The Newton-Puisuex Polygon for q–difference equations. Applications.

Pedro Fortuny Ayuso

Będlewo, August 2011

Universidad de Oviedo, Spain.
First things first

1.-Thanks to the Scientific Committee

2.-Thanks to the Organizing Committee (Prof. Walser, Greg, Galina, Sławomir)

3.-Enjoy
Prior Art

■ Maillet-Malgrange (1903-1989): Any power series solution of an analytic ODE is of Gevrey type.

■ J. Cano (1993): Any power series solution of a Gevrey ODE is Gevrey, explicit computation (Newton Polygon).

This work is the natural next step. Techniques like Cano’s.
Aims: solve & \((q\text{--Gevrey})\) bound

Given a general \(q\text{--difference equation like}\) (no independent term)

\[
P(x, y, \sigma(y)) = \sigma(y)y^2 + \sigma(y)^2 + x^2y + x = 0
\]
Aims: solve & \((q-\text{Gevrey})\) bound

Given a general \(q\)–difference equation like (no independent term)

\[
P(x, y, \sigma(y)) = \sigma(y)y^2 + \sigma(y)^2 + x^2y + x = 0
\]

- Compute solutions
Aims: solve & \((q-\text{Gevrey})\) bound

Given a general \(q\)-difference equation like (no independent term)

\[
P(x, y, \sigma(y)) = \sigma(y)y^2 + \sigma(y)^2 + x^2y + x = 0
\]

- Compute solutions
- Behaviour of solutions
Aims: solve & \((q\text{—Gevrey})\) bound

Given a general \(q\text{—difference equation like (no independent term)}\)

\[
P(x, y, \sigma(y)) = \sigma(y)y^2 + \sigma(y)^2 + x^2y + x = 0
\]

- Compute solutions
- Behaviour of solutions
 - Convergence, \(q\text{—Gevrey asymptotics}\)
Aims: solve & \((q–\text{Gevrey})\) bound

Given a general \(q–\text{difference equation like (no independent term)}\)

\[P(x, y, \sigma(y)) = \sigma(y)y^2 + \sigma(y)^2 + x^2y + x = 0 \]

- Compute solutions
- Behaviour of solutions
 - Convergence, \(q–\text{Gevrey asymptotics}\)
 - Rational rank, “size” of the exponent's semigroup
Framework

Equation: A q−difference equation is $|q| > 1$

Solution: A solution of $P(x)$ is a generalized power series $f(x) = \sum_{\gamma \in \Gamma} f_{\gamma} x^\gamma$, where Γ is well ordered, such that $P(x, f(x), f(qx), \ldots, f(q^n x)) = 0$ (a determination of the logarithm is fixed).
Framework

Equation: A q–difference equation is [we use $|q| > 1$]

$$P(x, y_0, \ldots, y_n) \in \mathbb{C}[[x^{\mathbb{R} > 0}][[y_0, \ldots, y_n]]$$

(too general, usually $\mathbb{C}[[x, y_0, \ldots, y_n]]$), $P(0) = 0.$
Framework

Equation: A q–difference equation is [we use $|q| > 1$]

$$P(x, y_0, \ldots, y_n) \in \mathbb{C}[[x^\mathbb{R}^>0]][[y_0, \ldots, y_n]]$$

(too general, usually $\mathbb{C}[[x, y_0, \ldots, y_n]]$), $P(0) = 0$.

Solution: A solution of P is a generalized power series

$$f(x) = \sum_{\gamma \in \Gamma} f_{\gamma}x^{\gamma}, \text{ with } \Gamma \subset \mathbb{R}^>0$$

where Γ is well ordered, such that

$$P(x, f(x), f(qx), \ldots, f(q^n x)) = 0$$

(a determination of the logarithm is fixed).
Solution of [implicit equation]

\[y + xy^3 + y^5 + x^3 = 0 \]
Solution of \([\text{implicit equation}]\)

\[y + xy^3 + y^5 + x^3 = 0 \]

Start with an “obvious” term (least degree, \(y = -x^3\)).
Solution of \([\text{implicit equation}]\)

\[y + xy^3 + y^5 + x^3 = 0 \]

Start with an “obvious” term (least degree, \(y = -x^3 \)).
Substitute: \(y = y - x^3 \) to get

\[y - x^{10} - x^{15} + [...] + 10x^9y^2 + [...] + y^5 = 0 \]
Solution of [implicit equation]

\[y + xy^3 + y^5 + x^3 = 0 \]

