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Abstract. This paper describes a core component of Mobius’ Trusted
Code Base, the Mobius base logic. This program logic facilitates the
transmission of certificates that are generated using logic- and type-based
techniques and is formally justified w.r.t. the Bicolano operational model
of the JVM. The paper motivates major design decisions, presents core
proof rules, describes an extension for verifying intensional code proper-
ties, and considers applications concerning security policies for resource
consumption and resource access.

1 Introduction: Role of the logic in Mobius

The goal of the Mobius project consists of the development of proof-carrying
code (PCC) technology for the certification of resource-related and information-
security-related program properties [16]. According to the PCC paradigm, code
consumers are invited to specify conditions (“policies”) which they require trans-
mitted code to satisfy before they are willing to execute such code. Providers of
programs then complement their code with formal evidence demonstrating that
the program adheres to such policies. Finally, the recipient validates that the
obtained evidence (“certificate”) indeed applies to the transmitted program and
is appropriate for the policy in question before executing the code.

One of the cornerstones of a PCC architecture is the trusted computing base
(TCB), i.e. the collection of notions and tools in whose correctness the recipi-
ent implicitly trusts. Typically, the TCB consists of a formal model of program
execution, plus parsing and transformation programs that translate policies and
certificates into statements over these program executions. The Mobius architec-
ture applies a variant of the foundational PCC approach [2] where large extents
of the TCB are represented in a theorem prover, for the following reasons.

– Formalising a (e.g. operational) semantics of transmitted programs in a the-
orem prover provides a precise definition of the model of program execution,
making explicit the underlying assumptions regarding arithmetic and logic

– The meaning of policies may be made precise by giving formal interpretations
in terms of the operational model

– Theorem provers offer various means to define formal notions of certificates,
ranging from proof scripts formulated in the user interface language (includ-
ing tactics) of the theorem prover to terms in the prover’s internal represen-
tation language for proofs (e.g. lambda-terms).



In particular, the third item allows one to employ a variety of certificate notions
in a uniform framework, and to explore their suitability for different certifi-
cate generation techniques or families of policies. In contrast to earlier PCC
systems which targeted mostly type- and memory-safety [27, 2], policies and
specifications in Mobius are more expressive, ranging from (upper) bounds on
resource consumption, via access regulations for external resources and security
specifications limiting the flow of information to lightweight functional speci-
fications [16]. Thus, the Mobius TCB is required to support program analysis
frameworks such as type systems and abstract interpretation, but also logical
reasoning techniques.
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Fig. 1. Core components of the MOBIUS TCB

Figure 1 depicts the components of the Mobius TCB and their relations. The
base of the TCB is formed by a formalised operational model of the Java Virtual
Machine, Bicolano [30], which will be briefly described in the next section. Its
purpose is to define the meaning of JVML programs unambiguously and to serve
as the foundation on which the PCC framework is built. In order to abstract
from inessential details, a program logic is defined on top of Bicolano. This pro-
vides support for commonly used verification patterns such as the verification of
loops. Motivated by verification idioms used in higher-level formalisms such as
type systems, the JML specification language, and verification condition genera-
tors, the logic complements partial-correctness style specifications by two further
assertion forms: local annotations are attached to individual program points and



are guaranteed to hold whenever the annotated program point is visited during
a program execution. Strong invariants assert that a particular property will
continue to hold for all future states during the execution of a method, includ-
ing states inside inner method invocations. The precise interpretation of these
assertion forms, and a selection of proof rules will be described in Section 3.

We also present an extension of the program logic that supports reasoning
about the effects of computations. The extended logic arises uniformly from a
corresponding generic extension of the operational semantics. Using different
instantiations of this framework one may obtain domain-specific logics for rea-
soning about access to external resources, trace properties, or the consumption
of resources. Polices for such domains are difficult if not impossible to express
purely in terms of relations between initial and final states. The extension is
horizontal in the sense of Czarnik and Schubert [20] as it is conservative over
the non-extended (“base”) architecture.

The glue between the components is provided by the theorem prover Coq,
i.e. many of the soundness proofs have been formalised. The encoding of the pro-
gram logics follow the approach advocated by Kleymann and Nipkow [25, 29] by
employing a shallow embedding of formulae. Assertions may thus be arbitrary
Coq-definable predicates over states. Although the logic admits the encoding of
a variety of program analyses and specification constructs, it should be noted
that the architecture does not mandate that all analyses be justified with respect
to this logic. Indeed, some type systems for information flow, for example, are
most naturally expressed directly in terms of the operational semantics, as al-
ready the definition of information flow security is a statement over two program
executions. In neither case do we need to construct proofs for concrete programs
by hand which would be a daunting task in all but the simplest examples. Such
proofs are always obtained from a successful run of a type system or program
analysis by an automatic translation into the Mobius infrastructure. Examples
of this method are given in Sections 4 and 5.2.

Outline We give a high-level summary of the operational model Bicolano [30],
restricted to a subset of instructions relevant for the present paper, in Section
2. In Section 3 we present the program logic. Section 4 contains an example of a
type-based verification and shows how a bytecode-level type system guaranteeing
a constant upper bound on the number of heap allocations may be encoded in
the logic. The extended program logic is outlined in Section 5, together with an
application concerning a type system for numeric correspondence assertions [34].
We first discuss some related work.

1.1 Related work

The basic design decisions for the base logic were presented in [8], and the reader
is referred to loc.cit. for a more in-depth motivation of the chosen format of as-
sertions and rules. In that paper, we also presented a type-system for constant
heap space consumption for a functional intermediate language, such that typing



derivations could be translated into program logic derivations over an appropri-
ately restricted judgement form. In contrast, the type system given in the present
paper works directly on bytecode and hence eliminates the language translation
from the formalised TCB.

The first proposal for a program logic for bytecode we are aware of is the
one by Quigley [31]. In order to justify a rule for while loops, Quigley introduces
various auxiliary notions for relating initial states to intermediate states of an
execution sequence, and for relating states that behave similarly but apply to
different classes. Bannwart and Müller [4] present a logic where assertions ap-
ply at intermediate states and are interpreted as preconditions of the assertions
decorating the successor instructions. However, the occurrence of these local
specifications in positive and negative positions in this interpretation precludes
the possibility of introducing a rule of consequence. Indeed, our proposed rule
format arose originally from an attempt to extend Bannwart and Müller’s logic
with a rule of consequence and machinery for allowing assertions to mention ini-
tial states. Strong invariants were introduced by the Key project [6] for reasoning
about transactional safety of Java Card applications using dynamic logics [7].

Regarding formal encodings of type systems into program logics, Hähnle et
al. [23], and Beringer and Hofmann [9] consider the task of representing infor-
mation flow type systems in program logics, while the MRG project focused on
a formalising a complex type system for input-dependent heap space usage [10].

Certified abstract interpretation [11] complements the type-based certificate
generation route considered in the present paper. Similar to the relationship
between Necula-Lee-style PCC [27] and foundational PCC by Appel et al. [2],
certified abstract interpretation may be seen as a foundational counterpart to
Albert et al.’s Abstraction-carrying code [1]. Bypassing the program logic, the
approach chosen in [11] justifies the program analysis directly with respect to
the operational semantics. A generic framework for certifying program analyses
based on abstract interpretation is presented by Chang et al. [14]. The possibility
to view abstract interpretation frameworks as inference engines for invariants and
other assertions in program logics in general was already advocated in one of the
classic papers by Cousot & Cousot in [18].

