
LOIS: technical documentation

Eryk Kopczyński and Szymon Toruńczyk

University of Warsaw, Poland
{erykk,szymtor}@mimuw.edu.pl

Abstract. LOIS is a C++ library allowing iterating through certain in-
finite sets, in finite time. The resulting language has an intuitive seman-
tics, corresponding to execution of infinitely many threads in parallel.
This allows to merge the power of abstract mathematical constructions
into imperative programming. Infinite sets are internally represented us-
ing first order formulas over some underlying logical structure. To effec-
tively handle such sets, we use and implement SMT solvers for various
first order theories. LOIS has applications in education, and in verifica-
tion of infinite state systems.
This is a technical documentation of LOIS, describing how to write pro-
grams using it.

1 Introduction . 2
2 Tutorial . 2
3 Overview . 4
4 Syntax and features . 6

4.1 Types . 6
4.2 Flow control . 7
4.3 Operations . 8
4.4 The underlying structure . 8
4.5 Quantifier macros . 9
4.6 Displaying the current context, and naming variables 9
4.7 Declaring atoms and axioms . 9
4.8 Choosing the solver . 10
4.9 Other functions . 10

5 Domains, symbols, and relations . 10
6 Piecewise v-elements . 12

6.1 Piecewise numbers . 14
7 Safety of programming . 14
8 Contents of the package . 15

8.1 Sample programs . 16

2 Eryk Kopczyński and Szymon Toruńczyk

1 Introduction

LOIS (Looping Over Infinite Sets) is a C++ library which allows working on
definable infinite sets in a natural way. We can create an infinite domain, let’s
say A, possibly with some relational and functional symbols, and then use the
pseudo-parallel semantics to iterate over it in a natural way. This gives us new
sets, for example {(x, y) : x ∈ A, y ∈ A, x 6= y}, which can be iterated over in
turn, or checked for emptiness. A LOIS program will work in finite time as long
as the first order theory of A is decidable. The current prototype of LOIS is
available on the (hidden) webpage:

http://www.mimuw.edu.pl/~erykk/lois/

This document is a technical description of LOIS, and thus, many theoretical
details have been omitted. See the papers on the website above for details about:

– the theoretical foundations: definable sets, homogeneous structures, [KTa]
– how the solvers (built-in, CVC4, Z3, SPASS) are used to make the compu-

tation possible, [KTa]
– the results of our tests of internal and external solvers, [KTa]
– applications, [KTa]
– the novel pseudoparallel semantics which LOIS is using to handle the infinite

sets. [KTb]

Note that, in the current prototype, all the core functionality works, but in
case of some functions, variants which accept more complex types (say, rnumof<T>
or rsetof<T> instead of the basic elem or rset) may be still missing, or some
obvious type casting might be missing, making C++ unable to guess what type-
casts should be used. Usually such more complex variants should be easy to
write.

LOIS has been tested on machines with the following configurations:

– gcc version 4.4.3, architecture i686, Ubuntu Linux
– gcc version 4.6.3, architecture x86 64, Ubuntu Linux
– gcc version 4.7.3, architecture x86 64, PLD Linux

2 Tutorial

We start with some examples of simple statements using LOIS (left), and their
explanations (right). The key constructs and features are emphasized in the text.

#include "../ include/
loisextra.h"

using namespace std;
using namespace lois;

To use LOIS, we need to include the appropri-
ate file. LOIS types are in the namespace lois.

LOIS: technical documentation 3

initLois ();
sym.useLaTeX ();

Initialize LOIS. Sets can be output in ASCII
(portable), Unicode (useful for testing) or in
the LATEX markup, which we use in this paper.

Domain dA("\\ mathbb{A}");
lset A = dA.getSet ();
cout << "A = " << A << endl;

Create an infinite domain, named A. The vari-
able A stores its underlying set A. This outputs
A = {a|a∈A}.

lset X = A;
X += 5;

cout << "X = " << X << endl;

Create a set X, and set it to A. The type lset
is the type of a set; l signifies that we will
use it as an lvalue, that is, change its contents.
Sets can store elements of various types. We
add the number 5 to X. This outputs X =
{b|b∈A; 5}, a shorthand for {b|b ∈ A} ∪ {5}.

lsetof <elpair > Pairs;

for(elem a: A) for(elem b: A)
Pairs += elpair(a,b);

cout << "Pairs = "
<< Pairs << endl;

The set Pairs is a typed set, whose elements
are of the type elpair, denoting pairs; initially
it is empty. Iterate over all pairs of elements
of A, and construct the set of all ordered pairs.
The output is Pairs = {(c, d)|d∈A, c∈A}.

lbool ok = true;

for (elem a:A) for (elem b:A)
for (elem c:A)

If (((a<=b) && (b<=c)
&& !(a<=c))) ok = false ;

If (ok)
cout << "Transitive" <<

endl;

By default, A is equipped with a linear or-
der ≤, isomorphic to the rational numbers. We
test that the order is transitive, by setting a
boolean flag of type lbool whenever a coun-
terexample is found. Note that we use a special
conditional If with LOIS, actually a macro.
This outputs Transitive.

