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Syllabus

1. V for Virtual

2. A Concurrent -Calculus with Refinement Types

3. Security Protocols and their Implementations

The theoretical core is the typed lambda-calculus RCF, and its implementation as an 
enhanced typechecker for F#; RCF supports functional programming a la ML and 
Haskell, concurrency in the style of process calculus, and refinement types allowing 
correctness properties to be stated in style of dependent type theory.

We will examine a diverse (but hardly exhaustive) range of problems in the area of 
programming datacentres: cryptographic security protocols, language-based access 
control, and the assembly and management of software components such as VMs



V for Virtual

Declarative Datacentres, Part 1



VIRTUALIZATION:
WHAT AND WHY?



What is a Virtual Machine?

• A virtual machine monitor (VMM) contains one or more VMs

• Each VM runs a guest OS, which itself runs applications

• The VMM may run under a host OS, or on the bare machine

“A virtual machine is an efficient, isolated duplicate of 
the real machine” (Popek and Goldberg, CACM 1974)



Why
Virtualize?

Comparison with     
Real Machines

• Better hardware utilization

• Better application isolation

• Faster provisioning

• Poorer performance

Applications of 
Virtualization

• Server (or client) consolidation

• Development and test

• Legacy applications

• Training and demos

• Security



What Is, and Isn’t, a VMM?

• Efficient: An overwhelming majority of guest instructions are 
executed by the hardware without VMM intervention

• Duplicate: Software on the VMM executes identically(*) to its 
execution on hardware, barring timing effects

• Isolated: The VMM manages all hardware resources

• Non-examples:
– Language-based VMs eg Sun’s JVM or Microsoft’s CLR

– Hardware emulators eg Virtual PC on Macs with PowerPC hardware

G. Popek and R. P. Goldberg (1974). Formal requirements for 
virtualizable third generation architectures.  CACM 17(7):412-421.

K. Adams and O. Ageson (2006). A comparison of software and 
hardware techniques for x86 virtualization.  ASPLOS’06.



HOW VIRTUALIZATION WORKS



Computer

Operating System Kernel

Application Process

SYS print “Hello world!”                 PRT “Hello world!” 

PRT “Hello world!”                         Terminate process

Printer
Hello World!

How an Operating System Works

CPU state: registers (eg M is user or kernel mode), ...

trap

trap



Computer

Virtual Machine Monitor (VMM)

Operating System Kernel

Printer
Hello World!

How Classic Virtualization Works

Application Process
SYS print “Hello world!”             PRT “Hello world!”

m=kernel;                       if (m==kernel) PRT “Hello world!”
emulate system call        else emulate trap to kernel

Shadow state: m=user, ...

Real CPU state: registers (eg M is user or kernel mode), ...



But x86 is Not Classically Virtualizable

• In a classically virtualizable architecture, all instructions that 
access privileged state can be set to trap if run in user mode

• In x86, instructions can access privileged state in user mode 
without trapping
– For example, in kernel mode popf modifies the interrupt-related IF 

flag; in user mode, modifications to IF are suppressed, with no trap

• Hence, VMMs for x86 rely on binary translation (BT)
– To run kernel mode guest code, the VMM inserts additional 

instructions to emulate the kernel mode behaviour in user mode

– popf turns into a short instruction sequence to access shadow state

• Since 2005, AMD’s SVM & Intel’s VT provide hardware support

J.S. Robin and C.E. Irvine (2000). Analysis of the Intel Pentium's ability to 
support a secure virtual machine monitor. In 9th USENIX Security Symposium.