Nipkow et al.’s VeryPCC project [33] explores an alternative foundational ap-
proach by formally proving the soundness of verification condition generators. In
particular, [32] presents generic soundness and completeness proofs for VCGens,
together with an instantiation of the framework to a safety policy preventing
arithmetic overflows. Generic PCC architectures have recently been developed
by Necula et al. [15] and the FLINT group [22].

2 Bicolano

Syntax and States We consider an arbitrary but fixed bytecode program P that
assigns to each method identifier M a method implementation mapping instruc-
tion labels l to instructions. We use the notation M(l) to denote the instruction
at program point l in M , and initM , sucM (l), and parM to denote the initial



label of M , the successor label of l in M , and the list of formal parameters of
M , respectively. While the Bicolano formalisation supports the full sequential
fragment of the JVML, this paper treats the simplified language given by the
basic instructions

basic(M, l) ≡ M(l) ∈

 load x, store x, dup, pop, push z,
unop u, binop o, new c, athrow,
getfield c f, putfield c f, getstatic c f, putstatic c f


and additionally conditional and unconditional jumps ifz l and goto l, static and
virtual method invocations invokestatic M and invokevirtual M , and vreturn.

Values and states The domain V of values is ranged over by v, w, . . . and com-
prises constants (integers z and Null), and addresses a, . . . ∈ A. States are built
from operand stacks, stores, and heaps

O ∈ O = V list S ∈ S = X ⇀fin V h ∈ H = A ⇀fin C × (F ⇀fin V)

where X , C and F are the domains of variables, class names, and field names,
respectively. In addition to local states comprising operand stacks, stores, and
heaps,

s, r ∈ Σ = O × S ×H,

we consider initial states Σ0 and terminal states T

s0 ∈ Σ0 = S ×H t ∈ T ::= NormState(h, v) + ExcnState(h, a)

These capture states which occur at the beginning and the end of a frame’s exe-
cution. Terminal states t are tagged according to whether the return value repre-
sents a pointer to an unhandled exception object (constructor ExcnState(., .)) or
an ordinary return value (constructor NormState(., .)). For s0 = (S, h) we write
state(s0) = ([ ], S, h) for the local state that extends s0 with an empty operand
stack. For parM = [x1, . . . , xn] and O = [v1, . . . , vn] we write parM 7→ O for
[xi 7→ vi]i=1,...,n. We write heap(s) to access the heap component of a state s,
and similarly for initial and terminal states. Finally, lv(.) denotes the local vari-
able component of a state and getClass(h, a) extracts the dynamic class of the
object at location a in heap h.

Operational judgements Bicolano defines a variety of small-step and big-step
judgements, with compatibility proofs where appropriate. For the purpose of
the present paper, the following simplified setup suffices3 (cf. Figure 2):

Non-exceptional steps The judgement `M l, s ⇒norm l′, r describes the (non-
exceptional) execution of a single instruction, where l′ is the label of the
next instruction (given by sucM (l) or jump targets). The rules are largely
standard, so we only give a rule for the invocation of static methods, Invs-
Norm.

3 The formalisation separates the small-step judgements for method invocations from
the execution of basic instructions and jumps, and then defines a single recursive
judgement combining the two. See [30] for the formal details.



Exceptional steps The judgement `M l, s ⇒excn h, a describes exceptional
small steps where the execution of the instruction at program point M, l in
state s results in the creation of a fresh exception object, located at address
a in the heap h. In the case of method invocations, a single exceptional step
is also observed by the callee if the invoked method raised an exception that
could not be locally handled (cf. rule InvsExcn).

Small step judgements Non-exceptional and handled exceptional small steps
are combined to the small step judgement `M l, s ⇒ l′, r using the two rules
NormStep and ExcnStep. The reflexive transitive closure of this relation
is denoted by `M l, s ⇒∗ l′, r

Big-step judgements The judgement form `M l, s ⇓ t captures the execu-
tion of method M from the instruction at label l onwards, until the end of
the method. This relation is defined by the three rules Comp, Vret and
Uncaught.

Deep step judgements The judgement `M l, s ⇑ r is defined similarly to
the big-step judgement, by the rules D-Refl, D-Trans D-Invs, and D-
Uncaught. This judgement associates states across invocation boundaries,
i.e. r may occur in a subframe of the method M . This is achieved by rule D-
Invs which associates a call state of a (static) method with states reachable
from the initial state of the callee. A similar rule for virtual methods is
omitted from this presentation.

Small and big-step judgements are mutually recursive due to the occurrence of
a big-step judgement in hypotheses of the rules for method invocations on the
one hand and rule Comp on the other.

3 Base logic

This section outlines the non-resource-extended program logic.

3.1 Phrase-oriented assertions and judgements

The structure of assertions and judgements of the logic are governed by the
requirement to enable the interpretation of type systems as well as the rep-
resentation of core idioms of JML. High-level type systems typically associate
types (in contexts) to program phrases. Compiling a well-formed program phrase
into bytecode yields a code segment that is the postfix of a JVM method, i.e. all
program points without control flow successors contain return instructions. Con-
sequently, judgements in the logic associate assertions to a program label which
represents the execution of the current method invocation from the current point
(i.e. a state applicable at the program point) onwards. In case of method termi-
nation, a partial-correctness assertion (post-condition) applies that relates this
current state to the return state. As the guarantee given by type soundness re-
sults often extends to infinite computations (e.g. type safety, i.e. absence of type
errors), judgements furthermore include assertions that apply to non-terminating



InvsNorm

M(l) = invokestatic M ′

`M′ initM′ , ([ ], parM′ 7→ O, h) ⇓ NormState(k, v)

`M l, (O@O′, S, h) ⇒norm sucM (l), (v :: O′, S, k)

InvsExcn

M(l) = invokestatic M ′

`M′ initM′ , ([ ], parM′ 7→ O, h) ⇓ ExcnState(k, a)

`M l, (O@O′, S, h) ⇒excn k, a

NormStep
`M l, s ⇒norm l′, r

`M l, s ⇒ l′, r
ExcnStep

`M l, (O, S, h) ⇒excn k, a
getClass(k, a) = e Handler(M, l, e) = l′

`M l, (O, S, h) ⇒ l′, ([a], S, k)

Comp
`M l, s ⇒ l′, s′ `M l′, s′ ⇓ t

`M l, s ⇓ t
Vret

M(l) = vreturn

`M l, (v :: O, S, h) ⇓ NormState(h, v)

Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇓ ExcnState(h, a)

D-Refl`M l, s ⇑ s
D-Trans

`M l, s ⇒ l′, s′ `M l′, s′ ⇑ s′′

`M l, s ⇑ s′′

D-Invs
M(l) = invokestatic M ′ `M′ initM′ , ([ ], parM′ 7→ O, h) ⇑ s

`M l, (O@O′, S, h) ⇑ s

D-Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇑ ([a], ∅, h)

Fig. 2. Bicolano: selected judgements and operational rules

computations. These strong invariants relate the state valid at the subject la-
bel to each future state in the current method invocation. This interpretation
includes states in subframes, i.e. in method invocations that are triggered in the
phrase represented by the subject label.

