005; preview of product by 2008!

An F# subset supports protocol programming, and model
extraction

— Simple formal semantics

— Modular programming based on typed interfaces

— Algebraic data types with pattern matching are useful for symbolic
crypto and XML processing

Still, few protocols are written in F#...



Pi Calculus Verifier: ProVerif

ProVerif is an automated cryptographic protocol
verifier developed by Bruno Blanchet

What it can prove:
— Secrecy, authenticity (correspondence properties)
— Equivalences (e.g., secrecy properties)

How it works:

— Internal representation based on Horn clauses

— Resolution-based algorithm, with clever selection rules
— Attack reconstruction

Automatic, but source must be tuned for efficient verification

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. CSFW 2001
B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols. LICS 2005.



A Motivation for Refinement Types

* Even with some aggressive abstraction, FS2PV|PV is hitting
some long and unpredictable run times

 We think we may do better with source-level security types

A Reference InfoCard Implementation Safety Results

C.fs J RP.fs J IPfs J
<>\ IS S T N T [T

Net.fs Prins.fs || Infocard.fs | Wssec.fs ‘ Net.fs J‘ Prins.fs‘” Infocard.fsJ‘ Wssec.fsJ Selflssued-SOAP 1410 (80) 9,3 Al-A3 51,52

UserPassword-TLS 1426(96) 0,5,17,6 Al-A3  S1,52 24m40s
UserPassword-SOAP  1429(99) 9,11,17,6  A1-A3  S1,52 20ms53s
Pifs | XMLencfs || XMLdsig.fs UserCertificate-SOAP  1429(99) 13,7,11,6 A1-A3  S1-53 66m21s

UserCertificate-SOAP-v  1429(99) 7,5,7,4 A3 Fails!  S1-S3 10s

Symbolic Libraries
.NET Platform Libraries
(Crypto, Networking, Credentials)

’ ’
7
N
Run Attack! ° . .
Concrete Libraries
Yes
Run

Symbolic Debugging Security Verification Execution and Interop




MODELLING CRYPTOGRAPHIC
ALGORITHMS IN RCF



Morris’ Seal Abstraction

In our notation, a seal k for a type T 1s a pair of functions: the seal function for k,
of type T — Un, and the unseal function for k, of type Un — T.

The seal function, when applied to M, wraps up its argument as a sealed value, infor-
mally written {M } in this discussion. This is the only way to construct {M },.

The unseal function, when applied to {M }, unwraps its argument and returns M. This
is the only way to retrieve M from {M },.

Sealed values are opaque; in particular, the seal k cannot be retrieved from {M },.

To implement a seal k, we maintain a list of pairs [(My,a;);...;(My,a,)]. The list
records all the values M; that have so far been sealed with k. Each a; is a fresh name
representing the sealed value {M;}.



Seals within RCF

type a SealRef = ((a * Un) list) ref
let seal: o SealRef —a¢—Un=funsm —
let state = deref s in match first (left m) state with
| Some(a) —a
| None —
let a: Un = Pi.name "a" in
s := ((m,a)::state); a
let unseal: oo SealRef -Un —ma=funsa —
let state = deref s in match first (right a) state with
| Some(m) —m
| None —failwith "not a sealed value"
let mkSeal (n:string) : a Seal =
let s:a0 SealRef=ref [] in
(seal s, unseal s)



Representing Crypto with Seals

type ahkey = HK of apickled Seal
type hmac = HMAC of Un

let mkHKey ():ax hkey = HK (mkSeal "hkey")
let hmacshal (HK key) text = HMAC (fst key text)
let hmacshaiVerify (HK key) text (HMAC h) =
let x: pickled = snd key h in
if x = text then x else failwith "hmac verify failed"

Exercise: Implement shared key encryption, public-key encryption, and
digital signatures using seals.



