Data exchange and schema mappings

S. Amano M. Arenas L. Libkin F. Murlak

Fagin-Kolaitis-Popa-Miller, ICDT’03
Fagin-Kolaitis-Popa-Tan, PODS’04
Data exchange

- Source schema, target schema; need to transfer data between them.
- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - Data from organization 1 needs to be transferred to data from organization 2.
 - Queries need to be answered against the transferred data.
Data Exchange

Source Schema S

Source Database

Target Database

Target Schema T
Outline

- data exchange problem
- universal solutions
- target constraints
- composing mappings
Data exchange problem
We want to create a target database with the schema

\[\text{Flight}(\text{city1}, \text{city2}, \text{aircraft}, \text{departure}, \text{arrival}) \]
\[\text{Served}(\text{city}, \text{country}, \text{population}, \text{agency}) \]

We don’t start from scratch: there is a source database containing relations

\[\text{Route}(\text{source}, \text{destination}, \text{departure}) \]
\[\text{BG}(\text{country}, \text{city}) \]

We want to transfer data from the source to the target.
Relationships between source and target

How to specify the relationship?

ROUTE
Source | Dest | Departure

FLIGHT
city1 | city2 | aircraft | departure | arrival

BG
Country | City

SERVED
city | country | population | agency
Formal specification: we have a *relational calculus query* over both the source and the target schema.

The query is of a restricted form, and can be thought of as a sequence of rules:

\[
\begin{align*}
\text{Route}(c_1, c_2, \text{dept}) & \rightarrow \text{Flight}(c_1, c_2, _, \text{dept}, _) \\
\text{Route}(_, \text{city}, _) & , \text{BG}(\text{city}, \text{country}) \rightarrow \text{Served}(\text{city}, \text{country}, _, _) \\
\text{Route}(_, \text{city}, _) & , \text{BG}(\text{city}, \text{country}) \rightarrow \text{Served}(\text{city}, \text{country}, _, _) \\
\end{align*}
\]
Target instances should satisfy the rules.

What does it mean to satisfy a rule?

Formally, a source S and a target T satisfy a rule

$$\text{Route}(c_1, c_2, \text{dept}) \rightarrow \text{Flight}(c_1, c_2, _, \text{dept}, _)$$

if they satisfy the constraint

$$\forall c_1, c_2, d \left(\text{Route}(c_1, c_2, d) \rightarrow \exists a_1, a_2 \left(\text{Flight}(c_1, c_2, a_1, d, a_2) \right) \right)$$
What happens if there are no values for some attributes, e.g. *aircraft, arrival*?

- We put in null values or some real values.
- But then we may have multiple solutions!
Targets

Source Database:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh</td>
<td>Amsterdam</td>
<td>0600</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>London</td>
<td>0615</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>Frankfurt</td>
<td>0700</td>
</tr>
</tbody>
</table>

BG:

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>London</td>
</tr>
<tr>
<td>UK</td>
<td>Edinburgh</td>
</tr>
<tr>
<td>NL</td>
<td>Amsterdam</td>
</tr>
<tr>
<td>GER</td>
<td>Frankfurt</td>
</tr>
</tbody>
</table>

Look at the rule

\[
\text{Route}(c_1, c_2, \text{dept}) \rightarrow \text{Flight}(c_1, c_2, _, \text{dept}, _)
\]

The left hand side is satisfied by

\[
\text{Route}(\text{Edinburgh, Amsterdam, 0600})
\]

But what can we put in the target?
Targets

Rule: \(\text{Route}(c1, c2, \text{dept}) \rightarrow \text{Flight}(c1, c2, _, \text{dept}, _) \)
Satisfied by: \(\text{Route}(\text{Edinburgh, Amsterdam, 0600}) \)
Possible targets:

- \(\text{Flight}(\text{Edinburgh, Amsterdam, } \bot_1, 0600, \bot_2) \)
- \(\text{Flight}(\text{Edinburgh, Amsterdam, B737, 0600, } \bot) \)
- \(\text{Flight}(\text{Edinburgh, Amsterdam, } \bot, 0600, 0845) \)
- \(\text{Flight}(\text{Edinburgh, Amsterdam, } \bot, 0600, \bot) \)
- \(\text{Flight}(\text{Edinburgh, Amsterdam, B737, 0600, 0845}) \)

They all satisfy the constraints!
Which target to choose?