Computer 

Virtual Machine Monitor (VMM)

The Computer is the Network



SERVICE COMBINATORS FOR 
FARMING VIRTUAL MACHINES

An ambient calculus guy programs some real virtual machines

Joint work with Karthikeyan Bhargavan and Iman Narasamdya



A Programming Problem

• As input, we are given:
– Disk images for each server role in a multi-tier website

– Addresses for external services we depend upon

– Addresses for the services we are to export

• A human operator could run this application by:
– Provisioning  (virtual) machines

– Configuring machines with suitable addresses

– Monitoring the machines and taking remedial actions

• The problem is to automate these tasks as operations logic
– The standard solution is to use low-level scripting

– Our solution (Baltic) is to use functional programming (F#, a dialect of 
ML), and write code to manipulate abstract states of the application



Abstract States are Call Graphs

let ei = importPayment1 ()
let (vm1,e1) = createOrderProcessingRole ()
let (vm2,e2) = createOrderEntryRole ei e1
let () = exportOrderEntry e2



VMM

Baltic Process

Operations Logic 
(F#)

Concrete Implementation

let ei = importPayment1 ()

let (vm1,e1) = 
createOrderProcessingRole ()

let (vm2,e2) = 
createOrderEntryRole ei e1

let () = exportOrderEntry e2

Proc
W2K3

Order
W2K3

Import
Forwarder

Export 
Forwarder

Physical Server

Remote 
Payment 
Service

Management

Dataflow

VM

VM
Remote

(OrderEntry) 
Clients

Remote
(OrderEntry) 

Clients

Remote
(OrderEntry) 

Clients



4 VMs, VMM, Baltic, External Client



States Evolve in Response to Events

Overloaded!

Crashed!



Abstract States are Well-Typed

EndPoint<Order,string>

EndPoint<Order,string>

EndPoint<Order,void>

EndPoint<Payment,string>

Disk images become typed functions:

EndPoint<Order,string>
createOrderEntryRole 

(EndPoint<Payment,string> ep1,
EndPoint<Order,void>  ep2)

EndPoint<Order,void>
createOrderProcessingRole ()



An Executable Formal Semantics

• We build a process model of a Baltic script in terms of 
a typed, concurrent, partitioned, lambda calculus

• To model VMs, processes look like: a1[P1]|...|an[Pn] | Q

– where P1,..., Pn , Q are expressions in the calculus

• To model VM snapshots, we allow partitions [P] as values

• We can execute this model to generate symbolic traces and 
pictorial call graphs, for debugging 

• We prove that  (1) well-typed programs map to well-typed 
processes, and (2) process computation preserves typing

• Well-typed processes never send ill-formed messages; 
hence, typing stops (some) interconnection errors



Baltic – Summary 

• Various trends are turning datacentre management into a 
programming problem

• How to code business logic is well understood, but how to 
code operations logic is becoming a Hot Topic

• We explore a typed approach to operations logic within a 
functional language (F#, a dialect of ML)

• As a first study, we focus on managing the operations of 
service-oriented virtual machines on a single host

• We develop the design, implementation, and formal 
semantics for a call-graph-based management API

• By assigning function types to whole disk images, we catch 
some errors statically, but much more could be done...



REVOLUTION



Renting VMs over the Web







Global Computer – grid of geo-distributed data centres

Operating System – TBD 

Search

Stored-Program Global Computers

• EC2 is imperfect, has research precursors, but from a user perspective it’s 
revolutionary – users can run their own programs in the cloud – eg Hadoop

• Like the 1940s, transition from fixed-program to stored-program computers

• We know the basic parts (eg VMs), but what are the OSs, the languages?

• What do we need to enable a single coder to write a global app?

• This is a Hot Question in industry today, and platforms like EC2 allow any grad 
student to have a go at implementing an answer

Mail

Social Network Your idea goes here



Resources for Part 1

• Hypervisor verification research at Saarbruecken
http://www.microsoft.com/emic/verisoft.mspx

• Microsoft Virtual Server (free download) 
http://www.microsoft.com/windowsserversystem/virtualserver/

• Amazon EC2 (VMs at 10c per instance per hour)                                              
http://aws.amazon.com/ec2

• James Hamilton’s recent talks (source of my datacentre picture) 
http://research.microsoft.com/~jamesrh/

http://www.microsoft.com/emic/verisoft.mspx
http://www.microsoft.com/windowsserversystem/virtualserver/
http://aws.amazon.com/ec2
http://research.microsoft.com/~jamesrh/
http://research.microsoft.com/~jamesrh/
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A Concurrent -Calculus  
with Refinement types

Declarative Datacentres, Part 2
Based on joint work with Jesper Bengtson, Karthikeyan