A TINY PROTOCOL
A — B : M, hmac(sk,g,M)



type event = Send of string
type message = (string * hmac) pickled

let make hk s = pickle (s,hmacshal hk (pickle s))

let check hk m =
let s,h = unpickle min
let sv = hmacshalVerify hk (pickle s) h in unpickle sv

let addr = http "http://localhost:7000/hmac"
let hk = mkHKey()

let client text = assume (Send(text));
let ¢ = connect addr in
send c (make hk text)

let server () = let c = listen addr in
let text = check hk (recv c) in
assert (Send text)



The first part of the attacker library represents our formal model,
eg, the ability to compute with and communicate seals



type str type (‘a, 'b) addr

type bytes type (‘a, 'b) conn

type 'a pickled val http : string -> ('a, 'b) addr

type 'a hkey val connect : (‘a, 'b) addr -> ('a, 'b) conn
type hmac val listen : ('a, 'b) addr -> ('b, 'a) conn

val str : string -> str val close : ('a, 'b) conn -> unit

val istr : str -> string val send : ('a, 'b) conn -> 'a pickled -> unit
val concat : bytes -> bytes -> bytes val recv : ('a, 'b) conn ->'b pickled

val pickle : 'a -> 'a pickled
val unpickle : 'a pickled ->'a
type 'a hkey = HK of 'a pickled Seal
type hmac = HMAC of Un
val mkHKey: unit -> 'a hkey
val hmacshal: 'a hkey -> 'a pickled -> hmac
val hmacshalVerify:
'a hkey -> Un -> hmac -> 'a pickled...

The second part of the attacker library is the computing platform.
The concrete implementations use the actual platform (eg .NET).
The abstract implementations use PrimCrypto and Pi.



The problem: can any attacker break any assertion, given
access to the following interfaces:

val addr : (string * hmac, unit) addr
val client: string -> unit
val server: unit -> unit T &

~ N ~

A \ ~ o
~ ~ - (p~

(Y — 1 A~
o~ ~ o~ ~ ~ - —

Formal Threat Model: Opponents and Robust Safety

A closed expression O is an opponent iff O contains no occurrence of assert.

A closed expression A 1s robustly safe 1ff application O A 1s safe for all opponents O.
| ]

Hence, our problem is whether the expression (addr, client, server, ... ) robustly safe.



RCF Ill: TYPES FOR ROBUST SAFETY



Universal, Tainted, Public Types

To allow type-based reasoning about the opponent, we introduce a universal type Un
of data known to the opponent. Somewhat arbitrarily, we define Un 2 unit. By defini-
tion, Un 1is type equivalent to (both a subtype and a supertype of) all of the following
types: unit, (ILx : Un. Un), (Xx : Un. Un), (Un+Un), and (1o.Un). Hence, we obtain
opponent typability, that O : Un for all opponents O.

It 1s useful to characterize two kinds of type: public types (of data that may flow to the
opponent) and tainted types (of data that may flow from the opponent).

Let a type T be public if and only if 7" <: Un.
Let a type T be tainted if and only 1f Un <: T.



Kinding Rules: EFT :: v for v € {pub, tnt}

EFo E-FT:v Ex:THU:v EFT:v Ex:THU:v
EFunit::v EF(IIx:T.U)::v EFXEx:T.U):v

EFT:v EFU:v EFo (@:Vv)eE Eaq:vET:v
EF(T+U):v EFo:v EF(ua.T):v

EF{x:T|C} EFT:pub EFT:tnt Ex:THC
EF{x:T|C}: pub EFA{x:T|C} :: tnt

Exercise: Which of the following are derivable?
(1) int—{y:int| Even(y)} :: pub
(2) int— {y:int| Even(y)} :: tnt
(3) {x:int| Odd(x)} — int:: pub
(4) ({x:int| Odd(x)} — int) — int:: pub



Additional Rule of Subtyping: £ -7 <:U

I
EFET:pub ERU:: tnt
EFT <:U

Lemma 1 (Public Tainted) Forall T and E:
(1) EET :pubifandonly if E-T <: Un,
2) EFT :tntifandonly if EF- Un <: T.

