In: Proceedings of the Tenth National Conference on Ar-
tificial Intelligence (AAAI-92), San Jose, CA, July 1992,

440-446.

A New Method for Solving Hard Satisfiability Problems

Bart Selman
AT&T Bell Laboratories
Murray Hill, NJ 07974

selman@research.att.com

Abstract

We introduce a greedy local search procedure called
GSAT for solving propositional satisfiability problems.
Our experiments show that this procedure can be used
to solve hard, randomly generated problems that are
an order of magnitude larger than those that can be
handled by more traditional approaches such as the
Davis-Putnam procedure or resolution. We also show
that GSAT can solve structured satisfiability problems
quickly. In particular, we solve encodings of graph
coloring problems, N-queens, and Boolean induction.
General application strategies and limitations of the ap-
proach are also discussed.

GSAT is best viewed as a model-finding procedure.
Its good performance suggests that it may be advan-
tageous to reformulate reasoning tasks that have tra-
ditionally been viewed as theorem-proving problems as
model-finding tasks.

Introduction

The property of NP-hardness is traditionally taken to
be the barrier separating tasks that can be solved com-
putationally with realistic resources from those that
cannot. In practice, to solve tasks that are NP-hard,
it appears that something has to be given up: restrict
the range of inputs; allow for erroneous outputs; use
defaults outputs when resources are exhausted; limit
the size of inputs; settle for approximate outputs, and
so on. In some cases, this can be done in a way that
preserves the essence of the original task. For exam-
ple, perhaps erroneous outputs occur extremely rarely;
perhaps the class of allowable inputs excludes only very
large, unlikely, or contrived cases; perhaps the approxi-
mate answers can be guaranteed to be close to the exact
ones, and so on. In this paper, we propose an algorithm
for an NP-hard problem that we believe has some very
definite advantages. In particular, it works very quickly
(relative to its competition) at the expense of what ap-
pears to be statistically minimal errors.

*Fellow of the Canadian Institute for Advanced Research,
and E. W. R. Steacie Fellow of the Natural Sciences and
Engineering Research Council of Canada.

Hector Levesque®
Dept. of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

hector@ai.toronto.edu

David Mitchell
Dept. of Computing Science

Simon Fraser University
Burnaby, Canada V5A 156

mitchell@cs.sfu.ca

The first computational task shown to be NP-hard
by Cook (1971) was propositional satisfiability, or SAT:
given a formula of the propositional calculus, decide
if there is an assignment to its variables that satisfies
the formula according to the usual rules of interpreta-
tion. Unlike many other NP-hard tasks (see Garey and
Johnson (1979) for a catalogue), SAT is of special con-
cern to Al because of its direct connection to reasoning.
Deductive reasoning is simply the complement of sat-
isfiability: Given a collection of base facts X, then a
sentence « should be deduced iff YU{—a} is not satisfi-
able. Many other forms of reasoning (including default
reasoning, diagnosis, planning, and image interpreta-
tion) also make direct appeal to satisfiability. The fact
that these usually require much more than the propo-
sitional calculus simply highlights the fact that SAT is
both a fundamental task and a major stumbling block
to effective reasoners.

Though SAT is originally formulated as decision
problem, there are two closely related search problems:

1. model-finding: find an interpretation of the variables
under which the formula comes out true, or report
that none exists. If such an interpretation exists, then
the formula is obviously satisfiable.

2. theorem-proving: find a formal proof (in a sound and

complete proof system) of the negation of the formula
in question, or report that there is no proof. If a proof
exists, then the negated formula is valid, and so the
original formula is not satisfiable.

Whereas much of the reasoning work in Al has favored
theorem-proving procedures (and among these, resolu-
tion is the favored method), in this paper, we investi-
gate the behaviour of a new model-finding procedure
called GSAT. We will also explain why we think that
finding models may be a useful alternative for many Al
reasoning problems.

The original impetus for this work was the recent suc-
cess in finding solutions to very large N-queens prob-
lems, first using a connectionist system (Adorf and
Johnston 1990), and then using greedy local search
(Minton et al. 1990). To us, these results simply indi-
cated that N-queens was an easy problem. We felt that
such techniques would fail in practice for SAT. But this

appears not to be the case. The issue is clouded by the
fact that some care is required to randomly generate
SAT problems that are hard for even ordinary back-
tracking methods.! But once we discovered how to do
this (and see Mitchell et al. (1992) for details), we found
that GSAT’s local search was very good at finding mod-
els for the hardest formulas we could generate.