Infinite computations are also covered by the interpretation of local anno-
tations in JML, i.e. assertions occurring at arbitrary program points which are
to be satisfied whenever the program point is visited. The logic distinguishes
these explicitly given annotation from strong invariants as the former ones are
not necessarily present at all program points. A further specification idiom of
JML that has a direct impact on the form of assertions is \old which refers to
the initial state of a method invocation and may appear in post-conditions, local
annotations, and strong invariants.

Formulae that are shared between postconditions, local annotations, and
strong invariant, and additionally only concern the relationship between the sub-
ject state and the initial state of the method may be captured in pre-conditions.

Thus, the judgement of the logic are of the form G ` {A}M, l {B} (I) where
M, l denotes a program point (composed of a method identifier and an instruc-



tion label), and the assertions forms are as follows, where B denotes the set of
booleans.

Assertions A ∈ Assn = Σ0 ×Σ → B occur as preconditions A and local
annotations Q, and relate the current state to the initial state of the current
frame.

Postconditions B ∈ Post = Σ0 ×Σ × T → B relate the current state to the
initial and final state of a (terminating) execution of the current frame.

Invariants I ∈ Inv = Σ0 ×Σ ×Σ → B relate the initial state of the current
method, the current state, and any future state of the current frame or a
subframe of it.

The component G of a judgement represents a proof context and is represented
as an association of specification triples (A,B, I) ∈ Assn×Post×Inv to program
points.

The behaviour of methods is described using three assertion forms.

Method preconditions R ∈ MethPre = Σ0 → B are interpreted hypothet-
ically, i.e. their satisfaction implies that of the method postconditions and
invariants but is not directly enforced to hold at all invocation points.

Method postconditions T ∈ MethSpec = Σ0 × T → B constrain the be-
haviour of terminating method executions and thus relate only initial and
final states.

Method invariants Φ ∈ MethInv = Σ0 ×Σ → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial
state of a method frame to any state that occurs during its execution.

A program specification is given by a method specification table M that asso-
ciates to each method a method specification S = (R, T, Φ), a proof context G,
and a table Q of local annotations Q ∈ Assn. From now on, let M denote some
arbitrary but fixed specification table satisfying dom M = dom P .

3.2 Assertion transformers

In order to notationally simplify the presentation of the proof rules, we define
operators that relate assertions occurring in judgements of adjacent instructions.
The following operators apply to the non-exceptional single-step execution of
basic instructions.

Pre(M, l, l′, A)(s0, r) = ∃ s. `M l, s ⇒norm l′, r ∧A(s0, s)
Post(M, l, l′, B)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → B(s0, s, t)

Inv(M, l, l′, I)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → I(s0, s, t)

These operators resemble WP-operators, but are separately defined for pre-
conditions, post-conditions, and invariants.



Exceptional behaviour of basic instructions is captured by the operators

Preexcn(M, l, e, A)(s0, r) = ∃ s h a. `M l, s ⇒excn h, a ∧ getClass(h, a) = e ∧
r = ([a], lv(s), h) ∧A(s0, s)

Postexcn(M, l, e, B)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → B(s0, s, t)

Invexcn(M, l, e, I)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → I(s0, s, t)

In the case of method invocations, we replace the reference to the operational
judgement by a reference to the method specifications, and include the construc-
tion and destruction of a frame. For example, the operators for non-exceptional
execution of static methods are

Presinv(R, T, A, [x1, . . . , xn])(s0, s) =
∃ O S h k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) ∧

s = (v :: O,S, k) ∧A(s0, ([v1, . . . , vn]@O,S, h))
Postsinv(R, T, B, [x1, . . . , xn])(s0, r, t) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

r = (v :: O,S, k) → B(s0, ([v1, . . . , vn]@O,S, h), t)
Invsinv(R, T, I, [x1, . . . , xn])(s0, s, r) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

s = (v :: O,S, k) → I(s0, ([v1, . . . , vn]@O,S, h), r)

The exceptional operators for static methods cover exceptions that are raised
during the execution of the invoked method but not handled locally. Due to
space limitations we omit the operators for exceptional (null-pointer exceptions
w.r.t. the invoking object) and non-exceptional behaviour of virtual methods.

3.3 Selected proof rules

An addition to influencing the types of assertions, type systems also motivate the
use of a certain form of judgements and proof rules. Indeed, one of the advantages
of type systems is their compositionality i.e. the fact that statements regarding
a program phrase are composed from the statements referring to the constituent
phrases, as in the following typical proof rule for a language of expressions

` e1 : int ` e2 : int
` e1 + e2 : int

.

Transferring this scheme to bytecode leads to a rule format where hypothetical
judgements refer to the control flow successors of the phrase in the judgement’s
conclusion. In addition to supporting syntax-directed reasoning, this orienta-
tion renders the explicit construction of a control flow graph unnecessary, as no
control flow predecessor information is required to perform a proof.

Figure 3 presents selected proof rules. These are motivated as follows.



Instr

basic(M, l) SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′′, A)}M, l′ {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn(M, l, e, A)}M, l′ {Postexcn(M, l, e, B)} (Invexcn(M, l, e, I))
∀ s0 s h a. (∀ e. getClass(h, a) = e → Handler(M, l, e) = ∅) →

`M l, s ⇒excn h, a → A(s0, s) → B(s0, s, (h, a))

G ` {A}M, l {B} (I)

Goto

M(l) = Goto l′ SC 1 SC 2

G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {A}M, l {B} (I)

If0

M(l) = ifz l′ SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {Pre(M, l, l′′, A)}M, sucM (l) {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

G ` {A}M, l {B} (I)

InvS

M(l) = invokestatic M ′ M(M ′) = (R, T, Φ) SC 1 SC 2

∀ s0 O S h O′ r vi. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), r)) →
A(s0, (O@O′, S, h)) → I(s0, (O@O′, S, h), r)

A1 = Presinv(R, T, A, parM′) B1 = Postsinv(R, T, B, parM′)
G ` {A1}M, sucM (l) {B1} (Invsinv(R, T, I, parM′))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn

sinv (R, T, A, e, parM′)} M, l′ {Postexcnsinv (R, T, B, e, parM′)}
(Invexcn

sinv (R, T, I, e, parM′))
∀ s0 O S h O′ k a. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), (k, a))) →

(∀ e. getClass(k, a) = e → Handler(M, l, e) = ∅) →
A(s0, (O@O′, S, h)) → B(s0, (O@O′, S, h), (k, a))

G ` {A}M, l {B} (I)

Ret

M(l) = vreturn SC 1 SC 2

∀ s0 v O S h. A(s0, (v :: O, S, h)) → B(s0, (v :: O, S, h), (h, v))

G ` {A}M, l {B} (I)

Conseq

G ` {A′} ` {B′} (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s0 s r. I ′(s0, s, r) → I(s0, s, r)

G ` {A} ` {B} (I)

Ax

G(`) = (A, B, I) ∀ s0 s. A(s0, s) → I(s0, s, s)
∀Q. Q(`) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

G ` {A} ` {B} (I)

Fig. 3. Program logic: selected syntax-directed rules



Rule INSTR describes the behaviour of basic instructions. The hypothetical
judgement for the successor instruction involves assertions that are related to
the assertions in the conclusion by the transformers for normal termination. A
further hypothesis captures exceptions that are handled locally, i.e. those ex-
ceptions e to which the exception handler of the current method associates a
handling instruction (predicate Handler(M, l, e) = l′). Exceptions that are not
handled locally result in abrupt termination of the method. Consequently, these
exceptions are modelled in a side condition that involves the method postcondi-
tion rather than a further judgemental hypothesis.