Start with an “obvious” term (least degree, \(y = -x^3 \)).
Substitute: \(y = y - x^3 \) to get

\[y - x^{10} - x^{15} + [\ldots] + 10x^9y^2 + [\ldots] + y^5 = 0 \]

Following “obvious” term is \(y = x^{10} \).
Algebraic Curves (Newton)

Solution of [implicit equation]

\[y + xy^3 + y^5 + x^3 = 0 \]

Start with an “obvious” term (least degree, \(y = -x^3 \)). Substitute: \(y = y - x^3 \) to get

\[y - x^{10} - x^{15} + [\ldots] + 10x^9y^2 + [\ldots] + y^5 = 0 \]

Following “obvious” term is \(y = x^{10} \).
Go on. This one was easy.
Algebraic Curves (Puiseux)

What happens with

\[y^2 - x^3 = 0? \]

(no formal power series solution).

Obviously \(y = x^3/2 \) is a "solution".

What with . . .

\[y^6 + x^5 y^5 + xy^4 + x^3 y^2 + x^3 = 0? \]
What happens with

\[y^2 - x^3 = 0? \]

(no formal power series solution).

Obviously

\[y = x^{3/2} \]

is a “solution”.
What happens with \(y^2 - x^3 = 0 \)?

(no formal power series solution).

Obviously

\[y = x^{3/2} \]

is a “solution”.

What with . . .

\[y^6 + x^5y^5 + xy^4 + x^3y^2 + x^{10} = 0 \]
The Polygon

For $y^2 - x^3$, the number $\frac{3}{2}$ corresponds to the side *inclination*.
The Polygon

For $y^2 - x^3$, the number $\frac{3}{2}$ corresponds to the side *inclination*

The coefficient $y = 1 \cdot x^{3/2}$ comes from substituting $y = y + cx^{3/2}$, which gives at $y = 0$:

$$x^3 + c^2 x^3 = 0 \Rightarrow c = \pm 1.$$
The Polygon: positive convex hull of cloud

For $y^6 + x^5y^5 + xy^4 + x^3y^2 + x^{10} = 0$:

The inner point (5, 5) is irrelevant for starting a solution. Solutions $y = cx^\alpha + \ldots$ admit $\alpha = \frac{1}{2}, 1, \frac{7}{2}$, the inclinations.
The Polygon: coefficients

If a solution starts with \(y = cx^{\alpha} \), \(\alpha \) is the inclination, and \(c \)?
The Polygon: coefficients

If a solution starts with \(y = cx^\alpha \), \(\alpha \) is the inclination, and \(c \) is constant.

Substitute: \(y = y + cx^\alpha \). Example: \(y = y + cx \) \((\alpha = 1)\):

\[
\begin{align*}
xy^4 & = 4 \\
x^3y^2 & = 2 \\
y + x & = 5
\end{align*}
\]
The Polygon: coefficients

If a solution starts with $y = cx^\alpha$, α is the inclination, and c?
Substitute: $y = y + cx^\alpha$. Example: $y = y + cx$ ($\alpha = 1$):

Lowest $x-$term for that side must be 0:

$$P_\alpha(C) = x(y + cx)^4 + x^3(y + cx)^2 \bigg|_{y=0} = 0 \simeq c^4 + c^2 = 0.$$
The Polygon: coefficients

If a solution starts with \(y = cx^\alpha \), \(\alpha \) is the inclination, and \(c \)?

Substitute: \(y = y + cx^\alpha \). Example: \(y = y + cx \ (\alpha = 1) \):

```
0  2  4  6  8  10  
0  2  4  6           
   y + 2x = 6        
```

```
0  2  4  6  8  10  
0  2  4  6           
   y + x = 5         
```

```
0  2  4  6  8  10  
0  2  4  6           
   y + \frac{1}{2}x = 3
```

Lots of inner points

```
0  2  4  6  8  10  
0  2  4  6           
   y + x = 5         
```

Setting \(c = i \), a new Newton Polygon appears. The green side is new, and has inclination \(> \alpha = 1 \).

Recurse with new equation and Polygon.
Lexicon

- **N-P Polygon**: convex envelope of “cloud of points \((i,j)\).”
Lexicon

- **N-P Polygon**: convex envelope of “cloud of points \((i, j)\).”
- Given a slope \(\mu\), the **valuation** \(\nu_\mu(P)\) is the minimal value for \(j + \mu i\) and the **initial form**

\[
\ln_\mu(P) = \sum_{i+\mu x = \nu_\mu(P)} p_{ij} x^i y^j
\]
Lexicon

- **N-P Polygon**: convex envelope of “cloud of points \((i, j)\).”