Because model-finding is NP-hard, we cannot expect
GSAT to solve it completely and exactly within toler-
able resource bounds. What we will claim, however,
is that the compromises it makes are quite reasonable.
In particular, we will compare GSAT to another proce-
dure DP (which is, essentially, a version of resolution
adapted to model-finding) and demonstrate that GSAT
has clear advantages. But there is no free lunch: we
can construct satisfiable formulas for which GSAT may
take an exponential amount of time, unless told to stop
earlier. However, these satisfiable counter-examples do
appear to be extremely rare, and do not occur naturally
in the applications we have examined.

In the next section, we give a detailed description of
the GSAT procedure. We then present test results of
GSAT on several classes of formulas. This is followed
by a discussion of the limitations of GSAT and some po-
tential applications. In the final section, we summarize
our main results.

The GSAT procedure

GSAT performs a greedy local search for a satisfying
assignment of a set of propositional clauses.? The pro-
cedure starts with a randomly generated truth assign-
ment. It then changes (‘flips’) the assignment of the
variable that leads to the largest increase in the to-
tal number of satisfied clauses. Such flips are repeated
until either a satisfying assignment is found or a pre-
set maximum number of flips (MAX-FLIPS) is reached.
This process is repeated as needed up to a maximum of
MAX-TRIES times. See Figure 1.

GSAT mimics the standard local search procedures
used for finding approximate solutions to optimization
problems (Papadimitriou and Steiglitz 1982) in that
it only explores potential solutions that are “close” to
the one currently being considered. Specifically, we ex-
plore the set of assignments that differ from the current
one on only one variable. One distinguishing feature of
GSAT, however, is the presence of sideways moves, dis-

! After the current paper was prepared for publication,
we were surprised to discover that a procedure very similar
to ours had been developed independently, and was claimed
to solve instances of SAT substantially larger than those dis-
cussed here (Gu 1992). It is tempting, however, to discount
that work since the large instances involved are in fact easy
ones, readily solvable by backtracking procedures like DP in
a few seconds.

2A clause is a disjunction of literals. A literal is a propo-
sitional variable or its negation. A set of clauses corresponds
to a formula in conjunctive normal form (CNF): a conjunc-

tion of disjunctions. Thus, GSAT handles CNF SAT.

procedure GSAT
Input: a set of clauses o, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignment of «, if found
begin
for : := 1 to MAX-TRIES
T := a randomly generated truth assignment
for j :=1 to MAX-FLIPS

if T satisfies o then return T’

p := a propositional variable such that a change
in its truth assignment gives the largest
increase in the total number of clauses
of o that are satisfied by T

T :=T with the truth assignment of p reversed

end for
end for
return “no satisfying assignment found”
end

Figure 1: The procedure GSAT.

cussed below. Another feature of GSAT is that the
variable whose assignment is to be changed is chosen
at random from those that would give an equally good
improvement. Such non-determinism makes it very un-
likely that the algorithm makes the same sequence of
changes over and over.

The GSAT procedure requires the setting of two pa-
rameters MAX-FLIPS and MAX-TRIES, which deter-
mine, respectively, how many flips the procedure will
attempt before giving up and restarting, and how many
times this search can be restarted before quitting. As
a rough guideline, setting MAX-FLIPS equal to a few
times the number of variables is sufficient. The setting
of MAX-TRIES will generally be determined by the to-
tal amount of time that one wants to spend looking
for an assignment, which in turn depends on the ap-
plication. In our experience so far, there is generally
a good setting of the parameters that can be used for
all instances of an application. Thus, one can fine-tune
the procedure for an application by experimenting with
various parameter settings.

It should be clear that GSAT could fail to find an
assignment even if one exists, i.e. GSAT is incomplete.
We will discuss this below.

Experimental results

We tested GSAT on several classes of formulas: ran-
dom formulas, graph coloring encodings, N-queens en-
codings, and Boolean induction problems. For purposes
of comparison, we ran the tests with the Davis-Putnam
procedure (DP) (Davis and Putnam 1960).

