
Declarative Datacentres

Andrew D. Gordon

Microsoft Research

Typeful approaches to the problems of securing,
programming, and managing datacentres

GLOBAN 2008, Warsaw, September 22-26, 2008

Thursday 25th 14:00-14:45

Syllabus

1. V for Virtual

2. A Concurrent -Calculus with Refinement Types

3. Security Protocols and their Implementations

The theoretical core is the typed lambda-calculus RCF, and its implementation as an
enhanced typechecker for F#; RCF supports functional programming a la ML and
Haskell, concurrency in the style of process calculus, and refinement types allowing
correctness properties to be stated in style of dependent type theory.

We will examine a diverse (but hardly exhaustive) range of problems in the area of
programming datacentres: cryptographic security protocols, language-based access
control, and the assembly and management of software components such as VMs

V for Virtual

Declarative Datacentres, Part 1

VIRTUALIZATION:
WHAT AND WHY?

What is a Virtual Machine?

• A virtual machine monitor (VMM) contains one or more VMs

• Each VM runs a guest OS, which itself runs applications

• The VMM may run under a host OS, or on the bare machine

“A virtual machine is an efficient, isolated duplicate of
the real machine” (Popek and Goldberg, CACM 1974)

Why
Virtualize?

Comparison with
Real Machines

• Better hardware utilization

• Better application isolation

• Faster provisioning

• Poorer performance

Applications of
Virtualization

• Server (or client) consolidation

• Development and test

• Legacy applications

• Training and demos

• Security

What Is, and Isn’t, a VMM?

• Efficient: An overwhelming majority of guest instructions are
executed by the hardware without VMM intervention

• Duplicate: Software on the VMM executes identically(*) to its
execution on hardware, barring timing effects

• Isolated: The VMM manages all hardware resources

• Non-examples:
– Language-based VMs eg Sun’s JVM or Microsoft’s CLR

– Hardware emulators eg Virtual PC on Macs with PowerPC hardware

G. Popek and R. P. Goldberg (1974). Formal requirements for
virtualizable third generation architectures. CACM 17(7):412-421.

K. Adams and O. Ageson (2006). A comparison of software and
hardware techniques for x86 virtualization. ASPLOS’06.

HOW VIRTUALIZATION WORKS

Computer

Operating System Kernel

Application Process

SYS print “Hello world!” PRT “Hello world!”

PRT “Hello world!” Terminate process

Printer
Hello World!

How an Operating System Works

CPU state: registers (eg M is user or kernel mode), ...

trap

trap

Computer

Virtual Machine Monitor (VMM)

Operating System Kernel

Printer
Hello World!

How Classic Virtualization Works

Application Process
SYS print “Hello world!” PRT “Hello world!”

m=kernel; if (m==kernel) PRT “Hello world!”
emulate system call else emulate trap to kernel

Shadow state: m=user, ...

Real CPU state: registers (eg M is user or kernel mode), ...

But x86 is Not Classically Virtualizable

• In a classically virtualizable architecture, all instructions that
access privileged state can be set to trap if run in user mode

• In x86, instructions can access privileged state in user mode
without trapping
– For example, in kernel mode popf modifies the interrupt-related IF

flag; in user mode, modifications to IF are suppressed, with no trap

• Hence, VMMs for x86 rely on binary translation (BT)
– To run kernel mode guest code, the VMM inserts additional

instructions to emulate the kernel mode behaviour in user mode

– popf turns into a short instruction sequence to access shadow state

• Since 2005, AMD’s SVM & Intel’s VT provide hardware support

J.S. Robin and C.E. Irvine (2000). Analysis of the Intel Pentium's ability to
support a secure virtual machine monitor. In 9th USENIX Security Symposium.