Finally, the side conditions SC 1 and SC 2 ensure that the invariant I and the
local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s) → I(s0, s, s)
SC 2 = ∀Q. Q(M, l) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

In particular, SC 2 requires us to prove any annotation that is associated with
label l. Satisfaction of I in later states, and satisfaction of local annotations Q′

of later program points are guaranteed by the judgement for sucM (l).
The rules for conditional and unconditional jumps include a hypotheses for

the control flow successors, and the same side conditions for local annotations
and invariants as rule Instr. No further hypotheses or side conditions regarding
exceptional behaviour are required as these instructions do not raise exceptions.
These rules also account for the verification of loops which on the level of byte-
code are rendered as jumps. Loop invariants can be inserted as postconditions
B at their program point. Rule Ax allows one to use such invariants whereas
according to Definition 1 they must be established once in order for a verification
to be valid.

In rule InvS, the invariant of the callee, namely Φ (more precisely: the sat-
isfaction of Φ whenever the initial state of the callee satisfies the precondition
R), and the local precondition A may be exploited to establish the invariant I.
This ensures that I will be satisfied by all states that arise during the execution
of M ′, as these states will always conform to Φ. The callee’s post-condition T
is used to construct the assertions that occur in the judgement for the succes-
sor instruction l′. Both conditions reflect the transfer of the method arguments
and return values between the caller and the callee. This protocol is repeated in
the hypothesis and the side condition for the exceptional cases which otherwise
follow the pattern mentioned in the description of the rule Instr.

A similar rule for virtual methods is omitted. The rule for method returns,
Ret, ties the precondition A to the post-condition B w.r.t. the terminal state
that is constructed using the topmost value of the operand stack.

Finally, the logical rules Conseq and Ax arise from the standard rules by
adding suitable side conditions for strong invariants and local assertions.

3.4 Behavioural subtyping and verified programs

We say that method specification (R, T, Φ) implies (R′, T ′, Φ′) if



– for all s0 and t, R(s0) → T (s0, t) implies R′(s0) → T ′(s0, t) , and
– for all s0 and s, R(s0) → Φ(s0, s) implies R′(s0) → Φ′(s0, s)

Furthermore, we say that M satisfies behavioural subtyping for P if whenever
P contains an instruction invokevirtual M ′ with M(M ′) = (S ′,G′,Q′), and M
overrides M ′, then there are S, G and Q with M(M) = (S,G,Q) such that S
implies S ′. Finally, we call a derivation G ` {A}M, l {B} (I) progressive if it
contains at least one application of a non-logical rule.

Definition 1. P is verified with respect to M, notation M ` P , if

– M satisfies behavioural subtyping for P , and
– for all M , M(M) = (S,G,Q), and S = (R, T, Φ)

• a progressive derivation G ` {A}M, l {B} (I) exists for any l, A, B, and
I with G(M, l) = (A,B, I), and

• a progressive derivation G ` {A}M, initM {B} (I) exists for

A(s0, s) ≡ s = state(s0) ∧R(s0)
B(s0, s, t) ≡ s = state(s0) → T (s0, t)
I(s0, s, r) ≡ s = state(s0) → Φ(s0, r).

As the reader may have noticed, behavioural subtyping only affects method spec-
ifications but not the proof contexts G or annotation tables Q. Technically, the
reason for this is that no constraints on these components are required in order to
prove the logic sound. Pragmatically, we argue that proof contexts and local an-
notations tables of overriding methods indeed should not be related to contexts
and annotation tables of their overridden counterparts, as both kinds of tables
expose the internal structure of method implementations. In particular, entries
in proof contexts and annotation tables are formulated w.r.t. specific program
points, which would be difficult to interprete outside the method boundary or
indeed across different (overriding) implementations of a method.

The distinction between progressive and non-progressive derivations prevents
attempts to justify a proof context or method specification table simply by ap-
plying the axiom rule to all entries. In program logics for high-level languages,
the corresponding effect is silently achieved by the unfolding of the method body
in the rule for method invocations [29]. As our judgemental form does not permit
such an unfolding, the auxiliary notion of progressive derivations is introduced.
In our formalisation, the separation between progressive and other derivations
is achieved by the introduction of a second judgement form, as described in [8].

3.5 Interpretation and soundness

Definition 2. The triple (Q, B, I) is valid at (M, l) for (s0, s) if

– for all r, if `M l, s ⇓ t then B(s0, s, t)
– for all l′ and r, if `M l, s ⇒∗ l′, r and Q(l′) = Q, then Q(s0, r), and
– for all r, if `M l, s ⇑ r then I(s0, s, r).



Note that the second clause applies to annotations Q associated with arbi-
trary labels l′ in method M that will be visited during the execution of M from
(l, s) onwards. Although these annotations are interpreted without recourse to
the state s, the proof of Q(s0, r) may exploit the precondition A(s0, s).

The soundness result is then as follows.

Theorem 1. For M ` P let M(M) = (S,G,Q), G ` {A}M, l {B} (I) be a
progressive derivation, and A(s0, s). Then (Q, B, I) is valid at (M, l) for (s0, s).

In particular, this theorem implies that for M ` P all method specifica-
tions in M are honoured by their method implementations. The proof of this
result may be performed in two ways. Following the approach of Kleymann and
Nipkow [25, 29, 3], one would first prove that the derivability of a judgement en-
tails its validity, under the hypothesis that contextual judgements have already
been validated. For this task, the standard technique involves the introduction
of relativised notions of validity that restrict the interpretation of judgements to
operational judgements of bounded height. Then, the hypothesis on contextual
judgements is eliminated using structural properties of the relativised validity.
An alternative to this approach has been developed by Benjamin Gregoire in
the course of the formalisation of the present logic. It consists of (i) defining a
family of syntax-directed judgements (one judgement form for each instruction
form, inlining the rule of consequence), (ii) proving that property M ` P implies
that the last step in a derivation of G ` {A}M, l {B} (I) can be replaced by an
application of the syntax-directed judgement corresponding to the instruction at
M, l (in particular, an application of the axiom rule is replaced by the derivation
for the corresponding code blocks from G), and (iii) proving the main claim of
Theorem 1 by treating the three parts of Definition 2 separately, each one by
induction over the respective operational judgement.