- Given a slope \(\mu\), the **valuation** \(\nu_\mu(P)\) is the minimal value for \(j + \mu i\) and the **initial form**

\[
ln_\mu(P) = \sum_{i+\mu x = \nu_\mu(P)} p_{ij} x^i y^j
\]

- Given \(ln_\mu(P)\), plausible coeffs \(c\) are the **roots** of the **initial polynomial**

\[
Q_\mu(T) \equiv ln_\mu(P)(1, T) = 0
\]
Lexicon

- **N-P Polygon**: convex envelope of “cloud of points \((i, j)\).”

- Given a slope \(\mu\), the **valuation** \(\nu_\mu(P)\) is the minimal value for \(j + \mu i\) and the initial form

\[
ln_\mu(P) = \sum_{i + \mu x = \nu_\mu(P)} p_{ij} x^i y^j
\]

- Given \(ln_\mu(P)\), plausible coeffs \(c\) are the **roots** of the initial polynomial

\[
Q_\mu(T) \equiv ln_\mu(P)(1, T) = 0
\]

But: in the algebraic case, \(\mu\) is always rational and any slope and root give rise to a solution.
Newton-Puisuex for q-difference equations

The polygon for q–diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \ldots y_n^{j_n}$.
Newton-Puisseux for q-difference equations

The polygon for $q-$diff equation $P = \sum p_{ij_0\ldots j_n} x^i y_0^{j_0} \ldots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
Newton-Puisueux for q-difference equations

The polygon for q–diff equation $P = \sum p_{ij_0\ldots j_n} x^i y_0^{j_0} \ldots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \ldots y_n^{j_n}$ at (i, j) with $j = j_0 + \cdots + j_n$.
Newton-Puisuex for q-difference equations

The polygon for q–diff equation $P = \sum p_{ij_0 \ldots j_n} x^i y_0^{j_0} \ldots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \ldots y_n^{j_n}$ at (i, j) with $j = j_0 + \cdots + j_n$.

For the equation $y_2^2 - q^3 y_1 y_0 + xy_1^2 y_0 + x^3 = 0$
Newton-Puisuex for q-difference equations

The polygon for q–diff equation $P = \sum p_{ij_0...j_n}x^i y_0^{j_0} \ldots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \ldots y_n^{j_n}$ at (i, j) with $j = j_0 + \cdots + j_n$.

For the equation $y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0$
Newton-Puisuex for q-difference equations

The polygon for q–diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \ldots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \ldots y_n^{j_n}$ at (i, j) with $j = j_0 + \cdots + j_n$.

For the equation $y_2^2 - q^3 y_1 y_0 + xy_1^2 y_0 + x^3 = 0$
Newton-Puisuex for q-difference equations

The polygon for \(q \)-diff equation \(P = \sum p_{ij_0 \ldots j_n} x^i y_{j_0}^j \ldots y_{j_n}^j \).

- Notice \(\text{deg}_x(y_n(x^\alpha)) = \text{deg}_x(y_0(x^\alpha)) \) (not so in differential equations).

- So, one should place \(x^i y_{j_0}^j \ldots y_{j_n}^j \) at \((i, j)\) with \(j = j_0 + \cdots + j_n \).

For the equation \(y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \)
Pathologies

Sample equation: \(y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \)
Pathologies

Sample equation: $y^2_2 - q^3 y_1 y_0 + x y^2_1 y_0 + x^3 = 0$

Null Q: For $\mu > \frac{2}{3}$ $\rightarrow \ln_{\mu} = y^2_2 - q^3 y_1 y_0$, so:

$$Q_{\mu}(T) = (q^2 T)^2 - q^3 (q T) T \equiv 0.$$

Any c will make $Q_{\mu}(c) = 0$: free slopes.
Pathologies

Sample equation: \(y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \)

Null Q: For \(\mu > \frac{2}{3} \rightarrow l n_\mu = y_2^2 - q^3 y_1 y_0 \), so:

\[
Q_\mu(T) = (q^2 T)^2 - q^3 (qT) T \equiv 0.
\]

Any \(c \) will make \(Q_\mu(c) = 0 \): free slopes.