Computer

Virtual Machine Monitor (VMM)

The Computer is the Network

SERVICE COMBINATORS FOR
FARMING VIRTUAL MACHINES

An ambient calculus guy programs some real virtual machines

Joint work with Karthikeyan Bhargavan and Iman Narasamdya

A Programming Problem

• As input, we are given:
– Disk images for each server role in a multi-tier website

– Addresses for external services we depend upon

– Addresses for the services we are to export

• A human operator could run this application by:
– Provisioning (virtual) machines

– Configuring machines with suitable addresses

– Monitoring the machines and taking remedial actions

• The problem is to automate these tasks as operations logic
– The standard solution is to use low-level scripting

– Our solution (Baltic) is to use functional programming (F#, a dialect of
ML), and write code to manipulate abstract states of the application

Abstract States are Call Graphs

let ei = importPayment1 ()
let (vm1,e1) = createOrderProcessingRole ()
let (vm2,e2) = createOrderEntryRole ei e1
let () = exportOrderEntry e2

VMM

Baltic Process

Operations Logic
(F#)

Concrete Implementation

let ei = importPayment1 ()

let (vm1,e1) =
createOrderProcessingRole ()

let (vm2,e2) =
createOrderEntryRole ei e1

let () = exportOrderEntry e2

Proc
W2K3

Order
W2K3

Import
Forwarder

Export
Forwarder

Physical Server

Remote
Payment
Service

Management

Dataflow

VM

VM
Remote

(OrderEntry)
Clients

Remote
(OrderEntry)

Clients

Remote
(OrderEntry)

Clients

4 VMs, VMM, Baltic, External Client

States Evolve in Response to Events

Overloaded!

Crashed!

Abstract States are Well-Typed

EndPoint<Order,string>

EndPoint<Order,string>

EndPoint<Order,void>

EndPoint<Payment,string>

Disk images become typed functions:

EndPoint<Order,string>
createOrderEntryRole

(EndPoint<Payment,string> ep1,
EndPoint<Order,void> ep2)

EndPoint<Order,void>
createOrderProcessingRole ()

An Executable Formal Semantics

• We build a process model of a Baltic script in terms of
a typed, concurrent, partitioned, lambda calculus

• To model VMs, processes look like: a1[P1]|...|an[Pn] | Q

– where P1,..., Pn , Q are expressions in the calculus

• To model VM snapshots, we allow partitions [P] as values

• We can execute this model to generate symbolic traces and
pictorial call graphs, for debugging

• We prove that (1) well-typed programs map to well-typed
processes, and (2) process computation preserves typing

• Well-typed processes never send ill-formed messages;
hence, typing stops (some) interconnection errors

Baltic – Summary

• Various trends are turning datacentre management into a
programming problem

• How to code business logic is well understood, but how to
code operations logic is becoming a Hot Topic

• We explore a typed approach to operations logic within a
functional language (F#, a dialect of ML)

• As a first study, we focus on managing the operations of
service-oriented virtual machines on a single host

• We develop the design, implementation, and formal
semantics for a call-graph-based management API

• By assigning function types to whole disk images, we catch
some errors statically, but much more could be done...

REVOLUTION

Renting VMs over the Web

Global Computer – grid of geo-distributed data centres

Operating System – TBD

Search

Stored-Program Global Computers

• EC2 is imperfect, has research precursors, but from a user perspective it’s
revolutionary – users can run their own programs in the cloud – eg Hadoop

• Like the 1940s, transition from fixed-program to stored-program computers

• We know the basic parts (eg VMs), but what are the OSs, the languages?

• What do we need to enable a single coder to write a global app?

• This is a Hot Question in industry today, and platforms like EC2 allow any grad
student to have a go at implementing an answer

Mail

Social Network Your idea goes here

Resources for Part 1

• Hypervisor verification research at Saarbruecken
http://www.microsoft.com/emic/verisoft.mspx

• Microsoft Virtual Server (free download)
http://www.microsoft.com/windowsserversystem/virtualserver/

• Amazon EC2 (VMs at 10c per instance per hour)
http://aws.amazon.com/ec2

• James Hamilton’s recent talks (source of my datacentre picture)
http://research.microsoft.com/~jamesrh/

http://www.microsoft.com/emic/verisoft.mspx
http://www.microsoft.com/windowsserversystem/virtualserver/
http://aws.amazon.com/ec2
http://research.microsoft.com/~jamesrh/
http://research.microsoft.com/~jamesrh/