Now we demonstrate an algorithm manipulating on infinite sets, namely the
reachability algorithm for infinite graphs. Reachability is very important for
applications of LOIS [KTa].

lsetof <elpair > E;

for(elpair x: Pairs)
for (elpair y: Pairs)

If ((x.second == y.first)
&& ((y.second != x.

first)))
E += elpair(x,y);

cout << E << endl;

First, let’s define some infinite directed
graph. In this case, the vertices are pairs of
elements of A, and the edgeset is E. This out-
puts {((p, q), (q, r))|r∈A, q∈A, p∈A, r 6=p}.
Therefore, edges are of the form (p, q)→ (q, r),
where p 6= r.

4 Eryk Kopczyński and Szymon Toruńczyk

lbool reached = false ;

for (elem a: A)
for (elem b:A) {

elpair s = elpair(a,b);
elpair t = elpair(b,a);
If (memberof(t,reach(E,

newSet(s))))
reached = true;

}

If (reached) cout << "Reached
" << endl;

For each pair (a, b) of distinct elements of A,
we test reachability of (b, a) from (a, b) in our
graph, using the function reach given below
(and defined outside of the body of the main
function). Note that we use local variables
s and t. The output is Reached. An example
(shortest) path is (a, b) → (b, c) → (c, d) →
(d, b)→ (b, a), where c, d are distinct from a, b.

rset reach
(rsetof <elpair > E,

rset S) {
lset R = S;
lset P;
While (P!=R) {

P = R;
for (elpair e: E)

If (memberof(e.first , R
))

R += e.second;
}
return R;

}

We use a fixpoint algorithm to compute the
vertices reachable from S in a graph with edge-
set E. Special while loops are used with LOIS
conditionals (again, macros). Correctness of
this algorithm is clear. One could also use a
BFS traversal, however, the presented algo-
rithm is slightly easier to analyse. Termination
(in finite time) can be proved for any graph de-
fined in LOIS from the domain A, using equal-
ity only [KTa].

The intuitive semantics of the above examples is clear, as they follow closely
the set-builder notation – we iterate through some set and collect the results
in some resulting set (an exception the use of the boolean flag). In general, our
novel pseudo-parallel semantics is meaningful also when other operations are
performed inside the loops, e.g. removing elements from a set, or declaring local
variables within the body of the loop. This requires extending the set-builder
intuitions, and defining a proper semantics [KTb].

3 Overview

This section gives an overview on the main features of LOIS, and how they have
been implemented, and how to use them. More details will be given in the further
sections.

LOIS is based on the hybrid pseudoparallel semantics. The paper [KTb]
explains this semantics in detail, and how an interpreter can be implemented in
practice by using contexts, which form a stack which changes whenever a local
variable is created (possibly by a for loop), or a conditional is used. C++ allows
a programming technique known as RAII, that is, automatic initialization and
finalization of variables when a local variable enters or exits the scope. This is
exactly what we need – our implementation uses RAII to change the contents
of the LOIS stack when if, for, and while constructs are used. Note that, since
if and while change the current context, we were unable to use C++’s if and
while statements directly – instead, If and While macros are used, and Ife for
if-then-else.

LOIS: technical documentation 5

The type lset represents a LOIS set together with its inner context, and
the polymorphic type elem represents a v-element. V-elements can represent
an integer (type int), a term over A (type term), a pair (type elpair), a tuple
(type eltuple), or a set (type lset). Integers, pairs, and tuples are implemented
with the corresponding standard C++ types (int, std::pair and std::vector,
respectively); and more types can be added by the programmer. So the program-
mer can for instance extend elem to allow a type representing lists or trees of
elements, thus allowing sets of type lset to store infinite sets of lists or trees.
It is well known that integers, pairs and tuples can be encoded in the set theory
(using Kuratowski’s definition of pair, for example); however, allowing to use
them directly in our programs greatly improves both readability and efficiency.

Hybrid pseudoparallel looping over a setX of type lset is done with for(elem x:X).
This is implemented using the C++11 range-based loop. We can check the spe-
cific type of x, as well as inspect its components, with functions such as is<T>,
as<T> (where T is one of the types listed above) and isSet, asSet. The syntactic
sugar lsetof<T> is provided for defining sets which can only include elements of
one specific type T – this allows static type checking, and eliminates the necessity
of using is and as functions.

In some cases, such low-level representation of elements is not enough: for
example, consider the function extract(X) which returns the only element of a
set X of cardinality 1. If X = {a|a = b} ∪ {0|a 6= b}, then it is not possible to
represent extract(X) as elem in the context {a ∈ A, b ∈ A}, since each elem

has to be of specific type, and in our case, extract(X) can be either a term or
an integer. In this case, we can use the type lelem, which represents piecewise v-
elements (see Section 6) – that is, ones which may have different representations
depending on the constraints satisfied by variables in the context. Internally, this
type is represented with a set – thus, extract(X) simply wraps the set X into
a piecewise element. Type lbool represent a piecewise boolean variable, which
boils down to a formula with free variables from its inner context.