Constant Q: For \(\mu = \frac{2}{3} \rightarrow l n_\mu = y_2^2 - q^3 y_1 y_0 + x^3 \), so

\[
Q_\mu(T) = (q^2 T)^2 - q^3 (qT) T + 1 \equiv 1
\]

No \(c \) will make \(Q_\mu(c) = 0 \). Useless slope.
Exceptional behaviour

Recall: \[y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \]
Exceptional behaviour

Recall: \(y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \)

- \(Q_\mu(T) = 0 \) for \(\mu > 2/3 \): \(y = cx^{1/\mu} + \ldots \) possible (may have \(\mu \not\in \mathbb{Q} \): not so in algebraic curves).
Exceptional behaviour

Recall: \(y^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0 \)

- \(Q_\mu(T) = 0 \) for \(\mu > 2/3 \): \(y = c x^{1/\mu} + \ldots \) possible (may have \(\mu \notin \mathbb{Q} \): not so in algebraic curves).
- \(Q_{2/3}(T) = 1 \): no solution starting with \(c x^{3/2} \).
Substitution step

After substituting

\[y = y + cx^\alpha \]

new Polygon, continue with greater inclination (to the right).

Say \(y = y + x \) in \(y_2^2 - q^3 y_1 y_0 + xy_1^2 y_0 + x^3 = 0, \)
Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.
Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by Γ (exponents) is finitely generated (like for ODE). [Hence $\sum x^{(2-\frac{1}{n})}$ is forbidden].
Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by \(\Gamma \) (exponents) is *finitely generated* (like for ODE). [Hence \(\sum x^{(2-\frac{1}{n})} \) is forbidden].

Theorem

If \(P = A(x, y_0) + B(x, y_0)y_1 \) ("order and degree 1"), then \(\text{rational rank}(\Gamma) \leq 2 \). ("Only one irrational exponent").
Pivot point

In a finite number of steps, the topmost vertex of the interesting side is fixed (usually at height 1).
Pivot point

In a finite number of steps, the topmost vertex of the interesting side is fixed (usually at height 1).
Pivot point

In a finite number of steps, the topmost vertex of the interesting side is fixed (usually at height 1).

\[y = [3 \text{ terms}] + c_2 x^2 + c_3 x^3 + c_8 x^8 + \ldots \]
Results: q—Gevrey bounds (intro)

$t + 1$— Gevrey $\iff \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n$ convergent

Assume Pivot Point $(a, 1)$ contributions up to $[r]$, $\text{ord}(P) = n$.
Worst point: $(e_k, 1)$, high order “bad”, far from pivot “good”.

\begin{itemize}
 \item $p_{\text{ar}y_{r}}$
 \item $y_k \simeq (e_k, 1)$
 \item $y_n \simeq (e_n, 1)$
\end{itemize}
Results: q–Gevrey bounds (intro)

$$t + 1 - \text{Gevrey } \Leftrightarrow \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n \text{ convergent}$$

Assume Pivot Point $(a, 1)$ contributions up to $[r]$, $\text{ord}(P) = n$.

Worst point: $(e_k, 1)$, high order “bad”, far from pivot “good”.

Compute $s = \max \left\{ \frac{k-r}{e_k-a} \right\}$ for $k > r$

$p_0y_0 + \cdots + [p_{ar}y_r]$ $y_k \simeq (e_k, 1)$ $y_n \simeq (e_n, 1)$
Results: q–Gevrey bounds (intro)

\[t + 1 \text{– Gevrey} \iff \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n \text{ convergent} \]

Assume Pivot Point \((a, 1)\) contributions up to \([r]\), \(\text{ord}(P) = n\).

Worst point: \((e_k, 1)\), high order “bad”, far from pivot “good”.

Compute \(s = \max \left\{ \frac{k-r}{e_k-a} \right\} \) for \(k > r\)

For pivot at \((a, b)\), analogous computation.
Formal power series solution \(f(x) \in \mathbb{C}[[x]] \) (can be generalized to rational exponents easily). Recall \(s = \frac{\Delta_{\text{ord}}}{\text{distance}} \).

Theorem (q–Gevrey Malgrange-Maillet)

If \(P \) has q–Gevrey order \(t + 1 \), then \(f(x) \) has q–Gevrey order \(\leq s + t + 1 \).
Results: q–Gevrey bounds (I)

Formal power series solution $f(x) \in \mathbb{C}[[x]]$ (can be generalized to rational exponents easily). Recall $s = \frac{\Delta_{\text{ord}}}{\text{distance}}$.

Theorem (q–Gevrey Malgrange-Maillet)

*If P has q–Gevrey order $t + 1$, then $f(x)$ has q–Gevrey order $\leq s + t + 1$.***

Corollary

*If the pivot point of $f(x)$ contains order n, then $f(x)$ has the same q–Gevrey order as P.***
Results: closed-eyed bound

Corollary

If $P(x, y_0, \ldots, y_n)$ has q–Gevrey order $t + 1$, then any solution has at most q–Gevrey order $n + t + 1$.

No information required on the solution, whereas the results above assume the pivot point is known.
Thanks, etc

Questions?

And many thanks