Thursday 25th 15:00-15:45

A Concurrent -Calculus
with Refinement types

Declarative Datacentres, Part 2
Based on joint work with Jesper Bengtson, Karthikeyan

Bhargavan, Cédric Fournet, and Sergio Maffeis

Why Study this Calculus?
• RCF is an assembly of standard parts, generalizing some ad hoc

constructions in language-based security
– FPC (Plotkin 1985, Gunter 1992) – core of ML and Haskell

– Concurrency in style of the pi-calculus (Milner, Parrow, Walker 1989) but
for a lambda-calculus (like 80s languages PFL, Poly/ML, CML)

– Formal crypto is derivable by coding up seals (Morris 1973, Sumii and
Pierce 2002), not primitive as in eg spi calculus(Abadi and Gordon, 1997)

– Security specs via assume/assert (Floyd, Hoare, Dijkstra 1970s),
generalizing eg correspondences (Woo and Lam 1992)

– To check assertions statically, rely on dependent functions and pairs with
subtyping (Cardelli 1988) and refinement types (Pfenning 1992, ...) aka
predicate subtyping (as in PVS, and more recently Russell)

– Public/tainted kinds to track data that may flow to or from the opponent,
as in Cryptyc (Gordon, Jeffrey 2002)

• For experiment, there is a downloadable implementation F7

RCF PART 1:
SYNTAX AND SEMANTICS

FUNCTIONAL PROGRAMMING
AND CONCURRENCY

Assume and Assert

• Suppose there is a global set of formulas, the log

• To evaluate assume C, add C to the log, and return ().

• To evaluate assert C, return ().
– If C logically follows from the logged formulas, we say the assertion

succeeds; otherwise, we say the assertion fails.

– The log is only for specification purposes; it does not affect execution

• assume Foo(); assert Bar(); assume Foo()Bar(); assert Bar()

• Our use of first-order logic predicates (like Foo()) generalizes
conventional assertions (like assert i>0 in eg JML, Spec#)
– Such predicates usefully represent security-related concepts like roles,

permissions, events, compromises

Friday 26th 11:15-12:00

APPLICATION OF RCF:
ACCESS CONTROL BY TYPING

Motivating Example: Access Control

• Example: untrusted
code calling into a
trusted library

• Trusted code
expresses security
policy with assumes
and asserts

• Every policy violation
causes an assertion
failure

• Idea: rule out
assertion failures
statically

Logging Dynamic Events

• Security policies
often stated in
terms of dynamic
events such as role
activations or data
checks

• We mark such
events by adding
formulas to the log
with assume

Access Control by Typing

• Preconditions express access control requirements

• Postconditions express results of validation

• We typecheck partially trusted code to guarantee all
preconditions (and hence all asserts) hold at run time

• To do so, we have an enhanced function type:
– (x1: T1) {C1}  (x2:T2) {C2}

– In RCF, these boil down to dependent functions plus refinement types

• Related work: eg types for stack inspection (Pottier, Skalka,
Smith), Aura (Zdancevic et al)

RCF PART 2:
TYPES FOR SAFETY

Three Steps Toward Safety by Typing

1. We include refinement types {x : T | C}, whose values are
those of T that satisfy C

2. To exploit refinements, we add a judgment E |- C, meaning
that C follows from the refinement types in E

3. To manage refinement formulas, we need (1) dependent
versions of the function and pair types, and (2) subtyping

Assume and Assert

Type System and Theorem

TYPE THEORIES BEHIND RCF

Summary of Part 2

• RCF supports functional programming a la ML and Haskell,

• concurrency in the style of process calculus,

• and refinement types allowing correctness properties to be stated
in the style of dependent type theory.

• Next, we will develop applications of RCF, and describe our
implementation http://research.microsoft.com/F7

• By embedding our theory of concurrency within an existing
language, we obtain a programming environment at once

• There are many open questions around RCF: partitions,
equivalences, type inference, mutable state, information flow

http://research.microsoft.com/F7

Friday 26th 12:15-13:00

Security Protocols and their
Implementations

Declarative Datacentres, Part 3

The Needham-Schroeder Problem

A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KB |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

67

In Using encryption for authentication in large networks of computers
(CACM 1978), Needham and Schroeder didn’t just initiate a field that
led to widely deployed protocols like Kerberos, SSL, SSH, IPSec, etc.