4 Type-based verification

In this section we present a type system that ensures a constant bound on the
heap consumption of bytecode programs. The type system is formally justified
by a soundness proof with respect to the MOBIUS base logic, and may serve as
the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis pre-
sented by Cachera et al. in [13] in that recursive program structures are denied
the facility to allocate memory. However, our analysis is presented as a type
system while the analysis presented in [13] is phrased as an abstract interpre-
tation. In addition, Cachera et al.’s approach involves the formalisation of the
calculation of the program representation (control flow graph) and of the infer-
ence algorithm (fixed point iteration) in the theorem prover. In contrast, our
presentation separates the algorithmic issues (type inference and checking) from
semantic issues (the property expressed or guaranteed) as is typical for a type-
based formulation. Depending on the verification infrastructure available at the
code consumer side, the PCC certificate may either consist of (a digest of) the



typing derivation or an expansion of the interpretation of the typing judgements
into the MOBIUS logic. The latter approach was employed in our earlier work
[10] and consists of understanding typing judgements as derived proof rules in
the program logic and using syntax-directed proof tactics to apply the rules in
an automatic fashion. In contrast to [10], however, the interpretation given in
the present section extends to non-terminating computations, albeit for a far
simpler type system.

The present section extends the work presented in [8] as the type system is
now phrased for bytecode rather than an intermediate functional language and
includes the treatment of exceptions and virtual methods.

Bytecode-level type system The type system consists of judgements of the form
`Σ,Λ ` : n, expressing that the segment of bytecode whose initial instruction is
located at ` is guaranteed not to allocate more than n memory cells. Here, `
denotes a program point M, l while signatures Σ and Λ assign types (natural
numbers n) to identifiers of methods and bytecode instructions (in particular,
when those are part of a loop), respectively.

C-New
n ≥ 1 M(l) = New C `Σ,Λ M, sucM (l) : n− 1

`Σ,Λ M, l : n

C-Instr

n ≥ 1 basic(M, l) ¬M(l) = New C `Σ,Λ M, sucM (l) : n
∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n

C-If
n ≥ 0 M(l) = ifz l′ `Σ,Λ M, l′ : n `Σ,Λ M, sucM (l) : n

`Σ,Λ M, l : n

C-Invoke

M(l) ∈ {invokestatic M ′, invokevirtual M ′} Σ(M ′) = k
n ≥ 1 k ≥ 0 `Σ,Λ M, sucM (l) : n

∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n + k

C-Ret
M(l) = vreturn

`Σ,Λ M, l : 0
C-Sub

`Σ,Λ ` : n n ≤ k

`Σ,Λ ` : k
C-Assum

Λ(`) = n

`Σ,Λ ` : n

Fig. 4. Type system for constant heap space

The rules are presented in Figure 4. The first rule, C-New, asserts that the
memory consumption of a code fragment whose first instruction is new C is the
increment of the remaining code. Rule C-Instr applies to all basic instructions
(in the case of goto l′ we take sucM (l) to be l′), except for new C – the predicate
basic(m, l) is defined as in Section 3.3. The memory effect of these instructions
is zero, as is the case for return instructions, conditionals, and (static) method



invocations in the case of normal termination. For exceptional termination, the
allocation of a fresh exception object is accounted for by decrementing the type
for the code continuation by one unit. The rule C-Assum allows for using the
annotation attached to the instruction if it matches the type of the instruction.

A typing derivation `Σ,Λ ` : k is called progressive if it does not solely contain
applications of rules C-Sub and C-Assum. Furthermore, we call P well-typed for
Σ, notation `Σ P , if for all M and n with Σ(M) = n there is a local specification
table Λ such that a progressive derivation `Σ,Λ M, initM : n exists, and for all
` with Λ(`) = k we have a progressive derivation `Σ,Λ ` : k.

Type checking and inference The tasks of checking and automatically finding
(inference) of typing derivations are not our main concern here. Nevertheless,
we discuss briefly how this can be achieved.

For this simple type system checking a given typing derivation amounts to
verifying the inequations that arise as side conditions. Furthermore, given Σ,Λ
a corresponding typing derivation can be reconstructed by applying the typing
rules in a syntax-directed fashion. In order to construct Σ,Λ as well (type in-
ference) one writes down a “skeleton derivation” with indeterminates instead of
actual numeric values and then solves the arising system of linear inequalities.
Alternatively, one can proceed by counting allocation statements along paths
and loops in the control-flow graph.

Our main interest here is, however, the use of existing type derivations how-
ever obtained in order to mechanically construct proofs in the program logic.
This will be described now.

Interpretation of the type system The interpretation for the above type system
is now obtained by defining for each number n a triple JnK = (A,B, I) consisting
of a precondition A, a postcondition B, and an invariant I, as follows.

JnK ≡

λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s, r). |heap(r)| ≤ |heap(s)|+ n


Here, |h| denotes the size of heap h and heap(s) extracts the heap component

of a state. We specialise the main judgement form of the bytecode logic to

G ` ` {n} ≡ let (A,B, I) = JnK in G ` {A} ` {B} (I).

By the soundness of the MOBIUS logic, the derivability of a judgement G ` ` {n}
guarantees that executing the code located at ` will not allocate more that n
items, in terminating (postcondition B) and non-terminating (invariant I) cases,
provided that M ` P holds. For (A,B, I) = JnK we also define the method
specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, s). I(s0, state(s0), s)),

and for a given Λ we define GΛ pointwise by GΛ(`) = JΛ(`)K.



Finally, we say that M satisfies Σ, notation M |= Σ, if for all methods M ,
M(M) = (Spec n,GΛ, ∅) holds precisely if Σ(M) = n, where Λ is the context as-
sociated with M in `Σ P . Thus, method specification table M contains for each
method the precondition, postcondition and invariant from Σ, the (complete)
context determined from Λ, and the empty local annotation table Q.

We can now prove the soundness of the typing rules with respect to this inter-
pretation. By induction on the typing rules, we first show that the interpretation
of a typing judgement is derivable in the logic.

Proposition 1. For M |= Σ let M be provided in M with some annotation
table Λ such that `Σ,Λ M, l : n is progressive. Then GΛ ` M, l {n}.

From this, one may obtain the following, showing that well-typed programs
satisfy the verified-program property:

Theorem 2. Let M |= Σ and `Σ P , and let M satisfy behavioural subtyping
for P . Then M ` P .

Discussion In order to improve the precision of the analysis, a possibility is
to combine the type system with a null-pointer analysis. For this, we would
specialise the proof rules for instructions which might throw a null-pointer ex-
ception. At program points for which the analysis guarantees absence of such
exceptions, we may then use a specialised typing rule. For example, a suitable
rule for the field access operation is the following.

C-Getfld1
getField(m, l) refNotNull(m, l) `Σ,Λ m, sucm(l) : n

`Σ,Λ m, l : n

Program points for which the analysis is unable to discharge the side condition
refNotNull(m, l) would be dealt with using the standard rule. Similarly, instruc-
tions that are guaranteed not to throw runtime exceptions (like load x, store x,
dup) may be typed using the optimised rule

C-noRTE
`Σ,Λ m, sucm(l) : n noExceptionInstr(m, l)

`Σ,Λ m, l : n

We expect that justifying these specialised rules using the program logic would
not pose major problems, while the formal integration with other program anal-
yses (such as the null-pointer analysis) is a topic for future research.