All the conditions appearing in If and While statements are evaluated into
first-order formulas over the underlying structure A. A solver is used to check
whether the set of all constraints on the stack is satisfiable (and thus whether to
execute a statement or not). Also, a method of simplifying formulas is necessary,
to obtain legible presentations of results, and to make the execution of the sequel
of the program more effective.

The membership function memberof(X,Y), as well as set equality X==Y and
inclusion subseteq(X,Y), have been implemented straightforwardly using lbool

and hybrid pseudoparallel iteration over the sets involved. They are defined
with a mutual recursion – set equality is a conjunction of two set inclusions, set
inclusion X ⊆ Y is evaluated by looping over all elements of X and checking
whether they are members of Y , and membership x ∈ Y is evaluated by looping
over all elements of Y and checking whether they are equal to x. Equality and
relation symbols applied to terms result in first order formulas.

Furthermore, for technical reasons, types rbool, rset and relem are used –
these types are used for rvalues, while lbool, lset and lelem are used for lvalues.

6 Eryk Kopczyński and Szymon Toruńczyk

This is because lvalues have an inner context, while rvalues do not (their inner
context always equals the current context).

To enforce fully pseudoparallel computation, thus simulating LOIS0 from
[KTb], write

for(relem e: fullypseudoparallel(X)).

The underlying structure A is not given at the start of the program; instead,
it is possible to define new sorts and new relations during the execution. Our
prototype includes several relations with decidable theories (order, random par-
tition, random graph, homogeneous tree), as well as solvers for these theories.
Also, it allows consulting external SMT solvers.

4 Syntax and features

In this appendix, we list the key constructions available in LOIS. Also, we give
an informal description of some constructs, which is sufficient for understanding
basic programs in LOIS on an intuitive level. This should not be confused with
the formal semantics, which is given in [KTb].

4.1 Types

LOIS allows the programmer to manipulate sets, which are represented by the
types lset and rset. The type rset should be used for rvalues, i.e., for tempo-
rary values (such as values returned by functions or for function arguments) and
lset should be used for lvalues, e.g. for local variables which are not function
arguments. The reason why two different types are used for lvalues and rvalues
is the pseudoparallel semantics [KTb]; lvalues have an inner context, while rval-
ues have not. Intuitively, a local value has a copy for each pseudoparallel thread
that existed at the moment of its creation, while a temporary value has a copy
for each pseudoparallel thread that exists at the moment while this value exists.
The same convention (having a pair of types for lvalues and rvalues) is also used
for other types below.

There is a polymorphic type elem representing elements of sets, which should
be used as the type of a control variable in a for loop. The programmer can define
set elements basing on any C++ type which has the following basic operations
defined: variable substitution (create a copy with the variable changed), output
(to a C++ stream), equality test, and checking whether it depends on a given
variable (required for optimization). Integers, pairs (type elpair), and tuples
(type eltuple) are based on the standard C++ types, and are defined as int,
pair<elem, elem> and vector<elem>, respectively. Terms are represented by
the type term.

The variants lelem and relem represent elements of a set. While elem con-
tain elements of a fixed type (e.g., a pair), lelem and relem represent piece-
wise elements, whose type may depend on the variables in the context (current
for relem, inner for lelem) – intuitively, their type may different in different

LOIS: technical documentation 7

pseudoparallel threads. They are described in detail in Section 6 below. Also,
lnum<T> and rnum<T> are wrappers for piecewise numbers – they are described
in Subsection 6.1 below.

Finally, there are two types for representing booleans whose values may de-
pend on variables in their current (inner) context, lbool and rbool. They are
internally represented as first-order formulas depending on variables in their
context (inner for lbool, current for rbool).

Conversions. There is an assignment operator for assigning a variable of type
relem to a variable of type lelem. Thanks to this and the C++ conversion
mechanism, whenever a variable of type lelem is used in place where a variable
of type relem is expected, an automatic conversion is performed by the com-
piler (and similarly for the other pairs of lvalue and rvalue types). To convert a
relem e to a elem, for(elem x: newSet(e)) can be used. Also, pairs, tuples,
terms, integers, and sets are automatically converted to elems. A variable x of
type elem can be cast to a set, a pair, a tuple, a term, or an integer, using
the operations asSet(x), as<elpair>(x), as<eltuple>(x), as<term>(x), and
as<int>(x), respectively. It can be also tested whether x is a pair, by the opera-
tion is<elpair>(x) (and similarly for terms, tuples and integers) which returns
a value of type bool.

Sets with type checking. The types lsetof<T> and rsetof<T> are used
instead of lset and rset to create sets whose all elements are of type T (typically,
term, elpair, eltuple, rset, int, or rsetof<U>). This is a wrapper around
lset and rset which allows only adding elements of type T; moreover, the
for loop iterates over type T instead of the polymorphic elem. This improves
readability and provides type checking.

4.2 Flow control

LOIS has the following constructs constructs for flow control:

– The conditional If (cond) I, where cond is a condition of type rbool and
I is an instruction (the body) which is to be executed if the condition is
satisfied. There is also a variant Ife (cond) I else J, where the instruc-
tion J is to be executed if the condition fails. If and While are macros; they
should be used with LOIS conditions, rather than the normal if and while.