Bhargavan, Cédric Fournet, and Sergio Maffeis



Why Study this Calculus?
• RCF is an assembly of standard parts, generalizing some ad hoc 

constructions in language-based security
– FPC (Plotkin 1985, Gunter 1992) – core of ML and Haskell

– Concurrency in style of the pi-calculus (Milner, Parrow, Walker 1989) but 
for a lambda-calculus (like 80s languages PFL, Poly/ML, CML)

– Formal crypto is derivable by coding up seals (Morris 1973, Sumii and 
Pierce 2002), not primitive as in eg spi calculus(Abadi and Gordon, 1997)

– Security specs via assume/assert (Floyd, Hoare, Dijkstra 1970s), 
generalizing eg correspondences (Woo and Lam 1992)

– To check assertions statically, rely on dependent functions and pairs with 
subtyping (Cardelli 1988) and refinement types (Pfenning 1992, ...)  aka 
predicate subtyping (as in PVS, and more recently Russell)

– Public/tainted kinds to track data that may flow to or from the opponent, 
as in Cryptyc (Gordon, Jeffrey 2002)

• For experiment, there is a downloadable implementation F7



RCF PART 1:
SYNTAX AND SEMANTICS



















FUNCTIONAL PROGRAMMING
AND CONCURRENCY



Assume and Assert

• Suppose there is a global set of formulas, the log

• To evaluate assume C, add C to the log, and return ().

• To evaluate assert C, return ().
– If C logically follows from the logged formulas, we say the assertion 

succeeds; otherwise, we say the assertion fails.  

– The log is only for specification purposes; it does not affect execution

• assume Foo(); assert Bar(); assume Foo()Bar(); assert Bar()

• Our use of first-order logic predicates (like Foo()) generalizes 
conventional assertions (like assert i>0 in eg JML, Spec#)
– Such predicates usefully represent security-related concepts like roles, 

permissions, events, compromises
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APPLICATION OF RCF:
ACCESS CONTROL BY TYPING



Motivating Example: Access Control

• Example: untrusted
code calling into a 
trusted library

• Trusted code 
expresses security 
policy with assumes 
and asserts

• Every policy violation 
causes an assertion 
failure

• Idea: rule out 
assertion failures 
statically



Logging Dynamic Events

• Security policies 
often stated in 
terms of dynamic 
events such as role 
activations or data 
checks

• We mark such 
events by adding 
formulas to the log 
with assume



Access Control by Typing

• Preconditions express access control requirements

• Postconditions express results of validation

• We typecheck partially trusted code to guarantee all 
preconditions (and hence all asserts) hold at run time

• To do so, we have an enhanced function type:
– (x1: T1) {C1}  (x2:T2) {C2}

– In RCF, these boil down to dependent functions plus refinement types

• Related work: eg types for stack inspection (Pottier, Skalka, 
Smith), Aura (Zdancevic et al)



RCF PART 2:
TYPES FOR SAFETY





Three Steps Toward Safety by Typing

1. We include refinement types {x : T | C}, whose values are 
those of T that satisfy C

2. To exploit refinements, we add a judgment E |- C, meaning 
that C follows from the refinement types in E

3. To manage refinement formulas, we need (1) dependent 
versions of the function and pair types, and (2) subtyping









Assume and Assert









Type System and Theorem



TYPE THEORIES BEHIND RCF



Summary of Part 2

• RCF supports functional programming a la ML and Haskell,

• concurrency in the style of process calculus,

• and refinement types allowing correctness properties to be stated 
in the style of dependent type theory.

• Next, we will develop applications of RCF, and describe our 
implementation http://research.microsoft.com/F7

• By embedding our theory of concurrency within an existing 
language, we obtain a programming environment at once

• There are many open questions around RCF: partitions, 
equivalences, type inference, mutable state, information flow

http://research.microsoft.com/F7
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Security Protocols and their 
Implementations

Declarative Datacentres, Part 3



The Needham-Schroeder Problem

A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KB |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

67

In Using encryption for authentication in large networks of computers 
(CACM 1978), Needham and Schroeder didn’t just initiate a field that 
led to widely deployed protocols like Kerberos, SSL, SSH, IPSec, etc.  

They threw down a gauntlet.