5 Resource-extended program logic

In this section we give a brief overview of an extension of the MOBIUS base
logic as described in Section 3 for dealing with resources in a generic way. The
extension addresses the following shortcoming of the basic logic:



Resource consumption Specific resources that we would like to reason about
include instruction counters, heap allocation, and frame stack height. A
well-known technique for modelling these resources is code instrumentation,
i.e. the introduction of (real or ghost) variables and instructions manipulat-
ing these. However, code instrumentation appears inappropriate for a PCC
environment, as it does not provide an end-to-end guarantee that can be un-
derstood without reference to the program at hand. In particular, the over-
all satisfaction of a resource property using code instrumentation requires
an analysis of the annotated program, i.e. a proof that the instrumenta-
tion variables are introduced and manipulated correctly. Furthermore, the
interaction between additional variables of different domains, and between
auxiliary variables and proper program variables is difficult to reason about.

Execution traces Here, the goal is to reason about properties concerning a
full terminating or non-terminating execution of a program, for example
by imposing that an execution satisfies a formula expressed in temporal
logics or a policy given in terms of a security automaton. Such specifications
may concern the entire execution history, i.e. be defined over a sequence of
(intermediate) Bicolano states, and are thus not expressible in the MOBIUS
base logic.

Ghost variables are heavily used in JML, both for resource-accounting pur-
poses as well as functional specifications, but are not directly expressible in
the base logic.

In this section we extend the base logic by a generic resource-accounting mech-
anism that may be instantiated to the above tasks. In addition to the work
reported here, we have also performed an analysis of the usage made of ghost
variables in JML, and have developed interpretations of ghost variables in na-
tive and resource-extended program logics [24]. In particular, loc.cit. contains a
formalised proof demonstrating how resource counting using ghost variables in
native logics may be effectively eliminated, by translating each proof derivation
into a derivation in the resource-extended logic.

5.1 Semantic modelling of generic resources

In order to avoid the pitfalls of code instrumentation discussed above, a semantic
modelling of resource consumption was chosen. The logic is defined over an
extended operational semantics, the judgements of which are formulated over
the same components as the standard Bicolano operational semantics, plus a
further resource-accounting component [20]. The additional component is of the
a priori unspecified type ACT, and occurs as a further component in initial, final,
and intermediate states. In addition, we introduce transfer functions that update
the content of this component according to the other state components, including
the program counter. The operational semantics of the extended framework is
then obtained by embedding each non-extended judgement form in a judgement
form over extended states and invoking the appropriate transfer functions on
the resource component. While these definitions of the operational semantics



are carried out once and for all, the implementation of the transfer functions
themselves is programmable. Thus, realisations of the framework for particular
resources may be obtained by instantiating the ACT to some specific type and
implementing the transfer functions as appropriate. The program logic remains
conceptually untouched, i.e. it is structurally defined as the logic from Section 3,
but the definitions of assertion transformers and rules, and the soundness proof,
are adapted to extended states and modified operational judgements.

In comparison to admitting the definition of ad-hoc extensions to the program
logic, we argue that the chosen approach is better suited to the PCC applications,
as the consumer has a single point of reference where to specify his policy, namely
the implementation of the transfer functions.

5.2 Application: block-booking

As an application of the resource-extended program logic, we consider a scenario
where an application repeatedly sends some data across a network provided that
each such operation is sanctioned by an interaction with the user. In order to
avoid authorisation requests for individual send operations, a high-level language
might contain a primitive auth(n) that asks the user to authorise n messages in
one interaction. A reasonable resource policy for the code consumer then is to
require that no send operation be carried out without authorisation, and that
at each point of the execution, the acquired authorisations suffice for servicing
the remaining send operations. (For simplicity, we assume that refusal by the
user to sanction an authorisation request simply blocks or leads to immediate
non-termination without any observable effect.)

We note that as in the case of the logic loop constructs from the high-level
language are mapped to conditional and unconditional jumps that must be typed
using the corresponding rules.

We now outline a bytecode-level type and effect system for this task, for
a sublanguage of scalar (integer) values and unary static methods. Effects τ
are rely-guarantee pairs (m,n) of natural numbers: a code fragment with this
effect satisfies the above policy whenever executed in a state with at least m
unused authorisations, with at least n unused authorisations being left over upon
termination. The number of authorisations that are additionally acquired, and
possibly used, during the execution are unconstrained. Types C,D, . . . are sets
of integers constraining the values stored in variables or operand stack positions.
Judgements take the form ∆, η, Ξ `Σ,Λ ` : C, τ , with the following components:

– the abstract store ∆ maps local variables to types
– the abstract operand stack η is represented as a list of types
– Ξ is an equivalence relation relation ranging over identifiers ρ from dom ∆∪

dom η where dom η is taken to be the set {0, . . . , |η| − 1}. The role of Ξ is
to capture equalities between values on the operand stack and the store.

– instruction labels ` = (M, l) indicate the current program point, as before
– the type C describes the return type
– the effect τ captures the pre-post-behaviour of the subject phrase with re-

spect to authorisation and send events



– the proof context Λ associates sets of tuples (∆, η, Ξ,C, τ) to labels l (im-
plicitly understood with respect to method M).

– the method signature table Σ maps method names to type signatures of the

form ∀i∈I. Ci
(mi,ni)−−−−−→ Di. Limiting our attention to static methods with

a single parameter, such a poly-variant signature indicates that for each i

in some (unspecified) index set I, the method is of type Ci
(mi,ni)−−−−−→ Di,

i.e. takes arguments satisfying constraint Ci to return values satisfying Di

with (latent) effect (mi, ni).

In addition to ignoring virtual methods (and consequently avoiding the need for
a condition enforcing behavioural subtyping of method specifications), we also
ignore exceptions. Finally, while our example program contains simple objects
we do not give proof rules for object construction or field access. We argue that
this impoverished fragment of the JVML suffices for demonstrating the concept
of certificate generation for effects, and leave an extension to larger language
fragments as future work.

For an arbitrary relation R, we let Eq(R) denote its reflexive, transitive and
symmetric closure. We also define the operations Ξ − ρ, Ξ + ρ and Ξ[ρ := ρ′]
on equivalence relation Ξ and identifiers ρ and ρ′, as follows.

Ξ − ρ ≡ Ξ \ {(ρ1, ρ2) | ρ = ρ1 ∨ ρ = ρ2}
Ξ + ρ ≡ Ξ ∪ {(ρ, ρ)}

Ξ[ρ := ρ′] ≡ Eq((Ξ − ρ) ∪ {(ρ, ρ′)})

The interpretation of position ρ in a pair (O,S) is given by JxK(O,S) = S(x)
and JnK(O,S) = O(n). The interpretation of a triple ∆, η, Ξ in a pair (O,S) is
given by the formula

J∆, η, ΞK(O,S) =


dom ∆ ⊆ dom S ∧ |η| = |O| ∧
∀x ∈ dom ∆. S(x) ∈ ∆(x) ∧
∀i < |η|. O(i) ∈ η(i) ∧
∀(ρ, ρ′) ∈ Ξ. JρK(O,S) = Jρ′K(O,S)

With the help of these operations, the type system is now defined by the rules
given in Figure 5. Due to the formulation at the bytecode level, the authorisation
primitive does not have a parameter but obtains its argument from the operand
stack.