They threw down a gauntlet.

“Protocols such as those developed here are prone
to extremely subtle errors that are unlikely to be
detected in normal operation. The need for
techniques to verify the correctness of such
protocols is great, and we encourage those
interested in such problems to consider this area.”

A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KA |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

A B

Assuming A knows KB and B knows KA, we get the core protocol:

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

More precisely, the goals of the protocol are:
•After receiving message 6, A believes NA,NB shared just with B
•After receiving message 7, B believes NA,NB shared just with A

If these goals are met, A and B can subsequently rely on keys
derived from NA,NB to efficiently secure subsequent messages

A M

A certified user M can play a man-in-the-middle attack (Lowe 1995)

B

{| msg3(A,NA) |}KM

{| msg7(NB) |}KM

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

This run shows a certified user M can violate the protocol goals:
•After receiving message 6, A believes NA,NB shared just with M
•After receiving message 7, B believes NA,NB shared just with A

(Writing in the 70s, Needham and Schroeder assumed certified users
would not misbehave; we know now they do.)

Cryptographic Protocols

• Principals communicate over an untrusted network
– Our focus is on Internet protocols, but same principles apply to

banking, payment, and telephony protocols

• A range of security and privacy objectives is possible
– Message confidentiality – against release of contents
– Identity protection – against release of principal identities
– Message authentication – against impersonated access
– Message integrity – against tampering
– Message correlation – that a response matches a request
– Message freshness – against replays

• To achieve these goals, principals rely on applying
cryptographic algorithms to parts of messages, but also on
including message identifiers, nonces (unpredictable
quantities), and timestamps

71

Informal Methods

72

The Explicitness Principle

Robust security is about explicitness. A cryptographic protocol should
make any necessary naming, typing and freshness information explicit in
its messages; designers must also be explicit about their starting
assumptions and goals, as well as any algorithm properties which could
be used in an attack.

Anderson and Needham Programming Satan’s Computer 1995

Informal lists of prudent practices enumerate common patterns in the
extensive record of flawed protocols, and formulate positive advice for
avoiding each pattern.

(eg Abadi and Needham 1994, Anderson and Needham 1995)

For instance, Lowe’s famous fix of the Needham-Schroeder PK protocol
makes explicit that message 6, {|NA,B,NB|}KA, is sent by B, who is not
mentioned in the original version of the message.

Formal Methods

• Dolev&Yao first formalize N&S problem in early 80s

– Shared key decryption: { {M}K }K-1 = M

– Public key decryption: {| {| M |}KA |}KA-1 = M

– Their work now widely recognised, but at the time, no proof
techniques, so little applied

• In 1987, Burrows, Abadi and Needham (BAN) propose a
systematic rule-based logic for reasoning about protocols

– If P believes that he shares a key K with Q, and sees the message
M encrypted under K, then he will believe that Q once said M

– If P believes that the message M is fresh, and also believes that Q
once said M, then he will believe that Q believes M

– Neither sound nor complete, but useful; hugely influential

73

A Potted History: 1978-2005

74

A B

M

Hi Bob,
love Alice

Hate you,
Bob! -Alice

We assume that an intruder can interpose a
computer on all communication paths, and
thus can alter or copy parts of messages, replay
messages, or emit false material. While this
may seem an extreme view, it is the only safe
one when designing authentication protocols.