Lemma 2 (Opponent Typability) Suppose E = o. If O is an expression containing
no assert such that (a ] Un) € E for each name a € fn(O), and (x : Un) € E for each
variable x € fv(0), then E+ O : Un.

Theorem 1 (Robust Safety) If & = A : Un then A is robustly safe.

Corollary: if @A : T and & = T :: pub then A is robustly safe.



The F7 Typechecker

Generate proof obligations

file.fs7

Type check file.fsi

file.fs



Our extended typechecker “compiles” .fs7 and .fs to .fsi
— We typecheck .fs implementation against series of .fs7 interfaces
— We kind-check .fs7 interfaces (every public value is indeed public)
— We generate .fsi interfaces by erasure from .fs7

We deal with a subset of F# larger than our core calculus
— We treat many constructs as syntactic sugar (eg, records, patterns)
— We support value- and type-polymorphic types
We do some type inference
— Plain F# types as usual
— Refinement types typically require annotations
We call Z3 on every non-trivial proof obligation
— We generate type-based assumptions for data structures
— Incomplete, but good enough for now



type prin = string

type event = Send of (prin * prin * string) | Leak of prin
type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }
type message = (prin * prin * string * hmac) pickled

private val mkContentKey: a:prin — b:prin — ((;a,b)content) hkey
private val hkDb: (prinxprin, a:prin * b:prin *x k:(;a,b) content hkey) Db.t
val genKey: prin — prin — unit

private val getKey: a: string — b:string — ((;a,b) content) hkey

assume Va,b,x. ( Leak(a) ) = Send(a,b,x)
val leak: a:prin — b:prin — (unit{ Leak(a) }) * ((;a,b) content) hkey

val addr : (prin % prin * string * hmac, unit) addr
private val check: b:prin — message — (a:prin * (;a,b) content)

val server: string — unit

private val make: a:prin — b:prin — (;a,b) content — message

val client: prin — prin — string — unit
HERIESVI



Evaluation so Far

Time 23 Time per Obligations
Sample fs  fs7 (s) Obligations Obligation per Line

Logs and Queries 37 16 2.8 6 0.47 0.16
MAC Protocol 40 12 2.5 3 0.83 0.08
Princs and Comp 48 26 3.1 12 0.26 0.25
Certificate Chains 61 21  3.65 19 0.19 0.31
Access Control 104 34 3.3 16 0.52 0.15
Flexible Signatures 167 52 146 28 0.52 0.17
Typed Libraries 440 146 12.1 12 1.01 0.03

* We can typecheck some non-trivial functions

Not yet comparable with ProVerif



Limits of the Model

As usual, formal security guarantees hold
only within the boundaries of the model
— We keep model and implementation in sync
— We automatically deal with very precise models
— We can precisely “program” the attacker model

We verify our own implementations, not legacy code
We trust the compiler, runtime, typechecker

— Our method only finds bugs in the protocol code in F#
— Independent certification is possible, but a separate problem
We trust our symbolic model of cryptography

— Partial computational soundness results may apply
— Further verification tools may use a concrete model



Summary of Part 3

We verify reference implementations of security protocols
Our implementations run with both concrete and symbolic
cryptographic libraries.

— Concrete implementation for production and interop testing

— Symbolic implementation for debugging and verification

We develop our approach for protocols written in F#

— We show its correctness for a range of security properties, against
realistic classes of adversaries

— Tool FS2PV compiles to applied pi calculus, and relies on ProVerif,
— Tool F7 relies on refinement types, based on the RCF calculus
— Case studies include WS security, CardSpace, SSL/TLS

Some challenges
— Establish computational guarantees (eg FS2CV)
— Move from functional to imperative implementations
— Move from F# to C



THE END