The DP procedure

DP is in essence a resolution procedure (Vellino 1989).
It performs a backtracking search in the space of all
truth assignments, incrementally assigning values to

formulas GSAT DP
vars | clauses || M-FLIPS | tries | time choices | depth | time

50 215 250 6.4 | 0.4s 7 11| 1.4s

70 301 350 | 11.4 | 0.9s 42 15 15s
100 430 500 | 42.5 6s | 84 x 103 19 | 2.8m
120 516 600 | 81.6 14s | 0.5 x 10° 22 | 18m
140 602 700 | 52.6 14s | 2.2 x 10° 27 | 4.7h
150 645 1500 | 100.5 45s — — —
200 860 2000 | 248.5 | 2.8m — — —
250 1062 2500 | 268.6 | 4.1m — — —
300 1275 6000 | 231.8 | 12m — — —
400 1700 8000 | 440.9 | 34m — — —
500 2150 10000 | 995.8 | 1.6h — — —

Table 1: Results for GSAT and DP on hard random 3CNF formulas.

variables and simplifying the formula. If no new vari-
able can be assigned a value without producing an
empty clause, it backtracks. The performance of the
basic DP procedure is greatly improved by using unit
propagation whenever unit clauses arise:® variables oc-
curring in unit clauses are immediately assigned the
truth value that satisfies the clause, and the formula
is simplified, which may lead to new unit clauses, etc.
This propagation process can be executed quite effi-
ciently (in time linear in the total number of literals).
DP combined with unit propagation is one of the most
widely used methods for propositional satisfiability test-
ing.

Hard random formulas

Random instances of CNF formulas are often used in
evaluating satisfiability procedures because they can
be easily generated and lack any underlying “hidden”
structure often present in hand-crafted instances. Un-
fortunately, unless some care is taken in sampling for-
mulas, random satisfiability testing can end up look-
ing surprisingly easy. For example, Goldberg (1979)
showed experimentally how DP runs in polynomial av-
erage time on a class of random formulas. However,
Franco and Paull (1983) demonstrated that the in-
stances considered by Goldberg were so satisfiable that
an algorithm that simply guessed truth assignments
would find a satisfying one just as quickly as DP! This
issue is discussed in detail in (Mitchell et al. 1992).
Formulas are generated using the uniform distribu-
tion or fixed-clause length model. For each class of for-
mulas, we choose the number of variables V, the num-
ber of literals per clause K, and the number of clauses
L. Each instance is obtained by generating L random
clauses each containing K literals. The K literals are
generated by randomly selecting K variables, and each
of the variables is negated with a 50% probability. As
discussed in Mitchell et al. (1992), the difficulty of such

formulas critically depends on the ratio between N and

? A unit clause is a clause that contains a single literal.

L. The hardest formulas appear to lie around the region
where there is a 50% chance of the randomly generated
formula being satisfiable. For 3CNF formulas (K = 3),
experiments show that this is the case for L ~ 4.3N.*
We should stress that for different ratios of clauses to
variables, formulas can become very easy. For example,
DP solves 10,000 variable 20,000 clause 3SAT instances
in a few seconds, whereas it cannot in practice solve 250
variable 1062 clause instances. In this paper, when we
speak of random formulas we mean those in the hardest
region only.

Unsatisfiable formulas are of little interest when test-
ing GSAT, since it will always (correctly) return “no
satisfying assignment found” in time directly proposi-
tional to (MAX-FLIPS x MAX-TRIES). So we first
used DP to select satisfiable formulas to use as test
cases. This approach is feasible for formulas contain-
ing up to 140 clauses. For longer formulas, DP simply
takes too much time, and we can no longer pre-select
the satisfiable ones. In such cases, GSAT is tested on
both satisfiable and unsatisfiable instances.

Table 1 summarizes our results: first the number of
variables and clauses in each formula, and then statis-
tics for GSAT and DP. For formulas containing up to
120 variables, the statistics are based on averages over
100 satisfiable instances; for the larger formulas, the av-
erage is based on 10 satisfiable formulas. For GSAT, we
report the setting of MAX-FLIPS (in the header short-
ened to M-FLIPS), how many tries GSAT took before
an assignment was found, and the total time used in
finding an assignment.® The fractional part of the num-
ber of tries indicates how many flips it took on the final
successful one. So, for example, 6.4 tries in the first row
means that an assignment was not found in the first 6

*For more than 150 variables per formula, the ratio seems
to converge to 4.25N. In table 1, we have used this ratio
for the higher values of N. The exact ratio is not known;
the theoretical derivation of the “50% satisfiable” point is a
challenging open problem.