The rule for conditionals, E-If, exploits the outcome of the branch condition
by updating the types of all variables associated with the top operand stack
position in Ξ. This limited form of copy propagation will be made use of in the
verification of an example program below.

In the rule of consequence, E-Sub, subtyping on types is denoted by C <:
D and given by subset inclusion, and is extended to abstract stores (notation
∆ <: ∆′) and abstract operand stacks (notation η <: η′) in a pointwise fashion.
Sub-effecting is given by the reflexive closure of the rule

k ≥ m + d l ≤ n + d

(m,n) <: (k, l)
.



E-Send
M(l) = send ∆, η, Ξ `Σ,Λ M, sucM (l) : D, (m− 1, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Auth

M(l) = auth ∀i ∈ C. i ≥ k
∆, η, Ξ − |η| `Σ,Λ M, sucM (l) : D, (m + k, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Goto
M(l) = goto l′ ∆, η, Ξ `Σ,Λ M, l′ : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-If

M(l) = ifz l′ Ξ ′ = Ξ − |η|
∆1 = ∆[x 7→ ∆(x) ∩ (Z \ {0})](|η|,x)∈Ξ

η1 = η[i 7→ η(i) ∩ (Z \ {0})](|η|,i)∈Ξ ∧ 0≤i<|η|
∆2 = ∆[x 7→ ∆(x) ∩ {0}](|η|,x)∈Ξ

η2 = η[i 7→ η(i) ∩ {0}](|η|,i)∈Ξ ∧ 0≤i<|η|
∆1, η1, Ξ

′ `Σ,Λ M, sucM (l) : (m, n) ∆2, η2, Ξ
′ `Σ,Λ M, l′ : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Store

M(l) = store x Ξ ′ = (Ξ[x := |η|])− |η|
∆[x 7→ C], η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Load

M(l) = load x Ξ ′ = Ξ[|η| := x]
∆, ∆(x) :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Push
M(l) = push c ∆, {c} :: η, Ξ + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Binop

M(l) = binop ⊕ C = {z|z = x ⊕ y, x ∈ C1, y ∈ C2}
∆, C :: η, ((Ξ − |η|)− (|η|+ 1)) + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, C1 :: C2 :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-InvS

M(l) = invokestatic M ′ Σ(M ′) = ∀i∈I. Ci
τi−→ Di k ∈ I

Ξ ′ = (Ξ − |η|) + |η| ∆, Dk :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (nk, n)

∆, Ck :: η, Ξ `Σ,Λ M, l : D, (mk, n)

E-Vret
M(l) = vreturn

∆, D, Ξ `Σ,Λ M, l : D, (0, 0)
E-Ax

(∆, η, Ξ, D, τ) ∈ Λ(l)

∆, η, Ξ `Σ,Λ M, l : D, τ

E-Sub

∆′, η′, Ξ ′ `Σ,Λ ` : C, τ ′

∆ <: ∆′ η <: η′

C <: D τ ′ <: τ Ξ ′ ⊆ Ξ

∆, η, Ξ `Σ,Λ ` : D, τ
E-Univ

∀ O S. J∆, η, ΞK(O,S) = False

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

Fig. 5. Type and effect system for block-booking



The final rule, E-Univ, allows us to associate an arbitrary effect and result
type to a code segment under the condition that the constraints ∆, η, Ξ on the
initial state are unsatisfiable. The main use of this rule is in cases where branch
conditions render one branch dead code.

In order to prove the soundness of the type system in the extended program
logic, we instantiate the parameter ACT to the type of finite words over the set
{send}∪{auth(z) | z ≥ 0} and implement the transfer functions such that each
execution of the primitives send and auth results in appending the appropriate
action to the trace - in case of authorisation events, the number z is obtained
by inspecting the topmost value of the operand stack.

We interpret a judgement ∆, η, Ξ `Σ,Λ M, l : D, (m,n) as the logic statement

JΛKM ` {λ s0. True}M, l {J(∆, η, Ξ,m, n,D)K} (J(∆, η, Ξ,m)K),

with the following components. The postcondition J(∆, η, Ξ,m, n,D)K is

λ (s0, (O,S, h,X), (h, v, Y )). J∆, η, ΞK(O,S) →
(∃Z. v ∈ D ∧ Y = XZ ∧ |Z|auth + m ≥ |Z|send + n).

For any terminating execution starting in an initial store and operand stack
conforming to the abstractions ∆ and η, and respecting the equivalence relation
Ξ, this property guarantees that the return value satisfies D. Furthermore, the
sub-traces for authorisation and send events (obtained by projecting from the
trace Z of all events encountered during the execution of the phrase) satisfy the
inequality interpreting the effect.

A similar explanation holds for the definition of the invariant J(∆, η, Ξ,m)K,

λ (s0, (O,S, h,X), (O′, S′, h′, X ′)). J∆, η, ΞK(O,S) →
(∃Z. X ′ = XZ ∧ |Z|auth + m ≥ |Z|send).

The local proof context JΛKM is given by

[(M, l) 7→ (True, J(∆, η, Ξ,m, n,D)K, J(∆, η, Ξ,m)K)]Λ(l)=(∆,η,Ξ,D,(m,n)),

i.e. by translating the entries of Λ pointwise. Finally, each specification entry

Σ(M) = ∀i∈I. Ci
(mi,ni)−−−−−→ Di results in an entry M(M) = (R, T, Φ) in the

bytecode logic specification table, where

R(s0) = True
T ((S, h,X), (h, v, Y )) = ∀i ∈ I.S(arg) ∈ Ci →

(∃ Z. v ∈ Di ∧ Y = XZ ∧
|Z|auth + mi ≥ |Z|send + ni)

Φ((S, h,X), (O,S′, h′, X ′)) = ∀i ∈ I.S(arg) ∈ Ci →
(∃ Z. X ′ = XZ ∧ |Z|auth + mi ≥ |Z|send)

where arg is the formal parameter. Based on this interpretation, certificate gener-
ation may now be obtained by deriving the typing rules from the program logic



and introducing appropriate notions of progressive derivations and well-typed
programs (in the absence of virtual methods: without a behavioural subtyping
condition), in a similar way as in Section 4. The formalisation of this is left as
future research.

5.3 Example

We assume two builtin integer-valued functions size_string yielding the num-
ber of SMS messages required to send a given string, and size_book which gives
the size of an address book. Figure 6 presents Java-style pseudocode for sending
a given string to all addresses of a given address book after requiring the neces-
sary permissions. The program first computes the total number of SMS messages

public interface Parameters {

int p=...; //some constant >= 0

}

class BlockBooking {

static void send () {...};

static void auth (int p) {...};

void block_send(Java.lang.String s, addrbook b) {

int n = size_string(s);

int m = size_book(b);

int nb_sms = n * m;

int j = 0;

int sent = 0;

while (nb_sms - sent > 0) {

if j > 0 {

//current authorisations suffice

send();

sent = sent + 1;

j = j - 1

} else {

//acquire p new authorisations

auth (Parameters.p);

j = Parameters.p;

}

}

return 0;

}

}

Fig. 6. Program for sending a message using authorisation chunks of size p

and then sends the messages where authorisations are acquired in blocks of size



p, for arbitrary fixed p ≥ 0. The primitives for sending and authorising messages
are modelled as additional (static) methods.