– The looping construct While (cond) I, where cond and I are as above.
– The hybrid pseudoparallel looping construct for (elem x:X) I, where x is

the name of the introduced control variable, X is the set (of type rset) over
which it ranges, and I is an instruction (the body of the loop).

– The fully pseudoparallel looping can be achieved in LOIS using the construct
for(relem e: fullypseudoparallel(X)).

Furthermore, functions and recursion from C++ can be used. Using the
rvalue types (such as rset or relem) is recommended for arguments and return
values, unless we are passing references to lvalues as arguments to the function,
when the lvalue type should be used. Note that since the for loop in LOIS is

8 Eryk Kopczyński and Szymon Toruńczyk

defined in a hybrid way [KTb], using the return, break, or continue statement
inside a loop will cause LOIS to stop processing the set, and thus unintuitive
behavior. The recommended approach is to create a value (say, lelem ret) to
represent the returned value, set its value in the loop, and then return ret)
after the loop ends.

4.3 Operations

The basic operations on sets (rset) are defined as follows. In the list, we denote
sets (rset) with X and Y, elements (relem) with x, and set lvalues (lset) as Z.

Note that the assignment and compound operators (= += |= &= &=~) are
defined according to the pseudo-parallel semantics [KTb]. That means, for each
valuation v of the inner context of Z, the operation is performed on Zv in parallel
for each valuation w of the current context which extends v. Also note that
adding elements to a set is much more efficient than removing (which basically
loops over the set and keeps only the elements which are not to be removed).

X==Y set equality
X!=Y set inequality
X&Y set intersection
X&~Y set difference
X|Y set union
X*Y Cartesian product (elpair used for the pairs)
cartesian({X,Y,Z,...}) Cartesian product (eltuple used for the tuples)
subseteq(X,Y) X is a subset of Y
memberof(X,x) x is an element of X
newSet() create an empty set
newSet(x) create the set {x}
newSet(x,y) create the set {x, y}
newSet({x,y,...}) create a set with the given elements
extract(X) extract the single element of a set
Z=X set Z to X

Z+=x add x to the set Z
Z-=x remove x from the set Z
Z|=X add all elements of X to the set Z
Z&=X remove all elements of Z which are not elements of X
Z&=~X remove all elements of Z which are elements of X

4.4 The underlying structure

To create an infinite set, construct an object of the class Domain; this object’s
method getSet() returns the underlying set, of type rset. It is possible to
create multiple domains.

All domains are automatically equipped with equality (==, !=) and a dense
total order, accessed with the usual operators <, >, <=, >=.

LOIS supports domains which have more structure, for example, with two
independent dense total orders. This is explained in detail later (Section 5).

LOIS: technical documentation 9

4.5 Quantifier macros

LOIS defines macros FORALL, EXISTS, FILTER, MAP, and FILTERMAP, allowing
the programmer to construct formulas with quantifiers, and sets, intuitively.
FILTER(x,A, φ(x)) corresponds to the mathematical set {x|x ∈ A, φ(x)}, MAP(x,A, v(x))
corresponds to {v(x)|x ∈ A}, and FILTERMAP(x,A, φ(x), v(x)) corresponds to
{v(x)|x ∈ A, φ(x)}. All these macros are defined using the for loop, and are
therefore redundant in terms of expressive power.

4.6 Displaying the current context, and naming variables

The variable currentcontext of type contextptr contains a pointer to the
current context on the stack, while emptycontext is the pointer to an empty
stack. (See [KTb] for the discussion of contexts and stacks.) Use cout << c to
display the difference between the currentcontext and c. Thus, the following
will display |b > a|b∈A|a∈A|:

contextptr c = currentcontext;

for(auto a: A) for(auto b: A) {

as<term >(a).asVar()->name = "a";
as<term >(b).asVar()->name = "b";

If (a<b)
cout << c << endl;

}

Note how we have named the variables occuring in terms a and b to a and b –
otherwise LOIS would not know how the programmer named them, so it would
generate its own names, which would be probably some random letters instead
of a and b.

Other functions working with contexts include branchset(contextptr anccontext)

(which returns the set of all pseudoparallel threads since anccontext), and
getorbit (see loisextra.h), which returns the orbit of a given element (see
[KTa]), treating the variables in the given ancestor context as fixed.

4.7 Declaring atoms and axioms

One can declare atoms and axioms, like in the following:

declareatom u(&dA , "u"),
v(&dA, "v");

axiom ax(u != v);

Create an object of type declareatom to name one element of the domain.
Create an object of type axiom to add an axiom, for example, that the de-
clared atoms are not equal (this is not given). This is implemented by push-
ing the respective variables and constraints on the stack. A careful reader will
notice that the real effect is exactly the same as would be obtained by us-
ing for(a1,A) for(a2,A) If(a1!=a2). However, when the programmer wants
simply to select some elements of A, these constructs are more intuitive than
loops and conditionals.