- One of them happens to be right:
 - Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
- But in general we do not know this; it looks just as good as
 - Flight(Edinburgh, Amsterdam, 'The Spirit of St Louis', 0600, 1300), or
 - Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

- Goal: look for the “most general” solution.
- How to define “most general”: can be mapped into any other solution.
- It is not unique either, but the space of solution is greatly reduced.
- In our case Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂) is most general as it makes no additional assumptions about the nulls.
Universal solutions
Universal solutions

- A **homomorphism** is a mapping $h : \text{Nulls} \rightarrow \text{Nulls} \cup \text{Constants}$.
- For example, $h(\bot_1) = B737$, $h(\bot_2) = 0845$.
- If we have two solutions T_1 and T_2, then h is a homomorphism from T_1 into T_2 if for each tuple t in T_1, the tuple $h(t)$ is in T_2.
- For example, if we have a tuple
 \[t = \text{Flight}(\text{Edinburgh}, \text{Amsterdam}, \bot_1, 0600, \bot_2) \]
 then
 \[h(t) = \text{Flight}(\text{Edinburgh}, \text{Amsterdam}, B737, 0600, 0845). \]
- A solution is **universal** if there is a homomorphism from it into every other solution.
- (We shall revisit this definition later, to deal with nulls properly.)
Universal solutions: still too many of them

- Take any $n > 0$ and consider the solution with n tuples:

 \[
 \begin{align*}
 \text{Flight} & (\text{Edinburgh, Amsterdam, } \bot_1, 0600, \bot_2) \\
 \text{Flight} & (\text{Edinburgh, Amsterdam, } \bot_3, 0600, \bot_4) \\
 \cdots \\
 \text{Flight} & (\text{Edinburgh, Amsterdam, } \bot_{2n-1}, 0600, \bot_{2n})
 \end{align*}
 \]

- It is universal too: take a homomorphism

 \[
 h'(\bot_i) = \begin{cases}
 \bot_1 & \text{if } i \text{ is odd} \\
 \bot_2 & \text{if } i \text{ is even}
 \end{cases}
 \]

- It sends this solution into

 \[
 \text{Flight} (\text{Edinburgh, Amsterdam, } \bot_1, 0600, \bot_2)
 \]
Universal solutions: cannot be distinguished by CQs

- There are queries that distinguish large and small universal solutions (e.g., does a relation have at least 2 tuples?)
- But these cannot be distinguished by conjunctive queries
- Because: if \(\bot_{i_1}, \ldots, \bot_{i_k} \) witness a conjunctive query, so do \(h(\bot_{i_1}), \ldots, h(\bot_{i_k}) \) — hence, one tuple suffices
- In general, if we have
 - a homomorphism \(h : T \rightarrow T' \),
 - a conjunctive query \(Q \)
 - a tuple \(t \) without nulls such that \(t \in Q(T) \)
- then \(t \in Q(T') \)
Universal solutions and conjunctive queries

If

- T and T' are two universal solutions
- Q is a conjunctive query, and
- t is a tuple without nulls,

then

$$t \in Q(T) \iff t \in Q(T')$$

because we have homomorphisms $T \rightarrow T'$ and $T' \rightarrow T$.

Furthermore, if

- T is a universal solution, and T'' is an arbitrary solution,

then

$$t \in Q(T) \Rightarrow t \in Q(T'')$$
Universal solutions and conjunctive queries cont’d

- Now recall what we learned about answering conjunctive queries over databases with nulls:
 - T is a naive table
 - the set of tuples without nulls in $Q(T)$ is precisely $\text{certain}(Q, T)$ – certain answers over T
- Hence if T is an arbitrary universal solution

$$\text{certain}(Q, T) = \bigcap \{ Q(T') \mid T' \text{is a solution} \}$$

- $\bigcap \{ Q(T') \mid T' \text{is a solution} \}$ is the set of certain answers in data exchange under mapping M: $\text{certain}_M(Q, S)$. Thus

$$\text{certain}_M(Q, S) = \text{certain}(Q, T)$$

for every universal solution T for S under M.
Universal solutions cont’d

- To answer conjunctive queries, one needs an arbitrary universal solution.
- We saw some; intuitively, it is better to have:
 \[\text{Flight}(\text{Edinburgh, Amsterdam, } \bot_1, 0600, \bot_2) \]
 than
 \[\text{Flight}(\text{Edinburgh, Amsterdam, } \bot_1, 0600, \bot_2) \]
 \[\text{Flight}(\text{Edinburgh, Amsterdam, } \bot_3, 0600, \bot_4) \]
 \[\ldots \]
 \[\text{Flight}(\text{Edinburgh, Amsterdam, } \bot_{2n-1}, 0600, \bot_{2n}) \]
- We now define a **canonical** universal solution.
Canonical universal solution