“Protocols such as those developed here are prone 
to extremely subtle errors that are unlikely to be 
detected in normal operation.  The need for 
techniques to verify the correctness of such 
protocols is great, and we encourage those 
interested in such problems to consider this area.”



A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KA |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7



A B

Assuming A knows KB and B knows KA, we get the core protocol:

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

More precisely, the goals of the protocol are:
•After receiving message 6, A believes NA,NB shared just with B
•After receiving message 7, B believes NA,NB shared just with A

If these goals are met, A and B can subsequently rely on keys
derived from NA,NB to efficiently secure subsequent messages



A M

A certified user M can play a man-in-the-middle attack (Lowe 1995)

B

{| msg3(A,NA) |}KM

{| msg7(NB) |}KM

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

This run shows a certified user M can violate the protocol goals:
•After receiving message 6, A believes NA,NB shared just with M
•After receiving message 7, B believes NA,NB shared just with A

(Writing in the 70s, Needham and Schroeder assumed certified users
would not misbehave; we know now they do.)



Cryptographic Protocols

• Principals communicate over an untrusted network
– Our focus is on Internet protocols, but same principles apply to 

banking, payment, and telephony protocols

• A range of security and privacy objectives is possible
– Message confidentiality – against release of contents
– Identity protection – against release of principal identities
– Message authentication – against impersonated access
– Message integrity – against tampering
– Message correlation – that a response matches a request
– Message freshness – against replays

• To achieve these goals, principals rely on applying 
cryptographic algorithms to parts of messages, but also on 
including message identifiers, nonces (unpredictable 
quantities), and timestamps

71



Informal Methods

72

The Explicitness Principle

Robust security is about explicitness.  A cryptographic protocol should 
make any necessary naming, typing and freshness information explicit in 
its messages; designers must also be explicit about their starting 
assumptions and goals, as well as any algorithm properties which could 
be used in an attack.

Anderson and Needham Programming Satan’s Computer 1995

Informal lists of prudent practices enumerate common patterns in the 
extensive record of flawed protocols, and formulate positive advice for 
avoiding each pattern.

(eg Abadi and Needham 1994, Anderson and Needham 1995)

For instance, Lowe’s famous fix of the Needham-Schroeder PK protocol 
makes explicit that message 6, {|NA,B,NB|}KA, is sent by B, who is not 
mentioned in the original version of the message. 



Formal Methods

• Dolev&Yao first formalize N&S problem in early 80s

– Shared key decryption: { {M}K }K-1 = M

– Public key decryption: {| {| M |}KA |}KA-1 = M

– Their work now widely recognised, but at the time, no proof 
techniques, so little applied

• In 1987, Burrows, Abadi and Needham (BAN) propose a 
systematic rule-based logic for reasoning about protocols

– If P believes that he shares a key K with Q, and sees the message 
M encrypted under K, then he will believe that Q once said M

– If P believes that the message M is fresh, and also believes that Q 
once said M, then he will believe that Q believes M

– Neither sound nor complete, but useful; hugely influential

73



A Potted History: 1978-2005

74

A B

M

Hi Bob,
love Alice

Hate you, 
Bob! -Alice

We assume that an intruder can interpose a 
computer on all communication paths, and 
thus can alter or copy parts of messages, replay 
messages, or emit false material.  While this 
may seem an extreme view, it is the only safe 
one when designing authentication protocols.

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”
1981: Denning and Sacco find attack found on N&S symmetric key protocol
1983: Dolev and Yao first formalize secrecy properties wrt N&S threat model, using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful
1994: Hickman (Netscape) invents SSL; holes in v2, but v3 fixes these, very widely deployed
1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed
1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
circa 2000: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation
circa 2005: Many FMs now developed; several deliver both accuracy and automation
2005: Cervesato et al find same insider attack as Lowe on proposed public-key Kerberos



Verifying Security Protocol Code
C Goubault-

Larrecq,
Parrennes

2005 Csur|SPASS FM NSL (self-written)

Java O'Shea 2006 LysaTool FM NSL, Otway-Rees 
(self-written)