10 Eryk Kopczyński and Szymon Toruńczyk

4.8 Choosing the solver

The global variable solver of type solveptr describes the solver currently used
by LOIS. The following solvers, or solver combinations, are available:

– solverCrash() which cannot solve anything (it just crashes).
– solverBasic() which can solve only the trivial cases.
– solverExhaustive(int t, bool v) calls the internal solver. The number

t corresponds to the number of tries (possible valuations) after which the
internal solver gives up, and v is the verbosity.

– solverSMT(), solverCVC() and solverSPASS() call the given external solver.
They accept an optional std::string argument, which is the path to the
solver executable.

– solverIncremental(std::string) uses Z3’s incremental solving feature.
– solverCompare(std::initializer list<solveptr> p) compares the re-

sults of two or more solvers, and checks for inconsistencies.
– solverVerbose and solverNamed(std::string n, solveptr s) are wrap-

pers around solvers which provide extra diagnostic information.
– solverStack(solveptr s, solveptr fallback) calls the solver s, then

calls fallback if it failed. It can be used, for example, to solve simple cases
with the basic or exhaustive solver, then proceed to verbose exhaustive or
external solver for the harder cases.

Call useDefaultSolver(int i, int j) to use the default solver (queries
with complexity below i are solved in a non-verbose way, then they are solved
in a verbose way, and the internal solver gives up at j tries; also j is used as the
limit for the number of tries for the simplification algorithm).

4.9 Other functions

Some other functions include:

– rset optimize(rset x), which optimizes the set by removing repetitions
(each element in the returned set will be in exactly one set-builder expres-
sion).

– rset optimizeType(rset x, rset type), which is a more efficient version
of optimize for the case when we know that x is a subset of a (simple) set
type.

– getsingletonset(rset X), which returns the set of singletons of elements
of X, represented as a single set-builder expression.

5 Domains, symbols, and relations

It is possible to equip domains with extra structure, such as an order. LOIS
includes an internal solver for homogeneous with extension bounds [KTa]; also,
several external solvers can be used for the structure (N,+) or (R,+, ∗). Such
an extra structure does not have to be immediately declared when the domain is
created; instead, at any time the programmer can create an object from one of
the subclasses of the class Relation, for example with the following declaration:

LOIS: technical documentation 11

RelOrder newOrder(" GT ", " LEQ ", " MAX ", " MIN ");

Terms representing elements of any domain can now be compared with re-
spect to newOrder (a dense total order without endpoints) using the methods
rbool less(const term& a, const term& b) or rbool leq(const term& a,

const term& b). We can also find the maximum and minimum of two ele-
ments, using the methods term max (const term& a, const term& b) and
term min (const term& a, const term& b).

When the formulas are displayed on the screen, one of the symbols given in
the declaration of newOrder is used. Symbols are given as objects of class symbol;
a conversion from const char* and std::string to symbol is provided, but the
class symbol also allows to use symbols which are displayed differently depending
on the context. For example, the object sym contains many symbols which are
either used by LOIS itself or considered useful in applications, and methods
useUnicode(), useLaTeX(), and useASCII(), which sets all the symbols to use
the given format. The following symbols are defined in the object sym:

– Logical symbols: exists, forall, and, or, eq, neq, in
– Basic set symbols: emptyset, ssunion (an union of set-builder expessions),

leftbrace, rightbrace, sfepipe (a separator between the value and the
context in the set-builder expression), sfecomma (a separator between in the
context of a set-builder expression), pseudo (operator which extracts a single
element from a set, for the purpose of displaying lelems)

– Relational and functional symbols: leq, geq, greater, less, max, min, plus,
times, minus, divide, edge, noedge, arrow, noarrow

LOIS declares the main order, which is defined with the following line:

mainOrder = new RelOrder(sym.greater , sym.leq , sym.max , sym.min);

The C++ opperators <, >, <= and >=, when used on terms, are defined as
referring to mainOrder. When two orders (say, mainOrder and newOrder) are
defined and used in the same formula and over the same domain, they are con-
sidered to be unrelated – intuitively, two random orders have been independently
chosen over our domain. In general, the same rule of independence is used when
defining multiple relations; in many cases, this yields oligomorphic homogeneous
structures, which still have a decidable first order theory [KTa]. The algorithm
used by LOIS for deciding the satisfiability only takes into account relations
which are actually used in the given formula; so, the existence of mainOrder,
even if it is not used, won’t make the computations slower.

The following subclasses of Relation are available:

– RelOrder, explained above. The constructor of RelOrder has four symbol
arguments: greater, leq, max, and min. RelOrder has four methods: less,
leq, min, and max.

– RelBinary, which creates a random binary relation over the domain. The
constructor of RelOrder has two symbol arguments inrel (in the rela-
tion) and notinrel (not in the relation), as well as two parameter l and

12 Eryk Kopczyński and Szymon Toruńczyk

s, which define the properties of relation to be created. The parameter l

can take the value of lmNoLoops (irreflexive), lmAllLoops (reflexive), or
lmPossibleLoops (a can be in the relation with itself or not). The parameter
s can take the value of smSymmetric, smAsymmetric, or smAntisymmetric.
In all cases, with probability 1 we get the same graph (up to isomorphism),
which has a decidable first order theory due to being homogeneous and oligo-
morphic (see [KTa] for details); when choices which leave more possibilities
(lmPossibleLoops, smAsymmetric) are chosen, the internal solver has to
consider all of them to verify the satisfiability of formulas. The relation is
accessed with rbool operator () (const term& a, const term& b).