®Both GSAT and DP were written in C and ran on a
MIPS machine under UNIX.

tries of 250 flips, but on the 7th try, one was found after
0.4 x 250 = 100 flips. For DP, we give the number of bi-
nary choices made during the search, the average depth
of the search tree (ignoring unit propagation), and the
time it took to find an assignment.

First, note that for each satisfiable formula found by
DP, GSAT had no trouble finding an assignment. This
is quite remarkable in itself, since one might expect it
to almost always hit some local minimum where at least
a few clauses remain unsatisfied. But apparently this
is not the case. Moreover, as is clear from table 1, the
procedure is substantially faster than DP.

The running time of DP increases dramatically with
the number of variables with a critical increase occur-
ring around 140 variables. This renders it virtually use-
less for formulas with more than 140 variables.® The be-
havior of GSAT, on the other hand, is quite different:
300 variable formulas are quite manageable, and even
500 variable formulas can be solved. As noted above,
the satisfiability status of these large test cases was ini-
tially unknown. Nonetheless, GSAT did still manage
to find assignments for a substantial number of them.
(See Selman et al. (1992) for more details.)

Now consider in table 1 the total number of flips used
by GSAT to find an assignment and the total number
of binary choices in the DP search tree. Again, we
see a dramatic difference in the growth rates of these
numbers for the two methods. This shows that the
difference in running times is not simply due to some
peculiarity of our implementation.” So, GSAT appears
to be well-suited for finding satisfying assignments for
hard random formulas. Moreover, the procedure can
handle much larger formulas (up to 500 variables) than
DP (up to around 140 variables). Again, we should
stress that we have shown these results for the hardest
region of the distribution. Like most other procedures,
GSAT also solves the “easy” cases quickly (Selman et
al. 1992).

Graph coloring

In this section, we briefly discuss the performance of
GSAT on graph coloring. Consider the problem of col-
oring with K colors a graph with V vertices such that
no two nodes connected by an edge have the same color.
We create a formula with K variables for each node of
the graph, where each variable corresponds to assign-
ing one of the K possible colors to the node. We have
clauses that state that each node must have at least one
color, and that no two adjacent nodes have the same
color.

5A recent implementation of a highly optimized variant
of DP incorporating several special heuristics is able to han-
dle hard random formulas of up to 200 variables (Crawford
and Auton, personal communication 1991).

"If the depth continues to grow at its current rate, the
DP search tree for 500 variable formulas could have as many
as 2'°° nodes. Even when processing 10'° nodes per second,
DP could take 10'? years to do a complete search.

Johnson et al. (1991) evaluate state-of-the-art graph-
coloring algorithms on instances of random graphs. We
considered one of the hardest instances discussed: a 125
vertex graph for which results are given in table II of
Johnson et al. (1991). The encoding that allows for 18
colors consists of 89,288 clauses with 2,250 variables,
and an encoding that allows for only 17 colors consists
of 83,272 clauses with 2,125 variables. GSAT managed
to find the 18-coloring in approximately 5 hours. (DP
ran for many more hours but did not find an assign-
ment.) This is quite reasonable given that the running
times for the various specialized algorithms in Johnson
et al. ranged from 20 minutes to 1.7 hours. Unfortu-
nately, GSAT did not find a 17-coloring (most likely
optimal; Johnson (1991)).® This is perhaps not too
surprising given that some of the methods in Johnson
et al. couldn’t find one either, while another took 21.6
hours, and the fastest took 1.8 hours. Interestingly,
some of the best graph-coloring methods are based on
simulated annealing, an approach that shares some im-
portant features with GSAT.

So, although it is not as fast as the specialized graph-
coloring procedures, GSAT can be used to find near op-
timal colorings of hard random graphs. Moreover, the
problem reformulation in terms of satisfiability does not
result in a dramatic degradation of performance, con-
trary to what one might expect. The main drawback of
such an encoding appears to be the inevitable polyno-
mial increase in problem size.