F# Bhargavan, 
Fournet, 
Gordon, Tse, 
Swamy

2006 FS2PV|PV FM WS protocols et al 
(self-written, but 
interoperable)

Java Poll,
Schubert

2007 JML FSA MIDP-SSH
(independent)

F# Bhargavan, 
Corin, 
Fournet

2007 FS2CV|CV CM Self-written 
examples

This table omits work on deriving code from models, and tools 
to check for insecure configurations of security protocols



One Source, Three Tasks

Concrete
Crypto

Symbolic
Crypto

Some other 
implementation

Verifier Crypto
NetPlatform (CLR)

InteroperabilitySymbolic
verification

Symbolic testing
& debugging

Application
Other

Libraries

AuthzMy code
My

protocol

Source code
(modules) 

Symbolic
Model

Security
Goals



Source Language: F#

• F# is a dialect of ML running on the CLR developed by Don 
Syme at MSR Cambridge
– First release around 2005; preview of product by 2008!

• An F# subset supports protocol programming, and model 
extraction
– Simple formal semantics

– Modular programming based on typed interfaces

– Algebraic data types with pattern matching are useful for symbolic 
crypto and XML processing

• Still, few protocols are written in F#…

77



Pi Calculus Verifier: ProVerif

• ProVerif is an automated cryptographic protocol
verifier developed by Bruno Blanchet

• What it can prove:
– Secrecy, authenticity (correspondence properties)

– Equivalences (e.g., secrecy properties)

• How it works:
– Internal representation based on Horn clauses

– Resolution-based algorithm, with clever selection rules

– Attack reconstruction

• Automatic, but source must be tuned for efficient verification

78

B. Blanchet.  An efficient cryptographic protocol verifier based on Prolog rules.  CSFW 2001
B. Blanchet, M. Abadi, and C. Fournet.  Automated verification of selected equivalences for 
security protocols.  LICS 2005.



A Motivation for Refinement Types

• Even with some aggressive abstraction, FS2PV|PV is hitting 
some long and unpredictable run times

• We think we may do better with source-level  security types

Safety Results

Name LOC Crypto Ops Auth Secrecry Verif Time

SelfIssued-SOAP 1410 (80) 9,3 A1-A3 S1,S2 38s

UserPassword-TLS 1426(96) 0,5,17,6 A1-A3 S1,S2 24m40s

UserPassword-SOAP 1429(99) 9,11,17,6 A1-A3 S1,S2 20m53s

UserCertificate-SOAP 1429(99) 13,7,11,6 A1-A3 S1-S3 66m21s

UserCertificate-SOAP-v 1429(99) 7,5,7,4 A3 Fails! S1-S3 10s

Concrete Libraries

Symbolic Libraries

C.fs RP.fs IP.fs

Wssec.fsNet.fs Prins.fs Infocard.fs Wssec.fsNet.fs Prins.fs Infocard.fs

Pi.fs

.NET Platform Libraries 
(Crypto, Networking, Credentials)

XMLdsig.fsXMLenc.fs

SOAP.fs

WSSecurity.fs

WSAddressing.fs

Symbolic Debugging Execution and Interop

Run Verify

Yes

Attack!

Security Verification

Run

No

A Reference InfoCard Implementation



MODELLING CRYPTOGRAPHIC 
ALGORITHMS IN RCF



Morris’ Seal Abstraction



Seals within RCF



Representing Crypto with Seals



A TINY PROTOCOL

A B : M, hmac(skAB,M)



type event = Send of string
type message = (string * hmac) pickled

let make hk s = pickle (s,hmacsha1 hk (pickle s))

let check hk m =
let s,h = unpickle m in
let sv = hmacsha1Verify hk (pickle s) h in unpickle sv

let addr = http "http://localhost:7000/hmac"
let hk = mkHKey()

let client text = assume (Send(text)); 
let c  = connect addr in 
send c (make hk text)

let server () =  let c = listen addr in 
let text = check hk (recv c) in 
assert (Send text)



val fork : (unit -> unit) -> unit
type  name
val name : string -> name
type 'a chan
val chan : string -> 'a chan
val send : 'a chan -> 'a -> unit
val recv : 'a chan -> ‘a

type 'a Seal = ('a -> Un) * (Un -> 'a) 
val mkSeal: string -> 'a Seal
type 'a SealRef = (('a* Un) list) ref