– RelUnary, which creates a random partition of the domain. The construc-
tor is RelUnary(symbol rel, int n), where every element of the domain
is randomly assigned to one of the n parts. Operator rbool operator ()

(const term& a, int v) is used to check whether a is in the part number v
(0-based), and for convenience, the method rbool together(const term&

a, const term& b) checks whether a and b are in the same parts.
– RelTree, which defines a homogeneous tree structure. This is an infinite tree,

where every two elements have the least common ancestor, and it is dense
without endpoints, that is, if u is an ancestor of v, then there is a w such that
w is ancestor of v and u is ancestor of w, and there is an ancestor of u and a
descendant of w; furthermore, there is infinite branching, that is, if v1, . . . , vk
are descendants of u, then there is v such that the least common ancestor
of v and vi for i = 1, . . . , k is u. This structure showcases the fact that,
in a homogeneous structure with extension bound, the isomorphism type of
{a1, . . . , an} might be defined not only by relations on these elements – we
also need to check the relations of terms (in this case, using lca). Methods
anceq (“ancestor or equal”) and lca are used to access the relations and
functional symbols. The constructor has three symbol arguments opanceq,
opnotanceq, and oplca, which correspond to the methods.

– RelInt and RelReal, which define the set of integers and reals, respectively.
The constructor defines the symbols related to the order, and also opplus,
optimes, opminus, and opdivide. The term constant(Domain *d, int i)

is used for integer constants, and there are also methods plus, times, minus,
and divide for the basic operations. Note that these are not ω-categorical,
and thus they are not compatible with other relations, and the internal
solver does not work with them – an external solver is required [KTa]. Use
the namespace orderedfield ops from loisextra.h to conveniently bind
the C++ operators (+ - * /) to methods of the given RelInt or RelReal.

Note that the domain for a given term can be obtained with the method
getDom().

6 Piecewise v-elements

The types lelem and relem are useful for representing variables which behave
in different ways under different valuations, e.g., 1|x = y; x|x 6= y.

LOIS: technical documentation 13

For a formal syntax of those types, we need the following notions. A piecewise
v-element is an expression e of the form e1|C1; e2|C2; . . . ; ek|Ck, where e1, . . . , ek
are v-elements, and C1, . . . , Ck are constraints (i.e., first order formulas). If v is
a valuation of the free variables of e, then e[v] is defined as ei[v], where 1 ≤ i ≤ k
is such that v satisfies Ci. If no such i exists, or it is not unique, then e[v] is
undefined.

The types lelem and relem represent piecewise v-elements. Similarly to lset,
lelem is associated with an inner context.

Assignments to lelem. In [KTb] we only described how the assignments to
variables of type lset are carried out. A variable x of type lelem designates a
piecewise v-element. To see why using piecewise v-elements is necessary, consider
the following example.

lset Z;
for (elem x:A) for (elem y:A) {

lelem u = x;
If (x != y)

u = newSet(elpair(x,y));
Z += u;

}

In order to guarantee the appropriate value of Z after executing this code, at the
moment of the instruction Z+=u, the variable u needs to designate the piecewise
v-element x|x = y; (x, y)|x 6= y.

Internally, LOIS represents a variable x of type lelem designating the piece-
wise v-element e1|C1; e2|C2; . . . ; ek|Ck by a variable 〈x〉 of type lset, which
designates the v-set {e1|C1} ∪ {e2|C2} . . . ∪ {ek|Ck}. The v-set 〈x〉 can be ob-
tained in LOIS by the instruction newSet(x). Operations on the type lelem are
carried out by lifting them to operations on the type lset. For example, the
assignment x = y to the variable x of type lelem is simulated by executing the
assignment 〈x〉 = newSet(y).

New set. If x is of type elem, then the instruction newSet(x) is executed as
expected– it constructs a v-set of the form {x}. If x is of type lelem, this opera-
tion becomes slightly more involved, as described in the paragraph “assignment”
above.

Extract. If X is of type rset, then the result of extract(X) is of type relem and
designates the piecewise v-element corresponding to the v-set X. On the level of
implementation, the return value u of this instruction is such that 〈u〉=X.

Example 1. To see the usefulness of this operation, consider the following func-
tion which calculates the maximum of a set of terms, such as {a1, a2} or {x | a1 ≤
x ≤ a2}. We assume here that domain A is equipped with a linear order ≥.

lelem max(rset X) {
lset answer;
for(elem x: X) If (FORALL(y, X, x >= y)) answer += x;
return extract(answer);

}

First, we loop over all elements x ∈ X, and if ∀y ∈ X.x ≥ y, add x to the set
answer. If the set X indeed has a maximum, then answer will be a singleton

14 Eryk Kopczyński and Szymon Toruńczyk

containing this maximum; otherwise; answer will be empty. If X is equal to v-set
{a1, a2}, then answer will be calculated as {a1|a1 ≥ a2; a2|a2 ≥ a1} and the in-
struction extract(X) will return the piecewise v-element a1|a1 ≥ a2; a2|a2 ≥ a1.