- Convert each rule into a rule of the form:
 \[\varphi(x_1, \ldots, x_k, y_1, \ldots, y_m) \rightarrow \psi(x_1, \ldots, x_k, z_1, \ldots, z_n) \]

For example,

\[\text{Route}(c_1, c_2, \text{dept}) \rightarrow \text{Flight}(c_1, c_2, _, \text{dept}, _) \]

becomes

\[\text{Route}(x_1, x_2, x_3) \rightarrow \text{Flight}(x_1, x_2, z_1, x_3, z_2) \]

- Evaluate \(\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m) \) in \(S \).

- For each tuple \((a_1, \ldots, a_n, b_1, \ldots, b_m) \) that belongs to the result (i.e. \(\varphi(a_1, \ldots, a_n, b_1, \ldots, b_m) \) holds in \(S \)), do the following:
 Canonical universal solution cont’d

... do the following:
 ▶ Create new (not previously used) null values \perp_1, \ldots, \perp_k
 ▶ Put tuples in target relations so that

$$\psi(a_1, \ldots, a_n, \perp_1, \ldots, \perp_k)$$

holds.

▶ What is ψ?

▶ It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

$$R_1(\bar{x}_1, \bar{z}_1) \land \ldots \land R_l(\bar{x}_l, \bar{z}_l)$$

▶ Tuples are put in the target to satisfy these formulae
Canonical universal solution cont’d

- Example: no-direct-route airline:

\[\text{Oldroute}(x_1, x_2) \rightarrow \text{Newroute}(x_1, z) \land \text{Newroute}(z, x_2) \]

- If \((a_1, a_2) \in \text{Oldroute}(a_1, a_2)\), create a new null \(\bot\) and put

\[
\begin{align*}
\text{Newroute}(a_1, \bot) \\
\text{Newroute}(\bot, a_2)
\end{align*}
\]

into the target.

- Complexity of finding this solution: polynomial in the size of the source \(S\):

\[
O\left(\sum_{\text{rules } \varphi \rightarrow \psi} \text{Evaluation of } \varphi \text{ on } S\right)
\]
Canonical universal solution and conjunctive queries

- Canonical solution: $\text{CanSol}_M(S)$.

- We know that if Q is a conjunctive query, then
 $$\text{certain}_M(Q, S) = \text{certain}(Q, T)$$
 for every universal solution T for S under M.

- Hence
 $$\text{certain}_M(Q, S) = \text{certain}(Q, \text{CanSol}_M(S))$$

- Algorithm for answering Q:
 - Construct $\text{CanSol}_M(S)$
 - Apply naive evaluation to Q over $\text{CanSol}_M(S)$
Target constraints
Data exchange and integrity constraints

- Integrity constraints are often specified over target schemas.
- In SQL’s data definition language one uses keys and foreign keys most often, but other constraints can be specified too.
- Adding integrity constraints in data exchange is often problematic, as some natural solutions – e.g., the canonical solution – may fail them.
Target constraints cause problems

- The simplest example:
 - Copy source to target
 - Impose a constraint on target not satisfied in the source

- Schema mapping:
 - $S(x, y) \rightarrow T(x, y)$ and
 - Constraint: the first attribute is a key

- Instance S:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

 - Every target T must include these tuples and hence violates the key.
Target constraints: more problems

A common problem: an attempt to repair violations of constraints leads to a sequence of tuple insertions.

- **Source** \(\text{DeptEmpl}(\text{dept_id}, \text{manager_name}, \text{empl_id})\)
- **Target**
 - \(\text{Dept}(\text{dept_id}, \text{manager_id}, \text{manager_name})\),
 - \(\text{Empl}(\text{empl_id}, \text{dept_id})\)
- **Rule** \(\text{DeptEmpl}(d, n, e) \rightarrow \text{Dept}(d, z, n) \land \text{Empl}(e, d)\)
- **Target constraints:**
 - \(\text{Dept}[\text{manager_id}] \subseteq \text{Empl}[\text{empl_id}]\)
 - \(\text{Empl}[\text{dept_id}] \subseteq \text{Dept}[\text{dept_id}]\)
Target constraints: more problems cont’d