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”
1981: Denning and Sacco find attack found on N&S symmetric key protocol
1983: Dolev and Yao first formalize secrecy properties wrt N&S threat model, using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful
1994: Hickman (Netscape) invents SSL; holes in v2, but v3 fixes these, very widely deployed
1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed
1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
circa 2000: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation
circa 2005: Many FMs now developed; several deliver both accuracy and automation
2005: Cervesato et al find same insider attack as Lowe on proposed public-key Kerberos

Verifying Security Protocol Code
C Goubault-

Larrecq,
Parrennes

2005 Csur|SPASS FM NSL (self-written)

Java O'Shea 2006 LysaTool FM NSL, Otway-Rees
(self-written)

F# Bhargavan,
Fournet,
Gordon, Tse,
Swamy

2006 FS2PV|PV FM WS protocols et al
(self-written, but
interoperable)

Java Poll,
Schubert

2007 JML FSA MIDP-SSH
(independent)

F# Bhargavan,
Corin,
Fournet

2007 FS2CV|CV CM Self-written
examples

This table omits work on deriving code from models, and tools
to check for insecure configurations of security protocols

One Source, Three Tasks

Concrete
Crypto

Symbolic
Crypto

Some other
implementation

Verifier Crypto
NetPlatform (CLR)

InteroperabilitySymbolic
verification

Symbolic testing
& debugging

Application
Other

Libraries

AuthzMy code
My

protocol

Source code
(modules)

Symbolic
Model

Security
Goals

Source Language: F#

• F# is a dialect of ML running on the CLR developed by Don
Syme at MSR Cambridge
– First release around 2005; preview of product by 2008!

• An F# subset supports protocol programming, and model
extraction
– Simple formal semantics

– Modular programming based on typed interfaces

– Algebraic data types with pattern matching are useful for symbolic
crypto and XML processing

• Still, few protocols are written in F#…

77

Pi Calculus Verifier: ProVerif

• ProVerif is an automated cryptographic protocol
verifier developed by Bruno Blanchet

• What it can prove:
– Secrecy, authenticity (correspondence properties)

– Equivalences (e.g., secrecy properties)

• How it works:
– Internal representation based on Horn clauses

– Resolution-based algorithm, with clever selection rules

– Attack reconstruction

• Automatic, but source must be tuned for efficient verification

78

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. CSFW 2001
B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols. LICS 2005.

A Motivation for Refinement Types

• Even with some aggressive abstraction, FS2PV|PV is hitting
some long and unpredictable run times

• We think we may do better with source-level security types

Safety Results

Name LOC Crypto Ops Auth Secrecry Verif Time

SelfIssued-SOAP 1410 (80) 9,3 A1-A3 S1,S2 38s

UserPassword-TLS 1426(96) 0,5,17,6 A1-A3 S1,S2 24m40s

UserPassword-SOAP 1429(99) 9,11,17,6 A1-A3 S1,S2 20m53s

UserCertificate-SOAP 1429(99) 13,7,11,6 A1-A3 S1-S3 66m21s

UserCertificate-SOAP-v 1429(99) 7,5,7,4 A3 Fails! S1-S3 10s

Concrete Libraries

Symbolic Libraries

C.fs RP.fs IP.fs

Wssec.fsNet.fs Prins.fs Infocard.fs Wssec.fsNet.fs Prins.fs Infocard.fs

Pi.fs

.NET Platform Libraries
(Crypto, Networking, Credentials)

XMLdsig.fsXMLenc.fs

SOAP.fs

WSSecurity.fs

WSAddressing.fs

Symbolic Debugging Execution and Interop

Run Verify

Yes

Attack!

Security Verification

Run

No

A Reference InfoCard Implementation

MODELLING CRYPTOGRAPHIC
ALGORITHMS IN RCF

Morris’ Seal Abstraction

Seals within RCF

Representing Crypto with Seals

A TINY PROTOCOL

A B : M, hmac(skAB,M)

type event = Send of string
type message = (string * hmac) pickled

let make hk s = pickle (s,hmacsha1 hk (pickle s))

let check hk m =
let s,h = unpickle m in
let sv = hmacsha1Verify hk (pickle s) h in unpickle sv

let addr = http "http://localhost:7000/hmac"
let hk = mkHKey()

let client text = assume (Send(text));
let c = connect addr in
send c (make hk text)

let server () = let c = listen addr in
let text = check hk (recv c) in
assert (Send text)

val fork : (unit -> unit) -> unit
type name
val name : string -> name
type 'a chan
val chan : string -> 'a chan
val send : 'a chan -> 'a -> unit
val recv : 'a chan -> ‘a

type 'a Seal = ('a -> Un) * (Un -> 'a)
val mkSeal: string -> 'a Seal
type 'a SealRef = (('a* Un) list) ref