6.1 Piecewise numbers

The types lnum<T> and rnum<T> (where T is usually int, but could be extended
to other types) represent piecewise numbers. Operators are defined for lnum<T>
and rnum<T> according to the pseudo-parallel semantics; in particular, x++ for
each valuation v of the internal context increments x[v] by the cardinality of the
set of possible valuations of the current context which extend v. For example,
consider the following program:

for(auto a: A) for(auto b: A) {

as<term >(a).asVar()->name = "a";
as<term >(b).asVar()->name = "b";

lnum < int > i = 0;

for(auto x: A)
If (x == a || x == b)

i++;

cout << i << endl;
}

If we know that a 6= b, this will output 2. If we don’t know this, a represen-
tation of the piecewise number will be generated, which currently is

\ {2|b6=a; 1|∃w∈A∀x∈Ax = w∨(x 6=a∧x6=b)} .

Note the simplification algorithm failed to simplify the formula for the case when
a = b.

7 Safety of programming

It is possible to create a LOIS program which compiles and terminates without a
run-time exception, but nonetheless works incorrectly; for example, the following
function will count the cardinality of the set incorrectly, due to using the type
int instead of the piecewise integer lnum<int>.

int cardinalityBad(elem X) {
int result = 0;
for(elem x: X) result ++;
return result;

}

Of course, this problem cannot be completely solved—it is possible to create
an incorrect C++ program even without LOIS. However, the programmer should
be mostly safe, if they observe the following rules.

– The lvalue types (lbool, lset, lnum, etc.) are used for all the local (and
global) variables, except the iterators for looping over sets and setof<T>’s,

LOIS: technical documentation 15

for which elem and T (or auto) are used respectively, and temporary values
(function parameters, function return values), for which rvalue types may
(and should) be used. The difference between lvalue and rvalue types is
technical—to handle assignments and other changes correctly, lvalue types
require extra information (the inner context), while rvalue types do not. We
have decided to use two distinct types—the rationale is that a lvalue variable
should correspond to a specific stack (context), and the stack changes during
a function call or return; also avoiding this extra information could improve
the efficiency. Assigning a rvalue to a lvalue (or, in general, modifying a lvalue
in any way which takes a rvalue as a parameter) is legal only if the rvalue
does not depend on the sort variables which have been introduced since the
lvalue was created. Thus, the following implementation of max would throw
an exception for some sets X:

relem maxBad(rset X) {
lelem ans;
for(elem x: X)

If (ans.isUndefined () || x > ans)
ans = x;

return ans;
}

– Non-structural programming constructs, such as continue, break, return,
and goto are considered harmful and should be avoided. Suppose a function
is called with the current context C, then new constaints are pushed on the
stack, changing the current context to C ′. Now, the return statement is
used. This will break the execution flow not only for all the C ′-valuations,
but actually for all the C-valuations, irregardless of whether they are C ′-
valuations or not (the necessary condition for executing the return statement
is that Val(C ′) is non-empty). Moreover, If statements could execute both
branches, and they are internally implemented with a for loop, which might
make the behavior of continue and break different than expected. Thus,
the only way of using the return statement which is not considered harmful
is to declare a local lvalue as the first statement (before any loops), modify
it in the body of the function, and then return its value as the last statement
of the function. Note that this approach is similar to the one used in original
Pascal.

8 Contents of the package

The LOIS package included contains the following:

– source code (LOIS library itself, and the sample programs described above).

– a Makefile which includes the all target which compiles the LOIS library
and the two programs, runs the two programs, and saves the output.

– The result of make all (both binaries and their output), obtained on the
first system.

16 Eryk Kopczyński and Szymon Toruńczyk

8.1 Sample programs

The subdirectory tests includes some sample programs.

Tutorial The program tests/tutorial.cpp includes the tutorial given in Sec-
tion 2, as well as some other code snippets quoted in this paper. These snippets,
as well as their outputs, are inserted directly from tests/tutorial.cpp or its
output.

Automatic tests The program tests/autotest.cpp performs some automatic
testing of LOIS. This includes some interesting applications of LOIS, allowing
one to see that LOIS runs correctly, and how fast does it run. The following tests
are conducted:

– testRandomBipartite

Let R be a random symmetric and anti-reflexive relation, and let A1 and
A2 be a random 2-partition. Let S(x, y) iff x and y are in different parts of
the partition. We construct a new relation E = R ∩ S. In graph theoretic
terms, R is Rado’s random graph, S is a complete bipartite graph, and E is
a random bipartite graph. We take one vertex x ∈ A and run BFS on the
graph, and ask about the number of iterations after which we have reached
every vertex. The program correctly answers that every vertex is reached
after 3 iterations.
This test evaluates in roughly 3 milliseconds on the machine used for tests.