Figure 7 shows the bytecode for method block_send, which comprises six
basic blocks. In order to verify that this method does not send more messages

0 aload 1 //variable s

1 invokestatic sizestring

4 istore 3 //variable n

5 aload 2 // variable b

6 invokestatic sizebook

9 istore 4 //variable m

11 iload 3

12 iload 4

14 imul

15 istore 5 //variable nbms

17 iconst 0

18 istore 6 //variable j

20 iconst 0

21 istore 7 //variable sent

23 iload 5

25 iload 7

27 isub

28 ifle 64

31 iload 6

33 ifle 54

36 invokestatic send

39 iload 7

41 iconst 1

42 iadd

43 istore 7

45 iload 6

47 iconst 1

48 isub

49 istore 6

51 goto 23

54 iconst 3 // parameter p

55 invokestatic auth

58 iconst 3

59 istore 6

61 goto 23

64 iconst 0

65 ireturn

Fig. 7. Bytecode for method BlockBooking.block send.

than authorised, we derive the typing

[s 7→ C, b 7→ D], [ ], ∅ `Σ,Λ block send, 0 : {0}, (0, 0)

where C and D are arbitrary and

Σ ≡ [sizestring 7→ {(C, 0, 0,Z)}, sizebook 7→ {(D, 0, 0,Z)}]
Λ ≡ [23 7→ {specd | 0 ≤ d}]

specd ≡ (∆d, [ ], Ξd, {0}, (d, 0))
∆d ≡ [n 7→ Z,m 7→ Z, nbsms 7→ Z, j 7→ {d}, sent 7→ Z≥0]
Ξd ≡ {(n, n), (m,m), (nbsms, nbsms), (j, j), (sent, sent)}.

The proof context Λ contains a single entry, namely a polyvariant loop invari-
ant for instruction 23. The invariant contains one entry for each 0 ≤ d, where
the index specifies precisely the content of variable j and links this value to
the pre-effect. The equivalence relation relevant at this program point contains



merely the reflexive entries for all (integer) variables. The verification of the
above judgement applies the rules syntax-directedly for instructions 0, . . . , 21,
and then applies the axiom rule for label 23, guarded by an application of rule
E-Sub.

The overall verification complements the verification of the above judgement
with a justification of the context Λ, by providing a progressive derivation for
the loop invariant. Again, this verification proceeds syntax-directedly through
the loop, terminating in (subtyping-protected) applications of the rule E-Ax.
At the point where method send is invoked (instruction label 36) a case-split is
performed on the condition d = 0. If this condition holds, a vacuous statement is
obtained as the invocation occurs in the branch j > 0, and our invariant ensures
that j contains the value d. The vacuity is detected as the entry for j in ∆
is ∅ at that point: the load instruction at label 36 inserts (0, j) into Ξ, hence
the type associated with j in the fall-through-hypothesis of the branch at label
33 (in particular: at label 36) is {d} ∩ (Z \ {0}) = ∅ where the term {d} was
propagated unmodified to instruction 36 from instruction 23. Consequently, the
case d = 0 may be immediately discharged by an invocation of rule E-Univ. The
case d > 0 admits the application of the proof rule E-Send, and the remainder
of the branch is again proven in a syntax-directed fashion.

Type checking and inference Again, we briefly discuss these issues for this sys-
tem. The type system is generic in that types may be arbitrary sets of integers.
In order to support effective typechecking and inference one must of course re-
strict these sets themselves and also the sets of types that arise in annotations
and method specifications. A popular and for our intended application sufficient
way consists of restricting types to convex polyhedra specified by a system of
linear inequalities and to confine sets of types to those arising by intersecting a
fixed convex polyhedron with a hyperplane specified by one or more additional
parameters. Notice that the types in our running example are all of this form.

When we make this restriction (formally by applying the subtyping rule
immediately after each rule to bring the types back into the polyhedral format)
then type checking amounts to checking inclusion of convex polyhedra which can
be efficiently performed by linear programming. Furthermore, Farkas’ Lemma
also furnishes short, efficiently computable, and efficiently checkable certificates
[21, 28]. Indeed, since any convex polyhedron is the intersection of hyperplanes,
deciding containment of convex polyhedra reduces to deciding whether a convex
polyhedron H = {x | Ax ≤ b} is contained in a hyperplane of the form P =
{x | cT x ≤ d}. This, however, is the case iff max{cT x | x ∈ H} ≤ d; a linear
programming problem. Now, the latter inequality can be certified by providing
a vector r ≥ 0 (componentwise) such that rT A = cT and rT b ≤ d. For then,
whenever x ∈ H, i.e., Ax ≤ b then cT x = rT Ax ≤ rT b ≤ d. Farkas’ lemmas
asserts that such a vector r exists whenever max{cT x | x ∈ H} ≤ d. Given its
existence we can efficiently compute it by minimising yT b subject to yT A = cT

and y ≥ 0.
Regarding automatic type inference as opposed to type checking one has to

find unknown convex polyhedra specified by fixpoint equations. Besson et al. [12]



report that this can be done by iteration using widening heuristics from [19]. The
range and efficiency remains, however, unexplored in loc. cit. In our particular
application we expect constraints to be sufficiently simple so that these heuristics
or those proposed in [26] will be successful. Inference of the equivalence relations
Ξ can be achieved by employing standard copy-propagation techniques known
from compiler constructions.

6 Discussion

We have described the use of the Mobius base logic as a unified backend for both
program analyses and type systems. The Mobius base logic has been formally
proved sound with respect to the Bicolano formalisation of the JVM. Compared
to direct soundness proofs of type systems and analyses with respect to Bicolano
the use of the Mobius base logic as an intermediary offers two distinctive advan-
tages. First, the soundness proof of the Mobius base logic already does much of
the work that is common to soundness proofs, in particular inducting on steps in
the operational semantics and stack height. The Mobius logic is more transpar-
ent and allows for proof by invariant and recursion. Secondly, the standardised
format of assertions in the Mobius base logic makes it easier to compare results
of different type systems and analyses and also to assess whether the asserted
property coincides with the intuitively desired property.

The resource extension to both Bicolano and the Mobius base logic allows
for direct specification and certification of resource-related intensional properties
without having to go through indirect observations such as values of ordinary
program variables that are externally known to reflect some resource behaviour.
This is particularly important in the PCC scenario where providers and users of
specifications and certificates do not coincide and might have different objectives.

Similarly, the strong invariants enhance the expressive power of the Mo-
bius base logic compared to standard Hoare logics in that resource behaviour of
nonterminating programs is appropriately accounted for. In this way, the usual
strong guarantees of type systems and program analyses may be adequately
reflected in the logic.

We have demonstrated this use of the Mobius base logic on one of the Mobius
case studies: a block-booking scheme whose deployment could avoid the inflation
of permission requests that lead to social vulnerabilities.
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