N-queens

In the N-queens problem one has to find a placement of
N queens on a N x N chess board such that no queen
attacks another. Although a generic solution to the
problem is known (Falkowski et al. 1986), it is based on
placing the queens in a very specific, regularly repeated
pattern on the board. The problem of finding arbitrary
solutions has been used extensively to test constraint
satisfaction algorithms.

Using standard backtracking techniques, the problem
appears to be quite hard. But in a recent paper, Minton
et al. (1990) show how one can generate solutions by
starting with a random placement of the queens (one in
each row) and subsequently moving the queens around
within the rows, searching for a solution. This method
works remarkably well: their method appears to scale
linearly with the number of queens.®

To test GSAT on the N-queens problem, we first
translate the problem into a satisfiability question: we

8By using initial assignments that are not completely
random, as suggested by Geoff Hinton, we have recently
been able to solve also this instance (Selman et al. 1992).

9There are, it should be mentioned, notable differences
in Minton’s and our approaches. One is the use of sideways
moves. This appears essential in satisfiability testing, dis-
cussed below. Also, GSAT chooses the variable that gives
the best possible improvement, while Minton’s program se-
lects an arbitrary queen and moves it to reduce conflicts.

formulas GSAT
Queens vars clauses || flips | tries | time
8 64 736 105 2| 0.1s
20 400 12560 319 2| 0.9s
30 900 43240 549 1| 2.5s
50 | 2500 | 203400 || 1329 1 17s
100 | 10000 | 1.6x105 | 5076 1| 195s

Table 2: Results for GSAT on CNF encodings of the

N-queens problem.

use one variable for each of the N? squares of the board,
where intuitively, a variable is true when a queen is
on the corresponding square. To encode the N-queens
problem, we use N disjunctions (each with N variables)
stating that there is at least one queen in each row, and
a large number of binary disjunctions stating that there
are no two queens in any row, column, or diagonal.

Table 2 shows the performance of GSAT on these
formulas.'® For N larger than 30, a solution is always
found on the first try.!' Also, the number of flips is
roughly 0.5 N2. This is near optimal, since a random
truth assignment places about that many queens on
the board, and most of them must be removed. (On
the order of N flips are needed if one starts with ap-
proximately N queens randomly placed on the board in
the initial state (Selman et al. 1992).) One of the most
interesting aspects of this approach is that so few natu-
ral constraints (such as the obvious one of using only N
queens) are maintained during the search. Nonetheless,
solutions are found quickly.

Boolean induction

Promising results have recently been obtained using
integer programming techniques to solve satisfiability
problems (Hooker 1988; Kamath et al. 1991). Most
of the experimental evaluations of these methods have
been based on the constant-density random clause
model, which unfortunately under-represents hard in-
stances (Mitchell et al. 1992). To compare GSAT and
these methods, we considered the formulas as studied
by Kamath et al. (1991) in their work on Boolean induc-
tion. In Boolean induction, the task is to derive (“in-
duce”) a logical circuit from its input-output behavior.
Kamath et al. give a translation of this problem into
a satisfiability problem. They present test results for
their algorithm on these formulas. We considered the
formulas presented in table 4.4 in Kamath et al. (1991).

Table 3 shows our results. The performance of GSAT
is comparable to the integer programming method,
which is somewhat surprising given its relative simplic-
ity. Further testing is needed to determine whether

The size of our propositional encodings prevented us
from considering problems with more than 100 queens.

U For fewer queens it may sometimes take a second try.
This happens rarely though; about 1 in every 100 tries.

formula time
id | vars | clauses || Int. progr. | GSAT
16A1 | 1650 | 19368 2039s | 1061s
16B1 | 1728 | 24792 78s | 2764s
16C1 | 1580 | 16467 758s Ts
16D1 | 1230 | 15901 1547s 63s
16E1 | 1245 | 14766 2156s 5s

Table 3: Results for GSAT on encodings of Boolean
induction problems as given table 4.4 of in Kamath et

al. (1991).

there are classes of formulas on which the methods be-
have very differently.