– testTree

A function is given elements x1, . . . , xk of the homogeneous tree, and asks
questions about relationships between them. Once the answers uniquely de-
termine the substructure generated by x1, . . . , xk, the substructure is pre-
sented in a readable form. For four elements without any relations, 416 pos-
sible structures are generated (262 if we know that all the four elements are
not equal — see sequences A005264 and A005172 in [OEI]).
This test evaluates in roughly four seconds on our machine (for four ele-
ments). This time is relatively long because of two reasons:

• The extension bound of the homogeneous tree is relatively large (e(n) =
8n − 4, which gives the evaluation time of roughly 8kk! according to
Proposition 1 in [KTa]). In fact Proposition 1 is not optimal, all trees
are generated in time roughly linear in the number of all trees, which is
416 for four elements. Still, it grows quite fast.

• The program is very ineffective: currently, each question tries to generate
all the possible structures from the beginning, even if we know that some
possible structures have been already ruled out.

Therefore, the running time is actually at least quadratic in the number of
possible trees. This should be optimized in the future versions of LOIS.

– testOrder

This test the basic properties of the order relation, and evaluates very
quickly.

LOIS: technical documentation 17

– testAssigment
This checks whether an assignment exception is correctly thrown when we
try to assign a value (rbool, in this case) which uses variables which are not
in the internal context of the variable we are assigning to.

– testQueue
This checks whether the setof’s and the queue semantics of the for loop
works correctly. Numbers from 0 to 10 are inserted to lsetof<int>.

– testRemoval
This checks whether the -= operator works in the natural, pseudo-parallel
way, as advertised in paper.

Minimisation of an automaton The program tests/mintest.cpp tries to
perform the minimisation algorithm on an orbit finite automaton. This automa-
ton over the alphabet A (our infinite domain) reads three symbols, and accepts
iff either two of them are equal (if there are less than three or more than three
symbols, the word is rejected). The minimisation algorithm works in a way sim-
ilar to the usual one for finite automata. The equivalence relation η ⊆ Q × Q
is computed – two states will be in η if they can be merged into a single state.
Initially, η is set to F × F ∪ (Q − F) × (Q − F), and then, in each iteration
states each x, y ∈ Q are separated iff ¬η(δ(x, a), δ(y, a)) for some symbol a in
the alphabet. For this particular automaton minimisation takes four iterations.
The algorithm is implemented using two representations (η is represented either
as a relation or as the set of equivalence classes), and currently takes 0.15 s in
the relation representation, and 32 s in the equivalence class representation.

Solver tests The program tests/soltest.cpp tests various solvers on several
LOIS functions. The table in [KTa] is based on its results. The following tests
are included:

– testOrder This test the basic properties of the order relation, and evaluates
very quickly with the internal solver, although external solvers have problems
with it.

– testReachable Reachability from the article (Section 2).
– testReal This test the basic properties of the Real sort (LRA logic).
– testMinimize?? These tests minimize automata. There are two automata:

A (the same as in tests/mintest.cpp) and B (the automaton using the
integers from the introduction), and three different implementations of the
minimisation algorithm (two from tests/mintest.cpp, and the one shown
in the Introduction is implementation number 3). Internal solver and SPASS
work on the automaton A, but none of the solvers work on B.

– testPacking What are the maximal sets of subsets of (0,5) such that no
two points are in distance less than 1? Z3 correctly calculates using the LRA
logic that such maximal sets can have from 3 to 5 elements.

– testCirclePacking This tests the NRA logic by asking about packings of
disks in a larger disk. None of the tested solvers can answer even the simplest
questions here.

18 Eryk Kopczyński and Szymon Toruńczyk

The external solvers where called using the following commands:

Z3: z3-*/bin/z3 -smt2 -in -t:500

CVC4: cvc4 --lang smt --incremental --tlimit-per=500

CVC4*: cvc4 --lang smt --incremental --finite-model-find --tlimit-per=500

SPASS: SPASS -TimeLimit=1

References

[KTa] Eryk Kopczyński and Szymon Toruńczyk. LOIS: an application of SMT

solvers. Submitted for a conference. See http://www.mimuw.edu.pl/

~erykk/lois/.

[KTb] Eryk Kopczyński and Szymon Toruńczyk. LOIS: syntax and semantics.

Submitted for a conference. See http://www.mimuw.edu.pl/~erykk/lois/.

[OEI] The on-line encyclopedia of integer sequences. http://oeis.org.

http://www.mimuw.edu.pl/~erykk/lois/
http://www.mimuw.edu.pl/~erykk/lois/
http://www.mimuw.edu.pl/~erykk/lois/

	LOIS: technical documentation
	Eryk Kopczynski, Szymon Torunczyk
	Introduction
	Tutorial
	Overview
	Syntax and features
	Types
	Flow control
	Operations
	The underlying structure
	Quantifier macros
	Displaying the current context, and naming variables
	Declaring atoms and axioms
	Choosing the solver
	Other functions

	Domains, symbols, and relations
	Piecewise v-elements
	Piecewise numbers

	Safety of programming
	Contents of the package
	Sample programs