The first part of the attacker library represents our formal model, 
eg, the ability to compute with and communicate seals



type ('a, 'b) addr
type ('a, 'b) conn
val http : string -> ('a, 'b) addr
val connect : ('a, 'b) addr -> ('a, 'b) conn
val listen : ('a, 'b) addr -> ('b, 'a) conn
val close : ('a, 'b) conn -> unit
val send : ('a, 'b) conn -> 'a pickled -> unit
val recv : ('a, 'b) conn -> 'b pickled

type str
type bytes
type 'a pickled
type 'a hkey
type hmac
val str : string -> str
val istr : str -> string
val concat : bytes -> bytes -> bytes
val pickle : 'a -> 'a pickled
val unpickle : 'a pickled -> 'a
type 'a hkey = HK of 'a pickled Seal
type hmac = HMAC of Un
val mkHKey: unit -> 'a hkey
val hmacsha1: 'a hkey -> 'a pickled -> hmac
val hmacsha1Verify:
'a hkey -> Un -> hmac -> 'a pickled...

The second part of the attacker library is the computing platform.
The concrete implementations use the actual platform (eg .NET).
The abstract implementations use PrimCrypto and Pi.



val addr : (string * hmac, unit) addr
val client: string -> unit
val server: unit -> unit

The problem: can any attacker break any assertion, given 
access to the following interfaces:



RCF III: TYPES FOR ROBUST SAFETY



Universal, Tainted, Public Types







The F7 Typechecker

file.fs7

file.fs

file.fsiType check

Generate proof obligations
Z3

fsc



• Our extended typechecker “compiles” .fs7 and .fs to .fsi
– We typecheck .fs implementation against series of .fs7 interfaces

– We kind-check .fs7 interfaces (every public value is indeed public)

– We generate .fsi interfaces by erasure from .fs7

• We deal with a subset of F# larger than our core calculus
– We treat many constructs as syntactic sugar (eg, records, patterns)

– We support value- and type-polymorphic types 

• We do some type inference
– Plain F# types as usual

– Refinement types typically require annotations

• We call Z3 on every non-trivial proof obligation
– We generate type-based assumptions for data structures

– Incomplete, but good enough for now





Evaluation so Far

• We can typecheck some non-trivial functions

• Not yet comparable with ProVerif

Sample .fs .fs7
Time 

(s)
Z3 

Obligations
Time per 

Obligation
Obligations 

per Line

Logs and Queries 37 16 2.8 6 0.47 0.16

MAC Protocol 40 12 2.5 3 0.83 0.08

Princs and Comp 48 26 3.1 12 0.26 0.25

Certificate Chains 61 21 3.65 19 0.19 0.31

Access Control 104 34 8.3 16 0.52 0.15

Flexible Signatures 167 52 14.6 28 0.52 0.17

Typed Libraries 440 146 12.1 12 1.01 0.03



Limits of the Model

• As usual, formal security guarantees hold
only within the boundaries of the model
– We keep model and implementation in sync

– We automatically deal with very precise models

– We can precisely “program” the attacker model

• We verify our own implementations, not legacy code

• We trust the compiler, runtime, typechecker
– Our method only finds bugs in the protocol code in F#

– Independent certification is possible, but a separate problem

• We trust our symbolic model of cryptography
– Partial computational soundness results may apply

– Further verification tools may use a concrete model

97
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Summary of Part 3
• We verify reference implementations of security protocols
• Our implementations run with both concrete and symbolic 

cryptographic libraries.
– Concrete implementation for production and interop testing

– Symbolic implementation for debugging and verification

• We develop our approach for protocols written in F#
– We show its correctness for a range of security properties, against 

realistic classes of adversaries

– Tool FS2PV compiles to applied pi calculus, and relies on ProVerif,

– Tool F7 relies on refinement types, based on the RCF calculus

– Case studies include WS security, CardSpace, SSL/TLS

• Some challenges
– Establish computational guarantees (eg FS2CV)

– Move from functional to imperative implementations

– Move from F# to C



THE END