The first part of the attacker library represents our formal model,
eg, the ability to compute with and communicate seals

type ('a, 'b) addr
type ('a, 'b) conn
val http : string -> ('a, 'b) addr
val connect : ('a, 'b) addr -> ('a, 'b) conn
val listen : ('a, 'b) addr -> ('b, 'a) conn
val close : ('a, 'b) conn -> unit
val send : ('a, 'b) conn -> 'a pickled -> unit
val recv : ('a, 'b) conn -> 'b pickled

type str
type bytes
type 'a pickled
type 'a hkey
type hmac
val str : string -> str
val istr : str -> string
val concat : bytes -> bytes -> bytes
val pickle : 'a -> 'a pickled
val unpickle : 'a pickled -> 'a
type 'a hkey = HK of 'a pickled Seal
type hmac = HMAC of Un
val mkHKey: unit -> 'a hkey
val hmacsha1: 'a hkey -> 'a pickled -> hmac
val hmacsha1Verify:
'a hkey -> Un -> hmac -> 'a pickled...

The second part of the attacker library is the computing platform.
The concrete implementations use the actual platform (eg .NET).
The abstract implementations use PrimCrypto and Pi.

val addr : (string * hmac, unit) addr
val client: string -> unit
val server: unit -> unit

The problem: can any attacker break any assertion, given
access to the following interfaces:

RCF III: TYPES FOR ROBUST SAFETY

Universal, Tainted, Public Types

The F7 Typechecker

file.fs7

file.fs

file.fsiType check

Generate proof obligations
Z3

fsc

• Our extended typechecker “compiles” .fs7 and .fs to .fsi
– We typecheck .fs implementation against series of .fs7 interfaces

– We kind-check .fs7 interfaces (every public value is indeed public)

– We generate .fsi interfaces by erasure from .fs7

• We deal with a subset of F# larger than our core calculus
– We treat many constructs as syntactic sugar (eg, records, patterns)

– We support value- and type-polymorphic types

• We do some type inference
– Plain F# types as usual

– Refinement types typically require annotations

• We call Z3 on every non-trivial proof obligation
– We generate type-based assumptions for data structures

– Incomplete, but good enough for now

Evaluation so Far

• We can typecheck some non-trivial functions

• Not yet comparable with ProVerif

Sample .fs .fs7
Time

(s)
Z3

Obligations
Time per

Obligation
Obligations

per Line

Logs and Queries 37 16 2.8 6 0.47 0.16

MAC Protocol 40 12 2.5 3 0.83 0.08

Princs and Comp 48 26 3.1 12 0.26 0.25

Certificate Chains 61 21 3.65 19 0.19 0.31

Access Control 104 34 8.3 16 0.52 0.15

Flexible Signatures 167 52 14.6 28 0.52 0.17

Typed Libraries 440 146 12.1 12 1.01 0.03

Limits of the Model

• As usual, formal security guarantees hold
only within the boundaries of the model
– We keep model and implementation in sync

– We automatically deal with very precise models

– We can precisely “program” the attacker model

• We verify our own implementations, not legacy code

• We trust the compiler, runtime, typechecker
– Our method only finds bugs in the protocol code in F#

– Independent certification is possible, but a separate problem

• We trust our symbolic model of cryptography
– Partial computational soundness results may apply

– Further verification tools may use a concrete model

97

98

Summary of Part 3
• We verify reference implementations of security protocols
• Our implementations run with both concrete and symbolic

cryptographic libraries.
– Concrete implementation for production and interop testing

– Symbolic implementation for debugging and verification

• We develop our approach for protocols written in F#
– We show its correctness for a range of security properties, against

realistic classes of adversaries

– Tool FS2PV compiles to applied pi calculus, and relies on ProVerif,

– Tool F7 relies on refinement types, based on the RCF calculus

– Case studies include WS security, CardSpace, SSL/TLS

• Some challenges
– Establish computational guarantees (eg FS2CV)

– Move from functional to imperative implementations

– Move from F# to C

THE END