Limitations and sideways moves

So far, we have concentrated mainly on the strengths
of GSAT. But it does also have some important lim-
itations. The following conjunction of clauses shows
that it can be “misled” into exploring the wrong part
of the search space (numbers stand for propositional
variables):

(1v=2V3) A (1v=3v4) A
(I1v-4v-=2) A (1viv2) A
(1v-5V2) A (RLV=6VT) A
(mlv=TVvE) A A

(=1V =98V 99) A (=1V =99V 6)

Note that although most of clauses here contain a neg-
ative occurrence of variable 1, the formula can only be
satisfied if variable 1 is assigned positively (see the first
5 clauses). The problem is that the greedy approach re-
peatly steers the search towards a negative assignment,
since this does satisfy so many of the clauses. The only
way GSAT will solve this example is if starts a search
very close to a satisfying assignment, which could take
an exponential number of tries.

Finally, we consider sideways moves. In a departure
from standard local search algorithms, GSAT continues
flipping variables even when this does not increase the
total number of satisfied clauses.!? To show why this is
important, we re-ran some experiments, but only allow-
ing flips that increase the number of satisfied clauses,
restarting otherwise.

Table 4 gives the results. All formulas considered
were satisfiable. We tried 100 instances of the random
formulas. The %-solved column shows what percentage
of those instances was solved. Note that quite often no
assignment was found, despite a very large number of
tries. For comparison, we included our previous data
on these formulas. It is clear that finding an assign-
ment becomes much harder without the use of sideways
moves.

12We have also seen cases where an assignment was found
after a sequence of flips containing some that decreased the
number of satisfied clauses, but these are very rare. Here
we ignore such flips.

type formulas M-TRIES no sideway moves all moves
vars | clauses %-solved tries | time || %-solved | tries | time
random 50 215 1000 69% 537 10s 100% 6| 1.4s
random 100 430 100,000 39% | 63,382 | 15m 100% 81 | 2.8m
30-queens 900 43240 100,000 100% | 50,000 | 30h 100% 1 2.5s

Table 4: Comparing GSAT with and without sideway moves. (MAX-TRIES is shortened to M-TRIES.)

Applications

As we noted above, GSAT is a sound but incomplete
model-finding procedure: when it succeeds in finding
an interpretation, we know that it is correct; but neg-
ative answers, although perhaps suggestive, are not
conclusive. The practical value of GSAT for theorem-
proving purposes, where the concern is precisely for un-
satisfiability, 1s therefore limited. Fortunately, certain
Al tasks have naturally been characterized as model-
finding tasks, for example, the visual interpretation task
(Reiter and Mackworth 1990). In addition, it is often
possible to reformulate tasks that have traditionally
been viewed as theorem-proving problems as model-
finding ones. One example is the formulation of plan-
ning as a model-finding task (Kautz and Selman 1992),
and we suspect that there will be many others.

Another potential application of GSAT lies in the
generation of “vivid” representations (Levesque 1986)
as a way of dealing with the computational problems
encountered in knowledge representation and reason-
ing systems. Determining what can be deduced from
a knowledge base is intractable in general, but not if
the knowledge is vivid in form. So, instead of relying
on general theorem-proving in a knowledge-based sys-
tem, one could use a two-step operation: first, use a
model-finding procedure like GSAT off-line to generate
one or more vivid representations (or models) of what is
known; then, as questions arise, answer them efficiently
by appealing to these vivid representations. Efficient
model-finding procedures like GSAT have therefore the
potential of making the vivid reasoning approach and
the related model-checking proposal by Halpern and
Vardi (1991) workable.!3

Conclusions

We have introduced a new method for finding satisfying
assignments of propositional formulas. GSAT performs
a greedy local search for a satisfying assignment. The
method is simple, yet surprisingly effective. We showed
how the method outperforms the Davis-Putnam proce-
dure by an order of magnitude on hard random formu-
las. We also showed that GSAT performs well on graph

¥ Most applications of GSAT would require formulas of
first-order logic. If the Herbrand universe in question is
finite, the generalization is straightforward. Otherwise, one
approach we intend to investigate is to use a form of iterative
deepening by searching for models in ever larger Herbrand
universes.

coloring problems, N-queens encodings, and Boolean in-
duction problems. The price we pay is that GSAT is
incomplete.

Currently, there is no good explanation for GSAT’s
performance. Some recent results by Papadimitriou
(1991) and Koutsoupias and Papadimitriou (1992) do,
however, provide some initial theoretical support for
the approach. Our sense is that the crucial factor
here is having some notion (however crude) of an ap-
proximate solution that can be refined iteratively. In
these terms, model-finding has a clear advantage over
theorem-proving, and may lead us to Al methods that
scale up more gracefully in practice.