- Start with (CS, John, 001) in DeptEmpl.
- Put Dept(CS, ⊥₁, John) and Empl(001, CS) in the target
- Use the first constraint and add a tuple Empl(⊥₁, ⊥₂) in the target
- Use the second constraint and put Dept(⊥₂, ⊥₃, ⊥₃’) into the target
- Use the first constraint and add a tuple Empl(⊥₃, ⊥₄) in the target
- Use the second constraint and put Dept(⊥₄, ⊥₅, ⊥₅’) into the target
- this never stops....
Target constraints: avoiding this problem

- Change the target constraints slightly:
 - Target constraints:
 - Dept[dept_id,manager_id] ⊆ Empl[empl_id, dept_id]
 - Empl[dept_id] ⊆ Dept[dept_id]

- Again start with \((CS, John, 001)\) in DeptEmpl.
- Put \(\text{Dept}(CS, \bot_1, John)\) and \(\text{Empl}(001, CS)\) in the target
- Use the first constraint and add a tuple \(\text{Empl}(\bot_1, CS)\)
- Now constraints are satisfied – we have a target instance!
- What’s the difference? In our first example constraints are very cyclic causing an infinite loop. There is less cyclicity in the second example.

Bottom line: avoid cyclic constraints.
Composing mappings
Schema mappings

- Rules used in data exchange specify mappings between schemas.
- To understand the evolution of data one needs to study operations on schema mappings.
- Most commonly we need to deal with composition.
Semantics

M_1 composed with M_2

- M_1
 - sheep
 - Shaun
 - Shirley
 - M_2
 - dog
 - Bitzer
 - guards
 - (Bitzer, Shaun)
 - (Bitzer, Shirley)
The closure problem

Are mappings closed under composition?
If not, what needs to be added?
Composition: when it works

Example:

\[\Sigma : \quad S(x_1, x_2, x_3) \rightarrow T(x_1, x_2) \wedge T(x_2, x_3) \]
\[\Delta : \quad T(x_1, x_2) \rightarrow W(x_1, x_2, z) \]

First modify into:

\[\Sigma : \quad S(x_1, x_2, x_3) \rightarrow T(x_1, x_2) \]
\[S(x_1, x_2, x_3) \rightarrow T(x_2, x_3) \]
\[\Delta : \quad T(x_1, x_2) \rightarrow W(x_1, x_2, z) \]

Then substitute in the definition of \(W \):

\[S(x_1, x_2, y) \rightarrow W(x_1, x_2, z) \]
\[S(y, x_1, x_2) \rightarrow W(x_1, x_2, z) \]

to get \(\Sigma \circ \Delta \).
Composition: not without Skolem functions

\[
\exists f \ \forall x \ \text{sheep}(x) \rightarrow \text{guards}(y, x)
\]
Composition: not without equality

- **Mapping \(\Sigma \):**
 \[
 \text{Empl}(e) \rightarrow \text{Mngr}(e, m)
 \]

- **Mapping \(\Delta \):**
 \[
 \begin{align*}
 \text{Mngr}(e, m) & \rightarrow \text{Mngr}'(e, m) \\
 \text{Mngr}(e, e) & \rightarrow \text{SelfMng}(e)
 \end{align*}
 \]

- **Composition:**
 \[
 \begin{align*}
 \text{Empl}(e) & \rightarrow \text{Mngr}'(e, f(e)) \\
 \text{Empl}(e) \land e = f(e) & \rightarrow \text{SelfMng}(e)
 \end{align*}
 \]
Composable class of mappings

Mappings with Skolem functions and equality compose!

- Replace all nulls by Skolem functions:
 - \(\text{Empl}(e) \rightarrow \text{Mngr}(e, m) \) becomes
 \(\text{Empl}(e) \rightarrow \text{Mngr}(e, f(e)) \)
 - \(\Delta \) stays as before
- Use substitution:
 - \(\text{Mngr}(e, m) \rightarrow \text{Mngr}'(e, m) \) becomes
 \(\text{Empl}(e) \rightarrow \text{Mngr}'(e, f(e)) \)
 - \(\text{Mngr}(e, e) \rightarrow \text{SelfMng}(e) \) becomes
 \(\text{Empl}(e) \land e = f(e) \rightarrow \text{SelfMng}(e) \)
Complexity summary

- $(S, T) \in \Sigma$: \textsc{PTIME}
 - (easy, relational query evaluation)
- $(S, T) \in \Sigma \circ \Gamma$: \textsc{NP-complete}
 - (FKPT’04; improved examples of hardness in LS’08)
- Certain answers:
 - Undecidable for RA
 - \textsc{PTIME} for CQ

(folklore)