Acknowledgments

The second author was funded in part by the Natural
Sciences and Engineering Research Council of Canada,
and the Institute for Robotics and Intelligent Systems.

We thank David Johnson for providing us with the
hard instances of graph coloring and Anil Kamath for
the inductive inference problems. We also thank Larry
Auton, Ron Brachman, Jim Crawford, Matt Ginsberg,
Geoff Hinton, David Johnson, Henry Kautz, David
McAllester, Steve Minton, Christos Papadimitriou, Ray
Reiter, Peter Weinberger, and Mihalis Yannakakis for
useful discussions.

References
Adorf, H.M., Johnston, M.D. (1990). A discrete

stochastic neural network algorithm for constraint
satisfaction problems. Proc. of the Int. Joint Conf.
on Neural Networks, San Diego, CA, 1990.

Cook, S.A. (1971). The complexity of theorem-proving
procedures. Proceedings of the 3rd Annual ACM
Symposium on the Theory of Computing, 1971, 151-
158.

Davis, M. and Putnam, H. (1960). A computing pro-
cedure for quantification theory. J. Assoc. Comput.

Mach., 1960, 7:201-215.

Falkowski, Bernd-Jurgen and Schmitz, Lothar (1986).
A note on the queens’ problem. Information Process.

Lett., 23, 1986, 39-46.

Franco, J. and Paull, M. (1983). Probabilistic analysis
of the Davis Putnam procedure for solving the sat-
isfiability problem. Discrete Applied Math. 5, 1983,
T7-87.

Garey, M.R. and Johnson, D.S. (1979).

Computers

and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, NY, 1979.

Goldberg, A. (1979). On the complezity of the satisfi-
ability problem. Courant Computer Science Report.

No. 16, New York University, NY, 1979.

Gu, J. (1992). Efficient local search for very large-scale
satisfiability problems. Sigart Bulletin, vol. 3, no. 1,
1992, 8-12.

Halpern, J.Y. and Vardi, M.Y. (1991) Model checking
vs. theorem proving: a manifesto. Proceedings KR-

91, Boston, MA, 325-334.

Hooker, J.N. (1988) Resolution vs. cutting plane solu-
tion of inference problems: Some computational ex-
perience. Operations Research Letter, T(1), 1988.

Johnson, D.S. (1991) Personal communication, 1991.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., and
Schevon, C. (1991) Optimization by simulated an-
nealing: an experimental evaluation; part ii, graph
coloring and number partioning. Operations Re-

search, 39(3):378-406, 1991.

Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.,
and Resende, M.G.C. (1991). A continuous approach
to inductive inference. Submitted for publication.

Kautz, H.A. and Selman, B. (1992). Planning as satis-
fiability. Forthcoming.

Koutsoupias, E. and Papadimitriou C.H. (1992) On
the greedy algorithm for satisfiability. Forthcoming.

Levesque, H.J. (1986). Making believers out of com-
puters. Artificial Intelligence, 30, 1986, 81-108.

Minton, S., Johnston, M.D., Philips, A.B., and Laird,
P. (1990) Solving large-scale constraint satisfaction
an scheduling problems using a heuristic repair

method. Proceedings AAAI-90, 1990, 17-24.

Mitchell, D., Selman, B., and Levesque, H.J. (1992).
Hard and easy distributions of SAT problems. Forth-
coming.

Papadimitriou, C.H. (1991). On selecting a satisfying
truth assignment. Proc. of 32th Conference on the
Foundations of Computer Science, 1991, 163— 169.

Papadimitriou, C.H., Steiglitz, K. (1982). Combina-
torial optimization. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1982.

Reiter, R. and Mackworth, A. (1989). A logical frame-
work for depiction and image interpretation. Artifi-
cial Intelligence, 41, No. 2, 1989, 125-155.

Selman, B., Levesque, H.J., Mitchell, D. (1992) GSAT:
A new method for solving hard satisfiability prob-
lems. Technical Report, AT&T Bell Laboratories,
1992.

Vellino, A. (1989) The complexity of automated rea-
soning. Ph.D. thesis, Dept. of Philosophy, University
of Toronto, Toronto, Canada (1989).

